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ABSTRACT An algorithm has been developed for fusing 3D LIDAR (Light Detection and Ranging)
systems that receive objects detected in deep learning-based image sensors and object data in the form
of 3D point clouds. 3D LIDAR represents 3D point data in a planar rectangular coordinate system with
a 360◦ representation of the detected object surface, including the front face. However, only the direction
and distance data of the object can be obtained, and point cloud data cannot be used to create a specific
definition of the object. Therefore, only themovement of the point cloud data can be tracked using probability
and classification algorithms based on image processing. To overcome this limitation, the study matches 3D
LIDAR data with 2D image data through the fusion of hybrid level multi-sensors. First, because 3D LIDAR
data represents all objects in the sensor’s detection range as dots, all unnecessary data, including ground data,
is filtered out. The 3D Random Sample Consensus (RANSAC) algorithm enables the extraction of ground
data perpendicular to the reference estimation 3D plane and data at both ends through ground estimation.
Classified environmental data facilitates the labeling of all objects within the viewing angle of 3D LIDAR
based on the presence or absence of movement. The path of motion of the platform can be established by
detecting whether objects within the region of interest are movable or static. Because LIDAR is based on
8- and 16-channel rotation mechanisms, real-time data cannot be used to define objects. Instead, point clouds
can be used to detect obstacles in the image through deep learning in the preliminary processing phase of the
classification algorithm. By matching the labeling information of defined objects with the classified object
cloud data obtained using 3D LIDAR, the exact dynamic trajectory and position of the defined objects can
be calculated. Consequently, to process the acquired object data efficiently, we devised an active-region-of-
interest technique to ensure a fast processing speed while maintaining a high detection rate.

INDEX TERMS 3D LIDAR, 2D vision, interpolation, object recognition, intelligent vehicles, big data.

I. INTRODUCTION
Autonomous vehicles detect and recognize various types of
fixed and moving objects, such as roads, vehicles, obstacles,
and pedestrians, using data obtained from sensors such as
radar, LIDAR (Light Detection and Ranging), and cameras
installed in vehicles. An autonomous vehicle can judge the
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driving situation around itself, plan the driving route, and
safely arrive at the destination independently, thereby realiz-
ing automatic driving while minimizing driver input [1]. The
operation of autonomous vehicles depends on the sequential
processing of recognition, judgment, and control systems [2].

The driving environment-recognition system consists of
sensors that identify the location of the vehicle and recog-
nize static and moving objects and obstacles in the driving
space, including roads. The driving judgment system receives
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the output of the driving environment-recognition system to
determine the driving conditions with the surroundings and
on the road and establish a safe and efficient driving strat-
egy. The control system controls the horizontal and vertical
movement of the vehicle including acceleration, deceleration,
and steering according to the driving strategy and the route
plan set by the driving situation determination system and
actuators coupled to the control system [3].

The resolution of 3DLIDAR is lower than that of the image
sensor, but 3DLIDAR can accuratelymeasure depth informa-
tion about the 3D environment [4]. Therefore, many object-
recognition studies have used point cloud data obtained
using 3D LIDAR. LIDAR scans the environment by dividing
the vertical field of view (FOV) by at least one rotation
and n angles, where n is the number of LIDAR channels.
The performance of LIDAR varies depending on the number
of channels and the installation position of the LIDAR [5].
The data of a 64-channel LIDAR are denser than that of
a 16-channel LIDAR. LIDAR systems with 32 or more
channels are referred to as high-channel LIDARs, and
LIDARs with fewer than 32 channels are referred to as
low-channel LIDARs. High-channel LIDARs are suitable
for object recognition because they offer high resolution
in which object features appear clearly. Object recognition
using a high-channel LIDAR includes 3D [6]. Although it
is advantageous to use a high-channel LIDAR to improve
object-recognition performance, high-channel LIDARs are
expensive and require considerable computing resources to
process the data acquired through multiple channels. To over-
come these problems, many recent studies have used low-cost
low-channel LIDARs. The data acquired using a low-channel
LIDAR should be processed because they contain insufficient
object features owing to the low resolution of such LIDARs.

