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ABSTRACT Network topology is important information for many network control and management
applications. Network tomography infers network topology from end-to-end measured packet delays or
losses, which is more feasible than internal cooperation-basedmethods and attracts many studies.Most of the
existing methods for network topology inference usually function under the assumption that the distribution
of packet delay or loss follows a given distribution (e.g., Gaussian or Gaussian mixture), and they estimate
network topology from the parameters of the given distribution. However, these methods may fail to obtain
an accurate estimation because the real distribution of packet delay or loss usually cannot be described by
a certain distribution. In this paper, we present a novel network topology inference method based on the
unicast end-to-end measured delays. The method abandons the assumption of packet delay distribution and
constructs network topology by inferring the higher-order cumulants of internal links from the end-to-end
measured delays. The analytical and simulation results show that the proposed method offers over 10%
improvement in accuracy compared with that of the state-of-the-art works.

INDEX TERMS Higher-order cumulant, topology inference, end-to-end measurement, network tomogra-
phy.

I. INTRODUCTION
As size of the Internet has grown dramatically, it has become
a giant system with a complex structure. Network routing
topology describes the connections among the devices on the
Internet and plays a significant role in many networkmanage-
ment tasks such as understanding network bottlenecks, local-
ization of failures, learning network internal performance and
optimizing network design. As a result, determining how
to understand the topological information of a network has
become an important area in the field of network measure-
ment research and attracted many recent studies [1].

The existing methods for network topology mea-
surement can be divided into two categories: internal
cooperation-based methods and network tomography-based
methods. The internal cooperation-based methods construct
network topology using the information retrieved from
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internal routers such as routing information and
ICMP packets [2]–[4]. However, these methods may fail
if the internal routers refuse to return the topology infor-
mation because this may incur security problems and
represents deployed prohibition by ISPs. The network
tomography-based methods [5], [6] (also called network
topology inference methods) collect the path performance
parameters (e.g., packet queue delay or packet loss) via
end-to-end measuring and infer the network topology from
the path performance parameters using statistical methods.
In practical use, the network tomography-based methods are
more feasible than the internal cooperation-based methods
because they are capable of obtaining the topology without
the cooperation of internal nodes. Based on the estimated
topology, network tomography can also be extended to learn
more network internal performance parameters [7]–[9] such
as delay [10], loss [11] and bandwidth [12].

The existing network topology inference methods estimate
the network topology using the means and variances of the
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performance parameters of shared paths from a source to
a set of destination nodes, which indicate that the packet
queue delay or packet loss in the network follows a given
distribution (e.g., Gaussian [13] or Gaussian mixture [14]).
Then, the network topology can be recovered by computing
the first or the second statistical characteristic of the path
performance parameters. However, due to the complexity of
real network environments, the performance parameters in
the network usually cannot be accurately described using a
certain distribution, and the statistical information of the path
performance parameters is not fully utilized by simply relying
on the first or the second statistical characteristic, which
makes the estimated topology exhibit significant deviation
from the actual topology.

Aiming at the problem described above, this paper pro-
poses a higher-order cumulant-based topology inference
method. Our method first utilizes the back-to-back probe
packets to probe the network and collects the packet delays of
the paths from a source to a set of destinations; then, it infers
the network topology by analyzing the measured path delay
sequences. We summarize our contributions as follows.
• In a non-internal-cooperative network, the only infor-
mation that can be used to infer the topology is that
regarding end-to-end measured packet delays or losses.
Therefore, how to effectively discover the topology
information from the end-to-end measurements deter-
mines the accuracy of topology inference. In this paper,
we develop a method to estimate the cumulants of sec-
ond order and above (higher-order cumulants) of each
shared path from a source node to two destination nodes
according to the end-to-end path delays. Higher-order
cumulants contain more abundant statistical information
compared with the mean or variance widely used in
existingmethods. Especially in actual networks, the path
delay cannot be modeled by a known distribution, and
the higher-order cumulant is a more appropriate descrip-
tion method for delay distribution, which can help us to
infer a more accurate topology.

• A key issue in obtaining accurate topology from end-to-
end measurement is to find an effective metric to repre-
sent the lengths of all shared paths from a source node to
several sets of destination nodes. Network tomography
constructs the tree topology of a network based on the
inputting of the shared path length metric. To this end,
this paper introduces a new metric for the problem of
shared path length representation using the estimated
higher-order cumulants of delays. We first combine
multiple orders of cumulants using the weighted sum
method in order to better use the statistical information
of path delays. A binary tree topology inference algo-
rithm is then developed based on the newmetric. Finally,
we alternatively optimize the weights of cumulants and
the topology in order to obtain an optimal binary tree
that can best fit the measured path delays.

• In an actual network, the topology from a source node
to a set of destination nodes usually cannot be a binary

tree. Existing methods usually obtain the general tree
topology by deleting links or restricting the number of
nodes in a binary tree using a fixed threshold. However,
the complexity of traffic distribution (such as traffic
imbalance and nonstationary nature) in the actual net-
work makes a fixed threshold ineffective, and such a
threshold may not be suitable for all links and nodes.
To solve this problem, this paper first designs a link
walking algorithm to cluster the links in the binary tree
and then uses a two-state automaton model with Bayes
inference to identify the true or false links (the links can
be deleted). We estimate the general tree topology by
deleting the false links in the above optimal binary tree
according to the Bayes inference procedure. Our method
estimates the general tree topology without setting a
fixed threshold, which is more feasible in many practical
applications.

Compared with the existing methods, the proposed
approach is capable of obtaining more accurate topology
estimation because we use the delay cumulants of second
order and above to infer the topology, and the statistical infor-
mation of the path delays can be more fully utilized in our
method. The remainder of the paper is organized as follows.
In Section II, we review the related works. In Section III,
we introduce related concepts and models. In Section IV,
we present the method of higher-order cumulant inference.
In Section V and Section VI, we describe the topology infer-
ence method. In Section VII, we describe the evaluations of
the method under NS2 simulations. We finally conclude the
paper in Section VIII.

II. RELATED WORKS
Capturing the routing topology knowledge using network
tomography is of great interest to networking research.
Ratnasamy and McCanne [15] were considered the pioneers
in the field of network topology inference research; they
proposed a bottom-up tree construction algorithm by send-
ing multicast probe packets and estimating the loss rates of
the shared paths. Based on the loss rate estimates of the
shared paths, Duffield et al. [16], [17] proposed the binary
loss tree (BLT) classification algorithm to estimate binary
tree topology. A general tree topology can be obtained by
removing the links with loss rates below a threshold. The
authors also developed the binary delay variance tree (BDT)
classification algorithm [18], which constructs the binary
tree topology by utilizing the link delay variances. Recently,
Bowden and Veitch [19] followed the multicast-based end-to-
endmeasurementmethod and developed a topology inference
method without the assumption that link losses are mutually
independent; they estimated tree topology from the bottom
up by finding the lost packets on the shared path based on
multicast probing.