Furthermore, the data acquired using a 3D LIDAR are
sometimes added to the movement trajectory of the platform
to detect and discern objects using overlapped data over
time. Accurate object positioning becomes difficult in this
case because the errors in the data obtained from the global
positioning system and inertial measurement unit (IMU) are
added to the errors in the data obtained from 3D LIDAR. Data
fusion by means of simple unification of only data coordi-
nates causes dispersion of points. Therefore, some algorithms
define objects by learning the characteristics of data obtained
from LIDAR. Representative examples include VoxelNet,
PointNet, and fully convolutional networks. Previous studies
used 32-channel LIDAR, but PointNet defines objects using
64- or higher-channel LIDARs. Therefore, effective obstacle
detection is enabled by fusing the features of sensors to ensure
that they complement each other. However, environment-
recognition data need to be unified to integrate and interoper-
ate the sensors with diverse features. Moreover, the accurate
matching of unified data and fusion over time is required.

Recently, Caltagirone acquired information through
sensor-level processing of the data obtained using 3D LIDAR
and image sensors separately, managed a track list of 3D
LIDAR and image sensors, and finally fused the two sets of

data through the unification of pixel coordinate systems [7].
However, this method invariably requires calibration before
initiating the process. Furthermore, fast fusion is impossible
because of the heavy system load imposed by the manage-
ment of the processes of individual sensors. To solve the
sensor-level and computing resource problems that occur in
the fusion of multiple sensors [8].

The frequency modulated continuous wave (FMCW)
radar, which is primarily used as a vehicle radar, cannot obtain
the size and classified states of detected objects but only the
positions of objects that are included in the radar frequency
region and reflected. Consequently, it cannot define objects
and cannot detect obstacles beyond the vertical detection
distance of the sensor. 3D LIDARs have been used in all
recent autonomous vehicles and platforms because they offer
the advantage of expressing the reflected light of all objects
as points, thus making the images appear as if they contain
depth information.

3D LIDARs are classified into high-channel and low-
channel based on the number of light-emitting parts, but for
accurate object detection, a high-channel 3D LIDARmust be
used in most cases. High-channel 3D LIDARs require vast
computing resources to process significant amounts of point
cloud data, which makes them expensive. In contrast, a low-
channel 3D LIDAR can be implemented at a low cost, but
its accuracy is low given that it must detect obstacles with
feature points obtained from limited data because it obtains
fewer data points in 3D environments.

In this paper, we have proposed an effective obstacle
detection method that fuses the features of multiple sen-
sors to ensure that they complement each other. However,
the environment-recognition data of all sensors must be uni-
fied to integrate and interoperate the sensors with diverse fea-
tures, and accurate matching of unified data and fusion over
time are required. We have devised and proposed an active
viewing angle adjustment technology to solve the processing
speed problem caused by using various sensor data. The con-
vergence of radar and 3D rider and image data is important,
but the range of interest (ROI) can be actively changed in
proportion to the detected object’s position and the moving
position to solve this based on the vehicle’s moving speed.
Thus, superiority was verified in comparison with other
studies on object detection—processing speed increased by
approximately 30–40%, and a map was obtained.

II. GEOMETRIC MATCHING BETWEEN
3D LIDAR AND IMAGES
Instead of using 3D LIDAR data directly to detect objects,
transforming them into 2D image coordinates can help reduce
the amount of computation required. Two methods are avail-
able to transform the coordinates of 3D LIDAR data into 2D
image coordinates: top-view and polar-view.

The top-view method involves transforming 3D LIDAR
data into image coordinates bymultiplying the (x, y) axis with
a simple constant as shown in Fig. 1. This method can help
achieve clear object recognition because the point data on
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FIGURE 1. 3D LIDAR data (top-view).

FIGURE 2. 3D LIDAR data (polar-view).

the z-axis, which is the direction of progress, do not overlap.
However, the data become meaningless if they cannot be
acquired using a multi-channel LIDAR.

The polar-view method of Fig. 2 uses the spherical coor-
dinate system (r, θ, φ). Compared to the top-view method,
the detectable area is determined by θ , and if multiple data
are located at the same θ , the objects may appear to be
overlapped. However, clear object recognition is possible
even with minimal data. To combine with image sensors that
have a fixed FOV, matching must be performed using 2D
image frame coordinates. The polar-view method is more
appropriate because it can set the LIDAR region for data
acquisition by performing detection in all directions.