Since multicast routing is not widely deployed in today’s
Internet, the investigation of unicast topology inference is
very important for practical applications. Castro et al. [20]
invented a unicast probing method termed sandwich probe
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and proposed the agglomerative likelihood tree (ALT) algo-
rithm to estimate network topology using the delay differ-
ences of the probes. However, the ALT could only be applied
to estimate the binary tree topology. To overcome the limita-
tion, Castro et al. introduced the Monte Carlo Markov Chain
algorithm (MCMC) to generate a sequence of candidate trees
by birth (inserting a node) and death (deleting a node) steps.
The final estimate is the tree with the maximum likelihood
(MLT: maximum likelihood tree) among the candidates. Usu-
ally, the unicast-based topology inference method requires a
high number of probe packets, and hence, Eriksson et al. [21],
[22] proposed a methodology called depth-first search (DFS),
which is capable of efficiently reducing the number of unicast
probe packets without loss of estimation accuracy.

One of the key issues with respect to improving the accu-
racy of topology inference is finding a metric that can effec-
tively describe the lengths of all shared paths from a source
node to all pairs of destination nodes. Aiming at this problem,
Shih and Hero [14] introduced a finite mixture model to
describe the delay distribution of packet delay. The topology
is estimated via a hierarchical algorithm that recursively opti-
mizes the likelihood function and recovers the topology level
by level. Ni et al. [23], [24] proposed a framework to merge
various metrics that were obtained from end-to-end packet
probing measurements and traceroute type measurements.
The method may degenerate into a general network topology
inference method if the traceroute-based information is not
available in a noncooperative network. In this paper, we pro-
pose a new metric based on the higher-order cumulants of
delays on the shared paths. The metric is capable of capturing
richer statistical information of end-to-end packet probing
measurements and is also beneficial to more accurately esti-
mating topology.

III. PROBLEM STATEMENT
A. MODEL AND ASSUMPTION
In this paper, we aim at the problem of how to under-
stand the underlying routing topology from a node to a
set of other nodes in a network, where all internal nodes
(e.g., routers and three-layer switcher) may refuse to return
any information about topology. The information of underly-
ing routing topology of a network is particularly useful for
many applications such as failure link diagnosis [25], [26],
P2P network optimization [27], and link performance param-
eter inference [28]. For example, the works presented in [25]
and [26] focus on the problem of discovering and localizing
the failure links in networks by combining the topology and
other path-level performance information under the assump-
tion that the underlying routing topology is known. Hence,
understanding the underlying routing topology is a necessary
preliminary work if those methods can be applied to actual
networks.

This paper follows most of the existing works [13]–[19]
that represent the network topology as a directed logic
tree T = (V ,E). T comprises physical nodes V and
links E between them. V is composed of one root node s

(the source node, which is the probe packet sender), a set
of internal nodes W , and the remaining leaf nodes D =
{D1,D2, · · · ,DM } (destination node, probe packet receiver),
where M is the number of leaf nodes. The source and leaf
nodes can be normal computers that are proactively deployed
in the network or the virtual nodes that are passively gener-
ated by network applications (such as P2P). The path from
the source node s to a destination node di is denoted by
path(s, di). Apart from the root node, each node w ∈ W ∪ D
has a unique parent f (w). We use ew to denote the link
between node w and the corresponding parent node f (w). For
a pair of nodes {di, dj}, we use f (di, dj) to denote the nearest
parent node.

The basic principle of network topology inference is to
estimate logic tree topologies based on the path-level perfor-
mance parameters. The path-level performance parameters
are obtained by sending a small number of normal data
packets (these normal data packets are called probe packets)
from a source node to a set of destination nodes. Based
on this approach, the general topology of a network can be
recovered by estimating multiple trees [29] andmerging them
together [30]–[32]. In this paper, we probe the network via
back-to-back packets. For a pair of leaf nodes {di, dj}, the root
node sends two small packets each time, and the destinations
of the two packets are di and dj, respectively. Since both the
packet size and the packet interval are very small, it can be
determined that the two packets are sent simultaneously and
with the same delay on the shared path. Based on the back-
to-back probing, we make the following assumptions:
Assumption 1 (Structure Stability): The topology of the

network remains unchanged during the measurement and
estimation period.
Assumption 2 (Spatial Independence): The packet delays

on different links are statistically independent.
Assumption 3 (Temporal Independence and Stationary):

The delays of different probes on the same link are statisti-
cally independent and identically distributed.

It is noteworthy that network tomography sends normal
data packets to probe the network, and these packets cannot
be recognized as potentially threatening packets and prohib-
ited by the firewalls or the IDS system [33]–[36].

B. METRIC FOR PATH LENGTH
One of the key tasks for network topology inference is to
obtain the length metrics of all shared paths from the source
node to all pairs of destination nodes. As shown in Fig. 1,
path(s,w1) and path(s,w2) are the shared paths from the
source node to pairs of destination nodes {di, dj} and {dj, dk},
respectively. From Fig. 1, we can observe that path(s,w1)
contains more links than path(s,w2). Hence, we deem that
the length of path(s,w1) is greater than that of path(s,w2).
According to this information, we can determine that f (di, dj)
is farther away from the source node than f (dj, dk ), and we
can insert each leaf node into a known tree by determining
the relative locations of the nearest parents with other nodes.
As a result, a simple idea to recover the tree topology is to
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FIGURE 1. Description of the shared path length.

start from a binary tree with two leaf nodes and then insert
the leaf nodes into the known binary tree one-by-one.

Unfortunately, obtaining the lengths of shared paths is a
tricky task in a noncooperative network. To this end, net-
work tomography collects path-level performance parameters
(e.g., path delay, path loss rate) by sending a series of
well-designed probe packets and indirectly obtains the length
metric of the shared paths. For example, Coates et al. [20]
designed a probing method called sandwich. A sandwich
packet is composed of two small packets with a large packet
between them. Two small packets may have a larger delay
difference if the sandwich packet experiences a longer shared
path. Shih et al. [14] evaluated the length of the shared
path using the delay correlation coefficient of back-to-back
packets. Two delay series obtained by sending a series of
back-to-back packets may have a larger correlation coeffi-
cient if these back-to-back packets experience a longer shared
path.

The essence of thesemethods assumes that the packet delay
follows a given distribution, such as Gaussian or Gaussian
mixture, and uses the first-order (mean value) or second-order
(variance) statistics to describe the length of the shared path.
However, an actual network may be affected by various
factors such as bursty and nonstationary characteristics of
network traffic. The distribution of packet queue delay usu-
ally cannot satisfy the given assumption, and it may lead to
significant information loss if it relies only on the first- or
second-order statistics to estimate the topology. The topol-
ogy estimated by the existing methods may present obvious
deviation from the real topology because the information
of path level performance parameters cannot be fully uti-
lized. Therefore, aiming at the problem of how to accurately
describe the length of the shared path, this paper computes
the higher-order cumulants of the path delays and utilizes
them to describe the lengths of the shared paths. The pro-
posed method outperforms the existing methods because the
higher-order cumulants contain more statistical information,
which enables describing the lengths of the shared paths more
accurately.

C. HIGHER-ORDER CUMULANT
The definition of a cumulant for a random variable and
the corresponding characteristics are described in [37]–[39].
Here, we review these notations and characteristics. Let X be
a random variable (in this paper, X is also used to represent
the queue delay of a probe packet), and the definition of the
r th-order cumulant of X is given as follows:

K r (X ) =
∂rGX (t)
∂ t t

|t=0, (1)

where GX (t) = log(E(etx)) is the generation cumulant func-
tion of X . In statistics, cumulants can be regarded as an alter-
native to the moments of a distribution. In general, a cumulant
is called a higher-order cumulant if r > 2. However, the
2nd-order cumulant is also very useful for topology inference.
Hence, in this paper, we refer to a cumulant as a higher-order
cumulant if r ≥ 2. A cumulant has two important charac-
teristics that are critical for inferring the shared path delay
cumulants from the end-to-end path delay cumulants:
• First, let X1,X2, · · · ,XN be N random variables and let
X =

∑N
i=1 Xi. We have K r (X ) =

∑N
i=1 K

r (Xi) if the
N random variables are mutually independent.