A. 3D LIDAR ROTATIONAL TRANSFORMATION
OF COORDINATES
Sensor information can be unified around the vehicle coor-
dinate system if the behavior information of the vehicle is
acquired as. A rotational transformation must be performed
to update the rotational information of the three axes in the
sensor data. The rotational transformation to be applied can
be determined using the following equations:

Rx(θx) =

 1 0 0
0 cos θx − sin θx
0 sin θx cos θx

 (1)

Ry(θy) =

 cos θy 0 sin θy
0 1 0

− sin θy 0 cos θy

 (2)

FIGURE 3. Ground estimation expressed in terms of each channel of 3D
LIDAR.

FIGURE 4. Expression of 3D plane fitting using RANSAC.

Rz(θz) =

 cos θz − sin θz 0
sin θz cos θz 0
0 0 1

 (3)

Eqs. (1–3) can be combined counterclockwise from each axis
using the basic translationmethod to express them in the form
of a random 3D rotation matrix as follows:

R = Rz(θz)Ry(θy)Rx(θx) (4)

Furthermore, the rotation matrix obtained with a rotation
angle θ along a random unit vector u = (ux , uy, uz) as the
rotation axis, as opposed to the coordinate axis, is given by
Eq. (5), as shown at the bottom of this page. This can be
expressed in the linear translation form using 3D parallel
movement and t = [tx ty tz]T , as in Eq. (6). [9], (5) as shown
at the bottom of this page, where cθ = cos θ and sθ = sin θ .X ′

Y ′

Z ′

 = Ru

X
Y
Z

+
 tx
ty
tz

 (6)

B. GROUND SEGMENTATION USING 3D RANSAC
The ground and obstacles in the data acquired using 3D
LIDAR are estimated using the Random Sample Consensus
(RANSAC) algorithm as shown in Fig. 3 and 4. The ground
and obstacles exhibit strong data dependencies because they
are located on the surfaces of roads and streets. In most
studies, object detection is performed under the assumption
that the ground is flat, and all objects are standing [10]. The
error of the recommended lane is declined by the decision
of the lane type, and it is beneficial for making comparative
decisions when performing rapid computations in high-speed

Ru(θ ) =

 cθ + u2x(1− cθ ) uxuy(1− cθ )− uzsθ uxuz(1− cθ )+ uysθ
uyux(1− cθ )+ uzsθ cθ + u2y(1− cθ ) uyuz(1− cθ )− uxsθ
uzux(1− cθ )− uysθ uzuy(1− cθ )+ uxsθ cθ + u2z (1− cθ )

, (5)
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situations [13]. Standard filtering produces inaccurate results
because most actual driving environments are not constant.
Thus, in this study, we estimate ground types, such as uphill
and downhill, in an actual road environment—by applying 3D
RANSAC—and perform advance filtering for clear obstacle
detection.

The RANSAC algorithm does not re-predict the model
from the sum of the current errors but instead creates an
approximate model directly from the predicted model. This
enables high-speed processing because it reduces the time
required for comparing the errors related to the model pre-
dicted from a small number of observation points. However,
the algorithm is sensitive to noise because the errors are not
compensated. [11] Unlike the least-squares method, which
uses the entire dataset, the RANSAC method estimates the
model parameters by applying different observation values to
each subset of the data. For the subsampled data, the region
of each 3D LIDAR channel is divided by λk , and λ0 = 2m
is defined. Furthermore, λk can be calculated using Eq. (7).
a0 = tan−1(λk/h) and h = hoffset + 400 mm; thus,
h = 1, 750 mm. The number of regions N is calculated using
Eq. (8), and 1a = 1.2◦.

λk = h · tan(a0 + k · η ·1a), {k : 1, . . . ,N } (7)

N =
aN − a0
η ·1a

, η = 2 (8)

Using this method, the regions of Sk , etc., are divided,
as depicted in Fig. 5. Furthermore, a random 3D plane model
is created using the expression akx + bky + ckz + dk = 0.
In this plane model, the attitude of the autonomous vehicle
(θx , θy, θz) and the rotation matrix given by Eq. (5) are calcu-
lated using Eq. (6) and then combined. [14]

FIGURE 5. Coordinates of image sensor.

C. 3D LIDAR MATCHING THROUGH INTERPOLATION
OF IMAGE COORDINATES
The 3D LIDAR information of a 2D image can be matched
by transforming the coordinates expressed as 3D LIDAR data
from Fig. 6 and then matching them with the FOV of the
image sensor. The image frame is configured as depicted
in Fig. 5.P = (X ,Y ,Z ) becomes a randomobject point on the
global coordinate system. For the camera, the coordinates of
Pc = (Xc,Yc,Zc) can be set, as depicted above. Furthermore,
the pixel coordinates in the image frame become pimg =
(x, y). These coordinates represent the image seen by the
naked eye. With the left top corner of pimg in Fig. 4 as the ori-
gin, the coordinates increase along the y-axis toward the left
and the x-axis toward the right. [15]

FIGURE 6. Matching with 3D LIDAR and vision FOV.

To solve this problem geometrically, a random point P
in 3D space is created to pass through the focus of the camera
and projected onto the image plane coordinate point pimg.
Finally, a virtual image coordinate system is defined and
expressed as a normal coordinate system by removing the
sum of the internal parameters of the camera. The origin of the
normal coordinate system is its intersection with the optical
axis Zc, which is the midpoint of the normal image plane, and
its position differs from that of the pixel coordinate system.
If the image coordinate system is assumed as p = (u, v),
a transformation between the pixel coordinate system and the
normal coordinate system is possible using Eq. (9).

In the Eq. (9), fx and fy are focal distances, and cx and
cy are the coordinate values for the intersection between
the optical axis and the pixel plane, referred to as camera
matrix C. Furthermore, K is a 3× 3 matrix consisting of the
camera internal parameters, as in Eq. (10). Then, a matrix
transformation through camera calibration is performed as
follows:  x

y
1

 =
 fx 0 cx

0 fy cy
0 0 1

  u
v
1

 (9)

pimg = Kp′ (10)

C = [K|tk ] (11)

te = K−1tk (12)

C = K[I|te] (13)

Furthermore, the matrix consisting of the rotation matrixR
and the translational motion matrix t is generally referred to
as an external matrix because it represents the external infor-
mation of a camera. The external matrix can be considered a
translation matrix that transforms the global coordinate sys-
tem into the camera coordinate system. Assuming the points
in the 3D space are projected onto the image plane through
K, the location to which a point in the 3D space is projected
onto the image plane can be determined using Eq. (10).

In the case of 3D LIDAR, a 3D map is obtained with
the LIDAR at the origin. However, for 3D-2D matching,
not all 3D information can be used because the information
in the image is used, and the 3D information is projected
onto the image plane. Therefore, the reference 3D coordinates
of the camera can be obtained if there is no K in Eq. (12).
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The values obtained by multiplying K represent the 2D
coordinates in the image of the corresponding 3D coordi-
nates. By combining these values, a depth image that has the
same type of 3D coordinate information can be created [16].
However, this depth image does not contain a considerable
amount of the initial 3D information owing to differences in
the viewing angle between the camera and LIDAR sensor.
Because information is distributed, it is likely that there is no
3D information at the location of a detected feature. Object
detection may be impossible if this gap in 3D information is
significant.

The data may exist as uneven, irregular forms of the
2D space in the frame in which 3D LIDAR data obtained
by projecting the above 3D LIDAR data are matched with
the image. Thus, they are aligned using the interpolation
method [17]. Dilation interpolation involves the interpolation
of sparse information using the dilation operation, which a
fundamental image processing technique. To perform dila-
tion, the image to be dilated and the corresponding structuring
elements are required. The result of dilation interpolation for
an image matched with 3×3 structuring elements is depicted
in Fig. 7. First, the edge features of uniform objects in the
front are determined from the LIDAR point data. To interpo-
late between the detected data and the pixel coordinates of the
image, the data are placed in a grid map, as depicted in Fig. 7.
Pki denotes the 3D coordinates of the i-th position in the k-th
frame. The 3D information can be interpolated by executing
the dilation operation according to a predefined mask, and
the overlapping parts can be replaced with the vector average
values of the 3D coordinates [18].

FIGURE 7. Interpolation using feature matching and dilation operation.