• Second, K r (αX ) = αrK r (X ). This characteristic can be
derived from the definition of the cumulant.

The cumulant is an important input parameter for many
network management and network control operations, such
as link failure diagnosis and delay sensitive application opti-
mization. According to the definition of Edgeworth series,
the arbitrary form of the distribution function can be fitted
by a series with the coefficients of cumulants. However,
in practice, we can only compute finite order cumulants.
Thus, the order of Edgeworth series is limited, and it is
an approximate expression of the distribution function. The
Edgeworth series are closer to real distribution functions and
contain more statistical information if more order cumulants
are used. As a result, this paper estimates network topology
by using higher-order cumulants to describe the length of the
shared path in tree topology. Compared with the mean and
variance that are used in the conventional topology inference
method, the higher-order cumulants contain more statistical
information and can help to accurately estimate topology.

IV. SHARED PATH LENGTH INFERENCE
To obtain the lengths of all shared paths in a tree topology,
we first need to estimate higher-order cumulants from the
path-level delays. Given a tree topology, we send back-to-
back packets from a source node to two leaf nodes. The two
paths experienced by the two packets can be abstracted as a
simple binary tree with only two leaf nodes. Fig. 2 presents
an example, where Fig. 2(a) displays the original paths from
the source node to two leaf nodes di and dj, and Fig. 2(b)
shows the corresponding abstract binary tree. The shared path
path(s, f (di, dj)), the left branch path path(f (di, dj), di), and
the right branch path path(f (di, dj), dj) in the original tree
are abstracted to three respective links. We use link (1)i,j , link

(2)
i,j

and link (3)i,j to represent the three abstract links. Obviously,
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FIGURE 2. Simplified binary tree model. (a) Two paths in true topology.
(b) Abstract binary tree.

the delay cumulant in the shared path path(s, f (di, dj)) is
equivalent to the delay cumulant in link link (1)i,j .
For a pair of leaf nodes di and dj, we send a series of back-

to-back packets from the source to the two destination nodes.
Let Yi and Yj represent the packet delays on the paths from the
source to two destinations and let X (1)

i,j , X
(2)
i,j and X (3)

i,j be the

respective packet delays on link (1)i,j , link
(2)
i,j and link

(3)
i,j . The two

packets experience the same delay on the shared path. Hence,
according to the additive packet delay, we have

Yi = X (1)
i,j + X

(2)
i,j

Yj = X (1)
i,j + X

(3)
i,j . (2)

According to the first property of cumulants, we can obtain
the following equations

K r (Yi) = K r (X (1)
i,j )+ K

r (X (2)
i,j )

K r (Yj) = K r (X (1)
i,j )+ K

r (X (3)
i,j ). (3)

End-to-end measurement is able to obtain the delay of
a path from a source node to a destination node, but it is
unable to obtain the delay of internal links link (1)i,j , link

(2)
i,j

and link (3)i,j . Hence, in (3), K r (Yi) and K r (Yj) are the known
variables because they can be computed from the end-to-end
path delays according to (1).K r (X (1)

i,j ),K
r (X (2)

i,j ) andK
r (X (3)

i,j )
are the unknown variables, and they are obtained by solv-
ing (3). Unfortunately, for a binary tree shown in Fig. 2(b),
the number of paths is smaller than that of links, and hence,
the number of unknown variables in (3) is smaller than that
of the known variables, and it is infeasible to directly obtain
the higher-order cumulants of link delay from (3).

Aiming at the problem described above, we use a key
property of back-to-back packets: the two packets of each
back-to-back packet have the same delay on the shared path.
Hence, we add the path delays of two packets in each back-
to-back packet, and we can obtain the following equation:

Yi,j = Yi + Yj

= 2X (1)
i,j + X

(2)
i,j + X

(3)
i,j , (4)

where Yi,j indicates the sum of path delays. According to
the second property of cumulants, we have

K r (Yi,j) = 2rK r (X (1)
i,j )+ K

r (X (2)
i,j )+ K

r (X (3)
i,j ). (5)

In (5), K r (Yi,j) can be computed from the sum of path
delays Yi,j. We combine (3) and (5) and express this into
matrix form equations, which is shown as the following: K r (Yi)

K r (Yj)
K r (Yi,j)

 =
 1 1 0

1 0 1
2r 1 1



K r (X (1)

i,j )

K r (X (2)
i,j )

K r (X (3)
i,j )

 . (6)

For (6), let

G =

 1 1 0
1 0 1
2r 1 1

 . (7)

It can be easily proven that G is a full rank matrix if r > 1.
As a result, (6) exhibits a unique solution. We solve (6)
to obtain the cumulant of three links of the tree shown
in Fig. 2(b). The cumulant of the three links can be expressed
as

K r (X (1)
i,j ) =

K r (Yi,j)− K r (Yi)− K r (Yj)
2r − 2

K r (X (2)
i,j ) = K r (Yi)−

K r (Yi,j)− K r (Yi)− K r (Yj)
2r − 2

K r (X (3)
i,j ) = K r (Yj)−

K r (Yi,j)− K r (Yi)− K r (Yj)
2r − 2

. (8)

The three equations in (8) are illegal if r = 1, which
means that the first-order cumulant of link delay cannot be
determined by (8). Essentially, the first-order cumulant is
the mean value of delays. It is a troublesome problem to
estimate the link delay directly because it requires clock
synchronization between the source node and the destination
nodes, which is difficult to implement in actual networks.
Consequently, this paper uses the cumulants of second order
and above to describe the lengths of shared paths. For a pair
of destination nodes {di, dj}, these higher-order cumulants on
the corresponding shared path can be represented as

Ki,j = [K 2(X (1)
i,j ),K

3(X (1)
i,j ), · · · ,K

R(X (1)
i,j )]

T , (9)

where R is the highest order of the cumulant.
In fact, any individual order of a cumulant can be used

to describe the lengths of the shared paths, but it may
not be sufficient to obtain an accurate topology estimation
because a single order of a cumulant usually cannot achieve
an appropriate representation of delay distribution. To make
full use of the statistical information of the measured path
delays, we combine multiple order cumulants and represent
the length of the shared path from the source node s to a pair
of destinations {di, dj} as the following:

ρ(di, dj) = β2K̄ 2(X (1)
i,j )+ β3K̄

3(X (1)
i,j )+ · · · + βRK̄

R(X (1)
i,j ).

(10)
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(10) is the weighted sum form of cumulants, in which βr is
the coefficient for the r th-order cumulant. βr satisfies βr ≥ 0
and

∑R
r=2 βr = 1. We use a vector β = [β2, β3, · · · , βR]

to denote the coefficients for cumulants of all orders. In (10),
K̄ r (X (1)

i,j ) is the normalized cumulant, and it can be computed
from the following equation:

K̄ r (X (1)
i,j )=

K r (X (1)
i,j )− min

1≤p,q≤M ,p6=q
K r (X (1)

p,q)

max
1≤p,q≤M ,p 6=q

K r (X (1)
p,q)− min

1≤p,q≤M ,p 6=q
K r (X (1)

p,q)
.

(11)

V. BINARY TREE TOPOLOGY INFERENCE
In this section, we first describe the method about how to
infer an optimal binary tree from the higher-order cumulants
of the shared paths. Then, in section VI, we will provide the
strategy about how to modify the optimization binary tree
to obtain the estimation of general tree topology. According
to (10), the length of a shared path can be determined if
we know the coefficients of the cumulants. In this case,
(10) can be used as the input for tree topology inference. This
section estimates the optimal binary tree in two steps. First,
we assume that all coefficients in (10) are known, and we
use a binary tree construction method using the known shared
path length. Second, we alternately optimize the binary tree
topology and the coefficients of the shared path cumulants,
which ensures that the estimated binary tree can be the most
suitable topology for the measured end-to-end delays.

Algorithm 1 Binary Tree Construction (BTC) Algorithm
Input: Root node s, the set of leaf nodes D =

{d1, d2, . . . , dM }, and the estimated length of the
shared path from the root node to any two leaf nodes
ρ = {ρ(di, dj) : di, dj ∈ D, i 6= j};

Output: The estimated binary logic tree topology T̂ =
{V̂ , Ê}.
Initialize: Ê = ∅, Ŵ = ∅, D̂ = D;
while |D̂| ≥ 2 do

Find two leaf nodes d̂i and d̂j s.t. {d̂i, d̂j} =
argmaxd̂i,d̂j∈D̂ρ(d̂i, d̂j);

Create a node d̂ as the parent of d̂i and d̂j;
Ŵ = Ŵ ∪ d̂ ;
if |D̂| > 2 then

E = E ∪ {link(di, d̂), link(dj, d̂)};
else

E = E ∪ {link(s, d̂), link(di, d̂), link(dj, d̂)};
end if
D̂ = D̂\{di, dj} ∪ {d̂};

end while
V̂ = {s} ∪ Ŵ ∪ D;

A. BINARY TREE CONSTRUCTION ALGORITHM
We first introduce some necessary notations before describ-
ing the algorithm. Let Ê denote the set of links of the

estimated tree, and let Ŵ denote the corresponding internal
node set. If nodes w1 and w2 connect directly, then we use
link(w1,w2) to represent the link between them. We assume
that the coefficients of cumulants in (10) are known and let
ρ = {ρ(di, dj) : di, dj ∈ D, i 6= j} be the set of shared
path lengths from the source node to each pair of destination
nodes. The algorithm to estimate binary tree topology for a
given ρ is described in Algorithm 1.

In each loop of the BTC algorithm, we select two nodes
with the greatest shared path length. However, not all nodes
in D̂ exist in the real leaf node set D, which means that for
∀{d̂i, d̂j} ∈ D̂, the corresponding shared path length may not
be able to be directly determined from ρ. Hence, to find two
nodes with the greatest shared path length, we summarize
three cases with respect to how to compute the shared path
length for any pair of leaf nodes {d̂i, d̂j} in D̂. The details of
the three cases are as follows:
Case 1: If {d̂i, d̂j} ∈ D, then ρ(d̂i, d̂j) ∈ ρ, and it can be

obtained directly.
Case 2: One of the {d̂i, d̂j} is included in D (we assume

d̂i ∈ D), but the other is not. In this case, let L(d̂j) be the set
of leaf nodes whose nearest common parent is d̂j; ρ(d̂i, d̂j) is
then computed from the following equation:

ρ(d̂i, d̂j) =
1

|L(d̂j)|

∑
{dp,dq:dp=d̂i,dq∈L(d̂j)}

ρ(dp, dq). (12)

Case 3: Both d̂i and d̂j are not in D. In this case, we use
L(d̂i) and L(d̂j) to represent the set of leaf nodes whose
nearest parent is d̂i and d̂j, respectively, and then, ρ(d̂i, d̂j)
is computed from the following equation:

ρ(d̂i, d̂j) =
1

|L(d̂i)||L(d̂j)|

∑
{dp,dq:dp∈L(d̂i),dq∈L(d̂j)}

ρ(dp, dq).

(13)

Using the BTC algorithm, we start from a binary tree with
only two leaf nodes and then insert the leaf nodes one-by-one
to construct a binary tree topology.

B. OPTIMIZATION OF THE COEFFICIENTS
OF CUMULANTS
The BTC algorithm is capable of estimating an accurate
binary tree topology if reasonable coefficients are set to (9).
Hence, in this section, we describe the method of estimating
the coefficients of (9) and optimize the binary tree topology
at the same time.

For a given tree topology T̂ and a set of coefficients β,
we first define a loss function as the following:

σ (T̂ , β) =
∑
{w:w∈Ŵ }

∑
{di,dj}∈U (w)

[
ρ̄(w) − ρ(di, dj)

]2
, (14)

where U (w) is the set of destination node pairs. For
∀{di, dj} ∈ U (w), we have f (di, dj) = w. The definition of
ρ̄(w) is similar to (12) and (13), which represents the average
path length from the source node s to internal nodes w; it also
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represents the shared path length from the source node to the
set of destination nodes L(w). Then, ρ̄(w) can be computed
using the following equation:

ρ̄(w) =
1

|U (w)|

∑
{di,dj}∈U (w)

ρ(di, dj). (15)

If T̂ is a correct topology, then for arbitrary w ∈ W
and a pair of leaf nodes {di, dj} ∈ U (w), path(s,w) and
path(s, f (di, dj)) represent the same path. Hence, in an ideal
situation, we have ρ̄(w) − ρ(di, dj) = 0. However, due
to the measurement error in practice, this may not be able
to satisfy ρ̄(w) − ρ(di, dj) = 0 even if T̂ is a completely
correct topology. However, according to the law of large
numbers, we have p(

∣∣ρ̄(w) − ρ(di, dj)∣∣ → 0) = 1 if the
number of probe packets n → ∞. Consequently, we can
obtain the estimations of the binary tree T̂ together with the
coefficients β̂ by solving an optimization problem according
to the measured path delays. The optimization problem is
given as:

[T̂ , β̂] = argmin σ (T , β). (16)

However, this problem is very difficult to solve (16)
directly because T is a discrete variable. To overcome this
problem, we use the alternate optimization algorithm to
solve (16). The alternate optimization algorithm estimates T
and β by using the following steps:
Step 1 (Initialize the Coefficients and Construct an Initial

Binary Tree): For an initial β = β0, we can obtain an initial
binary tree T0 by calling the BTC algorithm.
Step 2 (Iteratively Update the Coefficients and the Binary

Tree): For the (k + 1)th iteration (k > 0), we fix the binary
tree topology Tk obtained from the kth iteration andminimize
σ (Tk , β) to update βk+1. Herein, minimizing σ (Tk , β) is a
standard quadratic programming problem that can be solved
by many sophisticated methods such as the interior point con-
vex method [40] and active set method [41]. Then, according
to βk+1, we can construct a new binary tree Tk+1 by calling
the BTC algorithm.
Step 3 (Determine Whether the Iteration Is Complete, and

Then Output the Estimations): Repeat the above steps until
the convergence conditions are satisfied. Output the estima-
tions T̂ = Tk+1 and β̂ = βk+1. The convergence can be deter-
mined by giving a fixed iteration number or ‖βk+1 − βk‖22
(‖ · ‖2 is the L2 norm) is smaller than a given threshold or the
binary tree remains unchanged for several iterations.