III. OBJECT-RECOGNITION ALGORITHM
A. OBJECT RECOGNITION BASED ON VISION
WITH YOLO NETWORK
We used the YOLO network in this study to perform object
recognition and classification. The YOLO network simulta-
neously locates and classifies bound boxes from the final
output of the network. One network extracts features, cre-
ates bound boxes, and performs classification simultaneously.
As depicted in Fig. 7, two data points in the center are created
from the raw input image using the algorithm. Encoded in
these data is information about the classes in the cells of the
corresponding grid when multiple bound boxes and images
are divided into nxn grids.

FIGURE 8. Basic structure of faster YOLO network.

The network in Fig. 8 classifies images into 7 × 7 grids.
In each grid, two bound boxes of different sizes with their
centers inside the grid are created; 98 bound boxes are created
because there are 49 grid cells. The bound boxes are indicated
using thicker lines because the probability that these boxes
contain an object is higher. When the objects are selected
using the non-maximum suppression (NMS) algorithm for
the remaining candidate bound boxes, we obtain the final
image, as depicted in Fig. 8.

λcoord

s2∑
i=0

B∑
j=0

1objij [(xi − x̂i)2 + (yi − ŷi)2]

+ λcoord

s2∑
i=0

B∑
j=0

1objij [(
√
wi −

√
ŵi)2 + (

√
hi −

√
ĥi)2]

+

s2∑
i=0

B∑
j=0

1objij (Ci − Ĉi)2 + λcoord
s2∑
i=0

B∑
j=0

1noobjij (Ci − Ĉi)2

+

s2∑
i=0

1obji

∑
c∈classes

(pi(c)− p̂i(c))2 (14)

To derive 7×7×30, which is the prediction result depicted
in Fig. 3, four convolution layers and two full-connection
layers are formed in the input image. The bound boxes
determined in this manner are divided into classes. Multiple
classes are filtered using the defined threshold for the values
expressed as probability values. However, if the object size is
large, the number of classes with a high probability of housing
an actual object increases. The classes are filtered using the
NMS algorithm to determine the final object bound box, as in
Eq. (14), where S is the number of grids and B is the predicted
number of bound boxes in each grid cell.

The corresponding loss function includes a sun-squared
error for optimization. λcoord is the trained gain when there
is an object, and λnoobj is the gain when there is no object.
Furthermore, in Eq. (14), 1obj is a cell that contains an object,

1noobj is a cell that does not contain any object, and 1objij is a
value predicted using the j-th bound box that exists in the i-th
grid cell. Hence, loss occurs only in the i-th grid cell in which
there is an object, and in the case of the grid cells that do not
contain any object, the loss is not calculated. The loss can be
calculated using one of five methods:

1: The (x, y) coordinate of the bound box is trained in
such a manner that when an object exists in the i-th grid
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cell, the j-th bound box in the j-th grid cell is identical to
the object data that have been extracted. Furthermore,
the two bound boxes (j = 0, i = 0) predicted using the
gird cells are induced to be matched.

2: The width and height of the bound box are trained.
This is the same as in the first method, except that the
root is added. For a large bound box, the area increases
greatly even when the width and height increase only
marginally, and the value of the derivative is large. For
a small bound box, the area does not change consid-
erably even when the width and height are increased
significantly, and the value of the derivative is small.
The root is used because the use of the sum-squared
error generates a large difference in derivatives between
large and small bound boxes.

3: The class is predicted when there is an object in the i-th
grid cell.

4: The class can be predicted when there is no object in
the i-th grid cell. Because the weighted value is not
large compared to method 3, the grid is searched more
reliably when an object exists, as in method 3, due to
training.

5: There is no sum of B in the equation. The bound box
in the i-th grid cell predicts B = 2, but the sum is
not calculated because the c of 20 class probabilities
is shared.

Next, the NMS algorithm is executed. First, the box with
the highest detection probability score is selected from among
the current set of detection boxes of interest. Then, the inter-
section over union (IOU) between the selected box and
the ground truth box is determined; if it is smaller than the
specified threshold, the selected box is removed from the
list. Furthermore, the IOU, which is the ratio of union and
intersection, approaches 1 as the area of overlap between the
selected box and the ground truth box increases. This process
is repeated until there is no case in which the detection
probability of the selected box is smaller than X . After this,
the multiple detection regions in which one object is captured
are reduced to a single region, as depicted in Fig. 8.