VI. GENERAL TREE TOPOLOGY INFERENCE
In Section V, we estimated an optimal binary tree topology.
However, in an actual network, the topology correspond-
ing to the paths from a source node to a set of desti-
nation nodes usually cannot be a binary tree, and hence,
we must further optimize the estimated binary tree to obtain
a general tree topology, which is consistent with the real
topology.

FIGURE 3. Example of true general tree topology and the corresponding
estimated binary tree topology. (a) True general tree topology.
(b) Estimated binary tree topology.

A. PROBLEM ANALYSIS
For an internal node w (w ∈ W ), let ρ(w) be the length of the
path from the source node to node w. For the link between
w and f (w), we define the length of ew as ρ(ew) = ρ(w) −
ρ(f (w)). Since both the measurement and estimation steps
may introduce errors to the estimated tree, an internal node
that has more than two child nodes in the real network can
be split into multiple internal nodes in the estimated binary
tree. Fig. 3 shows an example, where Fig. 3(a) presents the
true tree topology and Fig. 3(b) presents the corresponding
estimated binary tree topology. Both w1 and w2 in the true
topology have 4 child nodes, and both of them are split into
3 nodes in the estimated binary tree.We use {w2,1,w2,2,w2,3}

and {w3,1,w3,2,w3,3} to denote the split node sets of w1 and
w2, respectively.
To recover the real topology from the estimated binary tree,

it is necessary to merge the nodes such as {w1,1,w1,2,w1,3}

and {w2,1,w2,2,w2,3} in Fig. 3(b). Without loss of gener-
ality, for an internal node wi, if wi is split into N nodes
{wi,1,wi,2, · · · ,wi,N } in the estimated binary tree, we define
{wi,1,wi,2, · · · ,wi,N } as the split nodes of wi, and the links
between {wi,1,wi,2, · · · ,wi,N } are the split links of wi. For
convenient description, we refer to a split link as a false link
because it does not exist in real topology. Conversely, if a link
really exists in real topology, then we refer to it as a true link.

To obtain a general tree topology, reference [22] compares
the shared path lengths between pairs of leaf nodes during
the process of tree topology estimation. If the difference
of the shared path lengths between two pairs of leaf nodes
is smaller than a given threshold, then the parent nodes of
those leaf nodes are merged into one node. By including a
penalty factor, reference [13] adds a punishment term into
the likelihood function according to the node number of the
tree, which obtains the general tree topology by controlling
the number of nodes in the network. Reference [24] deems
that the false links are usually shorter than the true links and
deletes the short links whose lengths are smaller than a given
threshold.
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TABLE 1. Corresponding link lengths of the binary tree shown in Fig. 3(b).

In fact, a binary tree has the largest size if given a
source and a set of destinations because it has the maximum
number of nodes and links. The essence of the abovemen-
tioned methods is to restrict the size of the network according
to the given threshold. However, in actual networks, differ-
ent nodes usually carry different amounts of traffic, with
the result being that the measurement and estimation errors
introduced by different nodes are also quite different, and
the correct topology may not be inferred if simply given a
threshold to control the size of the network.

Fig. 3 is an intuitive instance of the scenario described
above; the internal nodes w1 and w2 in Fig. 3(a) are split
into two sets of nodes {w1,1,w1,2,w1,3} and {w2,1,w2,2,w2,3}

in the estimated binary tree, as shown in Fig. 3(b). The
corresponding link lengths of the estimated binary tree are
depicted in Tab. 1. To obtain a general tree that is consistent
with the real topology, we should delete links ew2,2 , ew2,3 ,
ew3,2 and ew3,3 from the estimated topology. We can delete
links ew2,2 and ew2,3 by utilizing a threshold that is greater
than max{ρ(ew2,2 ), ρ(ew2,3 )}. Links ew3,2 and ew3,3 can also
be deleted under the given threshold because the lengths
of ew3,2 and ew3,3 are smaller than those of ew2,2 and ew2,3 .
Unfortunately, we find that a true link ew3,1 is deleted because
its length is also smaller than the given threshold, which
results in deviation of the estimated topology from the real
topology.

To obtain correct tree topology according to the opti-
mal binary tree topology, we use a strategy similar to that
described in [24], which estimates a general tree by deleting
links from the binary tree. The difference is that we do not
set a fixed threshold for all links split from different internal
nodes in the real network. Our method is based on the follow-
ing assumption:
Assumption 4 (Topology Identifiable): For an internal

node w in the real topology, if the node is split into mul-
tiple nodes {wi,1,wi,2, · · · ,wi,N }, then the links between
{wi,1,wi,2, · · · ,wi,N } exhibit a significant difference from
the links between {wi,1,wi,2, · · · ,wi,N } and other nodes.
In this paper, we use link length to represent this significant
difference.

The reason for Assumption 4 is that the false links are
introduced by measurement and estimation errors, while the
true links are computed from the packet queue delay. The
generation mechanisms of the two types of links are quite

different; hence, there is also a significant difference in the
link lengths. In fact, any methods that infer the general tree
topology by controlling the size of the network using a given
threshold are based on Assumption 4; otherwise, those meth-
ods may also fail even in a network within which the traffic is
quite balanced in each node because we have no information
that can be used to determine whether a link is true or false.

According to Assumption 4, the split nodes can be merged
together if we delete the false links between them. Hence,
to obtain the true general tree topology, we first design a link
walk algorithm to cluster the false links split from the same
node in the true topology. The idea of the link walk algorithm
is similar to the OPTICS clusteringmethod [42] that produces
a cluster ordering instead of explicit partitioning of data
points. Our link walk algorithm produces a link ordering.
The false links split from the same true node may be ranked
together in the link ordering. We then introduce a two-state
automaton model with Bayes inference to analyze the link
ordering and identify the true or false links.

B. LINK WALK ALGORITHM
For a tree T = (V ,E), let T̂ = (V̂ , Ê) be the corresponding
estimated binary tree, and let Ŵ be the corresponding internal
nodes of T̂ . We use ρÊ to represent the set of link lengths for
all links in Ê . We may not delete a link that is connected to
the source node or a destination node, even if the length of the
link is smaller than the threshold, and hence set the length of
those links as max{ρ(w) : w ∈ Ŵ }. The purpose of the link
walk algorithm is to output a link ordering by traversing the
links in the estimated binary tree according to the link lengths
and the locations of the links in the binary tree. The links in
the output link ordering are sorted according to the order of
traveling. A link should be located in the front of the ordering
if it is traveled as a priority by the algorithm. Let EE be the
output link ordering and let Ẽ be a temporary buffer that is
used to store the links that may be traveled by the algorithm.
For a node w ∈ {s} ∪ Ŵ , let C(w) be the set of child nodes
of w. Without loss of generality, we use C(s) to denote the
child node of s.
The link walk algorithm is described inAlgorithm 2. From

the algorithm, we can observe that the link walk algorithm
travels with priority the links that are close in distance and
similar in path length; hence, the false links split from a
true node are ranked closely with each other in the output
link ordering. The output link ordering can be expressed as a
graphical form. For the binary tree shown in Fig. 3(b), Fig. 4
shows the corresponding output of the link walk algorithm.
From Fig. 4, we can observe that the algorithm visits ew1 first
and then visits ew3,1 and the corresponding split links ew3,2

and ew3,3 . Next, it jumps to ew2,1 and the corresponding split
links ew2,2 and ew2,3 . Finally, all of the links connecting to
the leaf nodes are visited. The split links of w1 and w2 are
respectively ranked closely to each other in the output link
ordering, and the purpose of the remaining work is then to
identify these links by analyzing the output link ordering.
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Algorithm 2 Link Walk Algorithm
Input: The length of all links ρÊ and the estimated binary
tree T̂ .

Output: The link sequence EE .
Initialize: Ẽ = {eC(s)}, EE = ∅, Ê = Ê\{eC(s)};
while |Ẽ| ≥ 1 do

Find a link ew ∈ Ẽ , s.t. ew = argminew∈Ẽρ(ew);
EE = EE ∪ {ew};
for v in C(w) do

if ev /∈ Ẽ then
Insert ev into Ẽ according to ascending order
of link length;

end if
end for
Ẽ = Ẽ\{ev};

end while

FIGURE 4. An example of output link ordering of the link walk algorithm.

C. FALSE LINK IDENTIFICATION
The link walk algorithm outputs a link ordering in which the
links split from the same nodes are ranked together. Hence,
if we can identify these links, then we can merge them and
obtain an estimated general tree. For convenient description,
let EE = {e1, e2, · · · , e|Ê|} be the output link ordering, where

|Ê| is the number of links in the estimated binary tree, and
ei (1 ≤ i ≤ |Ê|) is the ith link in the sequence EE . Let Eρ =
{ρ1, ρ2, · · · , ρ|Ê|} represent the corresponding link length for

the links in EE , in which ρi = ρ(ei) for 1 ≤ i ≤ |Ê|.
In this paper, we introduce an automaton-based bursty state

detection method to identify the false links in the output link
ordering of the link walk algorithm. This bursty state identi-
fication method is first used in the problem of identifying the
bursty states in a stream (e.g., e-mail or news stream) [43].
The purpose of the method is to find a best state sequence
for a known stream. The state sequence indicates whether
the elements in the stream are bursty or not. We cluster the
false links from the same true node together using the link
walk algorithm. Hence, bursty changes exist in the output link

FIGURE 5. The probability model of the state transition process of the
two-state automaton for false link identification.

ordering of the link walk algorithm if the algorithm walks
from a true link to a false link or from a false link to a true
link. The problem described in [43] is quite similar to our
problem because we also need to find a state sequence for a
given link ordering. The difference is that our state sequence
indicates whether a link is true or false.

In this paper, we use a two-state automaton to model
the true or false states in the output link ordering. Before
describing the model, we first define the distribution of the
link length. We use an exponential distribution to model the
link length; then, we let f0(ρ) = α0e−α0ρ be the density
function of the true links and let f1(ρ) = α1e−α1ρ be the
density function of the false links, where α−10 and α−11 are the
expected values of the true link and false link, respectively.
In actual networks, determining α0 and α1 is very difficult,
and hence, we follow [43] to obtain the expected value of
the exponential distribution by deviating from a base value.
In this paper, we use the average value of link length as the
base value. According to Assumption 4, the true links and
the false links are quite different with respect to length, and
hence, we deem that the expected value of the true links is
greater than the base value, and the expected value of the false
links is smaller than the base value. As a result, we assign
α0 = (sρ̄)−1 and α1 = (s−1ρ̄)−1, where s > 1 is a scaling
parameter and ρ̄ is the average value of link lengths.

Based on the above link length distribution assumption,
we can construct the two-state automaton model for the false
link identification problem. Let q = {q1, q2, · · · , q|Ê|} be the

binary state sequence for all links in EE . ei (1 ≤ i ≤ |Ê|) is
a true link if qi = 1; otherwise, ei is a false link if qi = 0.
The two-state automaton changes state with probability p,
and remains in the current state with probability 1 − p.
Changing the state of the automaton means that the link walk
algorithm jumps from a true link to a false link (or vice versa),
and remaining in the current state means that the algorithm
jumps within true links or false links. Fig. 5 shows the prob-
ability model of the state transition process of the two-state
automaton.

Our purpose is to determine q given the known link length
sequence Eρ. The Bayes inference method can be used to
conquer the problem, that is,

P(q| Eρ) =
1
Z
P(q)f ( Eρ|q), (17)

where Z = P( Eρ) =
∑

qi∈q P(qi)f (ρi|qi) is a constant.
To reduce the complexity of the automaton model, we only
consider the relationship of the adjacent link in EE , and hence,
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the prior probability P(q) in (17) can be expressed as

P(q) = pk (1− p)|Ê|−k . (18)

According to Assumption 2, the link lengths are mutually
independent, and hence, f ( Eρ|q) in (17) can be expressed as

f (ρ|Eq) =
|Ê|∏
i=1

f (ρi|qi) =
|Ê|∏
i=1

fqi (ρi). (19)

We can then write the detailed form of (17), that is,

P(q| Eρ) =
1
Z
pk (1− p)|Ê−k|

|Ê|∏
i=1

fqi (ρi)

=
1
Z

(
p

1− p

)k
(1− p)|Ê|

|Ê|∏
i=1

fqi (ρi). (20)

Finding an optimal state sequence q is equivalent to solving
the maximum probability of (20). For the sake of conve-
nience, we use the log function on both sides of (20), and
then, we have

logP(q| Eρ) = log
(
1
Z

)
+ k log

(
p

1− p

)

+ |Ê| log(1− p)+
|Ê|∑
i=1

log fqi (ρi). (21)

Since both the first and the third part of (21) are constants,
maximizing (21) is equivalent to minimizing the following
cost function:

c(q| Eρ) = k log
(
1− p
p

)
−

|Ê|∑
i=1

log fqi (ρi). (22)

For (22), the standard forward dynamic programming algo-
rithm can be used to obtain the optimal q. According to q,
we can identify the true links and false links in the estimated
binary tree. We delete the false links in the estimated binary
tree and merge the two nodes on both sides of each false
link, and then, a general tree topology can be obtained. This
general tree topology is the final estimation of topology.

VII. EXPERIMENTS AND RESULTS
In this section, we evaluate the performance of our method
in two respects. First, we use NS2 [44] simulation to assess
the accuracy improvement of the proposed method by imple-
menting a large number of experiments and comparing with
two existing classical methods. Second, we conduct real net-
work experiments using PlanetLab [45] to further evaluate the
effectiveness of the proposed method.

A. SIMULATION SCENARIO SETUP
To evaluate the performance of our method in practical
network environments, we first use NS2 to construct a
network experimental environment. In practice, since con-
structing a real network experiment environment is very dif-
ficult, NS2 is regarded as an effective experimental tool for

FIGURE 6. Binary tree topology.

network researchers and has been applied to many network
studies [46]. Especially for network topology inferences, it is
a difficult task to find a real network whose topology is
known and for which the corresponding traffic scenarios
can be easily set up. Consequently, in this paper, we first
conduct NS2 simulations so that we can fully evaluate the
performance of the proposedmethod by implementing a large
number of experiments under different traffic scenarios.

We construct two different tree topologies, which are
shown in Fig. 6 and Fig. 7, respectively. Fig. 6 shows a
small binary tree topology with 8 leaf nodes, and Fig. 7
shows a large general tree topology with 30 leaf nodes.
We use Fig. 6 to evaluate the performance of the higher-order
cumulant inference method and the corresponding binary
tree inference method, and we use Fig. 7 to evaluate the
performance of the general tree topology inference method.
We set the parameters of the simulation by comprehensively
considering a strategy from [14] along with the computing
ability of our simulation equipment. The parameter settings
of the two simulation topologies are very similar. We assign
the bandwidth of all links to 50 Mbps. The propagation
delay of the links is set to 2 ms, and each link has a FIFO
(first-in-first-out) queue with buffer size of 50 packets.
We send back-to-back packets from the source node to the
destination nodes. The pair of destinations for each back-
to-back packet is randomly selected from the destination
nodes. The back-to-back packets are sent by attaching them
in constant bit rate UDP streams. The size of the back-to-
back packets is set to 40 bytes. During the simulation period,
we send approximately 2,000 back-to-back packets to each
pair of destination nodes on average.

To simulate the traffic scenario in actual networks, we add
two types of background traffic into our simulation topolo-
gies. The two types of background traffic are referred to
as stationary traffic and bursty traffic. The stationary traffic
comprises 150 long durations, which are Pareto distributed
On-Off modeled TCP streams, and 50 UDP streams with
constant bit rate. Both the burst time and the idle time of the
TCP streams are 2 s, and the burst rate is 0.2 Mbps. The rate
of each UDP stream is set to 0.2 Mbps. For better simulating
the complex network environment, every stationary stream
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FIGURE 7. General tree topology.

is randomly sent during the first 10% of the simulation time
and randomly stopped within the last 10% of the simula-
tion time. The bursty traffic comprises short-term high-speed
UDP streams. By adding different bursty traffic, we build
three bursty traffic scenarios: slight burst, middle burst and
heavy burst. For the slight burst scenario, the number of UDP
streams added onto each link is 2, and the corresponding
traffic rate is assigned to 2 Mbps. For the middle and heavy
burst scenarios, the number of UDP streams is increased to 4,
and the corresponding traffic rates are respectively assigned
to 3 Mbps and 6 Mbps. Each bursty UDP stream starts at a
random time and lasts 2 s. The packet size of all background
traffic (both stationary traffic and bursty traffic) is set to
500 bytes. For each traffic burst scenario, we run 1,000 inde-
pendent simulations, each for 100 s.

B. HIGHER-ORDER CUMULANT INFERENCE RESULT
Obtaining accurate higher-order cumulants is the basis of
our approach. Hence, we first evaluate the performance of
the higher-order cumulant estimation method. We run sim-
ulations under the three traffic burst scenarios and estimate
the 2nd- to 4th-order cumulants of the shared path p(0, 13).
We select p(0, 13) because it contains the maximum num-
ber of links among all shared paths of Fig. 6. We average
the true and estimated cumulants from 1,000 simulations
and depict the comparison between the real and estimated
higher-order cumulants in Fig. 8. From the actual cumulant
curves, we observe that the cumulant grows nearly linearly
with increasing hop number, which demonstrates that the
cumulant exhibits the linear additive property. Hence, it is
feasible to use the higher-order cumulants to measure the
shared path length.

We also observe that the estimated cumulants slightly devi-
ate from the actual cumulants, but they still approximate the
linear additivity property of actual cumulants very well. The
reason is because the estimation errors are mainly introduced

by Assumption 2, which may not be entirely satisfied in a
real network, and this factor impacts all of the estimated
cumulants in the same way. To show the estimation errors
more intuitively, we plot the averaged relative errors of the
estimated cumulants in Fig. 9 and find that the estimated
cumulants have low and stable relative errors in the three
traffic burst scenarios. As a result, the estimated higher-order
cumulants of shared paths can be accurately estimated from
the measured path delays, which can also be used to measure
the lengths of the shared paths.

C. BINARY TREE TOPOLOGY INFERENCE RESULTS
Herein, we evaluate the performance of the binary tree topol-
ogy inference in the three traffic burst scenarios using the
topology depicted in Fig. 6. We first calculate the 2nd- to
4th-order cumulants of the shared path for an arbitrary pair
of destination nodes and then use the proposed binary tree
inference method to infer the tree topology. For compari-
son, we also infer the binary tree using the 2nd- to 4th-
order cumulants. To quantify the accuracy of the topology
estimation results, we define the tree accuracy as the ratio of
the simulation number for which the binary tree is correctly
estimated to the total simulation number. We consider the
binary tree to be correctly estimated if the estimated tree is
exactly the same as the true binary tree.

We calculate tree accuracy from 1,000 simulations under
the three respective traffic burst scenarios. A comparison of
the estimation accuracy is shown in Fig. 10. From the figure,
we observe that the estimation accuracy decreases with the
growth of cumulant order when using the individual cumu-
lant order to estimate topology. The reason is because the
estimation errors of the cumulants also increase along with
the growth of cumulant order. However, we also find that our
optimal tree estimation method performs best compared with
the methods that use the 2nd-order, 3rd-order, or 4th-order
cumulant separately; this result demonstrates that combining
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FIGURE 8. Estimated cumulants versus actual cumulants in the three traffic burst scenarios.

FIGURE 9. Average relative errors of the estimated cumulants in the three
traffic burst scenarios.

cumulants of different order can help us to improve the accu-
racy of topology estimation because the delay distribution can
be describedmore appropriately. Cumulants of different order
provide different information for topology estimation. Our
method fully integrates this useful information by optimizing
theweights of the cumulants and finally obtains the optimized
tree that best matches the measured path delay.

Fig. 10 also depicts the topology inference results under
different traffic burst scenarios. It is obvious that the pro-
posed method (labeled optimization in Fig. 10) has the high-
est accuracy for all three traffic burst scenarios. Especially

FIGURE 10. Tree accuracy of binary tree inference in the three traffic
burst scenarios.

under the middle burst scenario, our method achieves the best
performance. The different performances of the proposed
method in different traffic burst scenarios result from the
following two reasons. First, for the slight burst, the bursty
property of background traffic is not obvious, and the packet
delays usually contain less higher-order statistical informa-
tion, which results in the decrease in the accuracy of the esti-
mated higher-order cumulant and the introduction of errors
to network topology inference. Second, in the heavy burst
scenario, the correlation of two packets in a back-to-back
packet may exhibit inconsistent delays when they pass the
shared path, whichmay also introduce errors to the estimation
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of shared path delay cumulants and exert negative impacts on
network topology inference.

D. GENERAL TREE TOPOLOGY INFERENCE RESULTS
Next, we evaluate the performance of the general tree topol-
ogy inference method using the topology depicted in Fig. 7.
We also implement simulations in the given three traffic burst
scenarios, and we run 1,000 simulations for each traffic burst
scenario. For large topology, the tree accuracymay not be suf-
ficient to provide an intuitional evaluation of the estimation
accuracy because the general tree topology can be correctly
estimated only in a few simulations. Hence, we define an F1
score of the estimated links in the estimated general tree by
mapping the internal nodes of the real tree to those of the
estimated tree. Let T and T̂ be the real tree and the estimated
tree, respectively. For an internal nodew1 in T and an internal
node w2 in T̂ , we define the similarity of w1 and w2 using
Jaccard distance:

sim(w1,w2) =
|L(w1) ∩ L(w2)|
|L(w1) ∪ L(w2)|

. (23)

For ∀w ∈ W (W is the set of internal nodes of the real
tree), we can find an internal node ŵ ∈ Ŵ (Ŵ is the set
of internal nodes of the estimated tree) which has maximum
similarity with w. We regard ŵ as an estimation of w, and
a link in T̂ is a real link if the nodes of both sides of the
link are connected in the real tree. As the accuracy evaluation
in supervised machine learning, we can define the precision
as the ratio of true link number and total link number in the
estimated tree, and we define recall as the ratio of true link
number in the estimation tree and total link number in the real
tree. In this paper, we use F1 score to evaluate the accuracy of
topology inference. The F1 score represents the comprehen-
sive assessment of estimation accuracy by merging precision
and recall and is computed by the following equation:

F1 =
2× precision× recall
precision+ recall

. (24)

For each simulation, we first estimate a binary tree by using
the optimal binary tree estimation method and then obtain
link ordering by calling the link walk algorithm. Finally,
we identify the false links and delete them from the opti-
mal binary tree by using the burst detection method. Many
literature publications estimate the general tree by deleting
links whose lengths are smaller than a given threshold, but
there is no literature that offers a strategy about how to
set the threshold. To demonstrate the performance of our
method, we compare the performance of BSD (we use BSD
to denote the proposed burst state detection-based method)
with two classical methods: RNJ (rooted neighbor-joining
algorithm) [24] and OLTD (ordered logical topology dis-
covery algorithm) [22]. Both RNJ and OLTD start from a
binary tree and insert leaf nodes one-by-one by comparing
the length of the shared path, and both of the algorithms may
ignore links if the link length is smaller than a threshold. The
difference is that RNJ inserts the leaf node with the highest

FIGURE 11. F1 score comparison between the BSD, RNJ and OLTD (in the
slight traffic burst scenario).

shared path length each time, whereas OLTD inserts the leaf
nodes according to deep first sequence (DFS) ordering. In this
paper, we derive the DFS ordering for the OLTD from the
estimated binary tree. Note that the reason for choosing RNJ
and OLTD as the baseline methods is that the three methods
can infer network topology based on unicast probes, which
are widely used in today’s Internet. In addition, there are
seldom unicast-based topology inference studies after RNJ
and OLTD.

We then compare the F1 scores of estimated links in the
general topology by using BSD, RNJ and OLTD.We evaluate
the performances of the three algorithms under the conditions
of different numbers of probe packets and different traffic
burst scenarios. For RNJ and OLTD, we estimate general tree
topology using different thresholds. We compute the mini-
mum link length ρmin and themaximum link length ρmax from
the optimized binary tree and divide the interval between ρmin
and ρmax into 8 bins. Each threshold can then be written as
follows,

1i = ρmin +
i · (ρmax − ρmin)

8
, i = 1, 2, · · · , 8. (25)

Fig. 11 to Fig. 13 plot the variation in F1 scores of links with
the numbers of probe packets. Note that for RNJ and OLTD,
we choose the result with the highest accuracy under the
conditions of setting different thresholds. In our experiment,
we find that both RNJ and OLTD achieve the best accuracy
if the threshold is set to 11.

From Fig. 11 to Fig. 13, we can observe that all of the
methods may obtain more accurate topology estimation if
more probe packets are used. The reason for this result is that
sending more probe packets usually signifies obtaining more
accurate path-level delays. This is the basis of inferring accu-
rate topology because the end-to-endmeasurements represent
the only information that can be used. More importantly,
Fig. 11 to Fig. 13 show that our method significantly outper-
forms RNJ and OLTD. Both RNJ and OLTD are capable of
returning the correct tree topology if the link length errors
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FIGURE 12. F1 score comparison between the BSD, RNJ and OLTD (in the
middle traffic burst scenario).

FIGURE 13. F1 score comparison between the BSD, RNJ and OLTD (in the
heavy traffic burst scenario).

are smaller than a quarter of the minimum link length in
actual networks, but the link length and the corresponding
error can be deeply impacted by many factors such as bursts
and imbalance of traffic; hence, choosing an appropriate
threshold to obtain accurate estimations is a difficult task.
Different from most existing methods, our methods first use
the link walk algorithm to cluster the false links that split from
the same true link and then introduce a burst state detection
method to recognize the false links in binary tree topology by
using the differential between the false links and the true links
surrounding them. The burst state detection method helps to
find a global optimization false link set and results in accurate
general tree estimation.

E. REAL NETWORK EXPERIMENT
To verify the effectiveness of the proposed method in a real
network, we use PlanetLab [45] to deploy 9 probe nodes in
North America (the detailed information of the nodes can be
found in Tab. 2). We send probe packets from node0 to the
remaining 8 nodes (node1 to node9). To evaluate the accuracy

FIGURE 14. Ground-truth topology obtained by implementing traceroute
in PlanetLab.

TABLE 2. Node information in the ground-truth topology.

of the estimated topology, we implement traceroute from
node0 to other nodes to obtain the ground-truth topology,
as shown in Fig. 14. It is noteworthy that traceroute may
fail to obtain a topology because the routers usually refuse to
cooperate in many other cases. We send back-to-back probe
packets by randomly selecting a pair of destination nodes.
The interval between two adjacent probes is 50 ms, and the
entire measurement period lasted for 120 minutes. For the
actual experimental scenario, we collected 100 groups of data
from Dec 3-21, 2019, and estimated the topology 100 times
using the data obtained during different time periods.

Fig. 15 shows the variation in average link F1 score of
the estimation topology with the probe time. We find that
the estimated topology becomes closer to the ground-truth
topology as the probe time increases (because more probe
packets are sent). We obtain a topology with highest accu-
racy in the case of probing the network for approximately
1.5 hours. However, only slight improvement can be obtained
if more probe packets are sent. Compared with the estimated
topology and the ground-truth topology, we find that the links
between node9, node10 and node11 may be error estimated
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FIGURE 15. Variation in average link F1 score of the estimation topology
with the probe time.

with high probability. We analyzed the IP addresses of these
nodes and found that they belong to the same network seg-
ment. Hence, to the best of our knowledge, we deem that the
delay variations over these links are relatively stable and that
the links may not be resolved from the measured path delay.
In general, however, the estimated topology is essentially
in agreement with the traceroute topology, so the proposed
method performs effectively in real networks.

VIII. CONCLUSION
In this paper, we presented a method to infer network topol-
ogy by using the higher-order cumulants of measured end-to-
end delays. First, we estimated the internal link higher-order
cumulants of delays from the measured path level delays
in order to find a metric that can effectively describe the
length of the shared path from a source node to a pair of des-
tinations. Second, we used an alternate optimization-based
method combined with a binary tree construction algorithm
to estimate an optimization binary tree topology by merging
the information of higher-order cumulants. Third, we applied
a burst state detection method to recognize and delete the
false links in the optimal binary tree to obtain a true general
tree topology. We evaluated the performance of our method
using NS2 simulation and found that the proposed method
offers over 10% improvement in accuracy compared with that
of state-of-the-art methods that estimate the tree topology
by only relying on the parameters of given loss or delay
distribution.

Future works can focus on introducing multiple-state
automatons to model the link lengths and developing topol-
ogy measurement tools based on the proposed method.
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