The obstacles must be detected by setting the actual ROI
in the converted (xr , yr , zr ). As depicted in Fig. 9, the data of
p0 ∼ pn, detected as point cloud data for one object, must
be grouped and defined as Pm. Pm denotes cloud data when
the number of obstacles classified in the extracted frames
per hour is m. Particle filtering is performed continuously
between the images and the objects in the calibrated images
through Pm. The objects that are lost during driving are
predicted and compensated for using the results of particle
filtering.

Many methods are available for classifying cloud data
by finding regularity among multiple point data, such as
a support vector machine and the k-means algorithm [12].
However, the processing speeds of these methods decrease
as the number of samples increases, and their accuracy
varies depending on the number of repetitions. Consequently,
considerable optimization is required to classify and track

FIGURE 9. Result of object detection by fusing data.

obstacles in 3D LIDAR data when driving on an actual
road. Therefore, in this study, we perform high-speed object
detection using an object detection-method for image sensors
based on a deep learning technique, as depicted in Fig. 9, and
set the object-detection coordinates in the images as the ROI.

TABLE 1. Configuration of vision sensor.

FIGURE 10. Result of multiple-object detection with 3D LIDAR and vision.

As summarized in Table 1, the obstacle detection coordi-
nate system through image data is represented by pixels cor-
responding to the resolution of the image frame. Furthermore,
the class ID for prior training is included as a header. Thus,
for matching with point data in the rectangular coordinate
system, calibration was performed according to the sensor
positions. The actual camera view angle of the autonomous
vehicle is 68◦, and the 3D LIDAR sensor is attached in front
at doffset from the camera. Therefore, in Fig. 10, both sides of
the image frame corresponding to the coordinates 0–1280 of
yf are removed because they are lost zones. Furthermore,
3D LIDAR data (xr , yr , zr ) for hoffset are added to prevent
distortions when the ROI is set in 3D LIDAR coordinates
based on the image-detection result. Then, an arbitrary grid
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FIGURE 11. Result of object detection with 3D LIDAR and vision.

map is created in the object coordinate system of the 3D
LIDAR sensor. Thereafter, to match the lines of the grid
map with the coordinate points in the pixels acquired from
the image, the coordinates in the pixel are arranged within
a fixed range in Si. Furthermore, the ROI is set in the lines
considering that the detection distance of 3D LIDAR is 24 m.

The result is calculated for matching with the objects
detected in the image after the midpoint of the object. In this
way, the prediction is generated through the particle filter
with no loss from the continuous images of the detected
objects. First, the direction xt , position rt , and state vector
st at time t are defined for the Pm of the objects. Then,
the predicted locations of the detected objects are determined
using Eq. (15). When the objects move from the predicted
positions to new positions, the predictions are generated
using Eq. (16).

B(xt ) = p(xt |st , rt , st−1, rt−1, . . . , s0, r0) (15)

B−(xt ) =
∫
p(xt |xt−1, rt )B(xt−1)dxt−1 (16)

B(xt ) = ηtp(st |xt )B−(xt ) (17)

Pm,t = {(x it ,w
i
t )|i = 1, . . . . . . , n} (18)

B. IMAGE SEGMENTATION FOR ADAPTIVE ROI
APPLICATION IN IMAGE FRAME
In the process of matching the three-dimensional and
two-dimensional data and interpolating it in one frame and
then detecting obstacles based on the interpolated data, sig-
nificant process time is required. Therefore, in this study,
the area corresponding to the predicted section of the route
to which the vehicle is coming or going is searched for first,
thereby reducing the unnecessary process load, and increas-
ing the speed increases the range of the autonomous vehicle.

In this chapter, the active area of interest technique is used
to efficiently solve the system latency problem of sensor
fusion technology. For the active area of interest scheme,
the overall system flow diagram is structured as depicted
in Fig. 12. First, when the system is initiated, the objects
are detected and tracked according to the fused result of
the image and the 3D ray. The centerline of the horizontal
axis, according to the position and number of the object,

FIGURE 12. Workflow of adaptive ROI process.

is determined through the subsequent results. The area of
interest is determined as a product of a value proportional to
the vehicle speed along the defined baseline of the horizontal
axis.

The detected object in the determined area can calculate
position using the object tracking technique. The distance
between the vehicle and the object can be determined through
the calculated position value, and a weight value proportional
to the distance to the object can be derived. The region of
interest in the x-axis region can be subdivided through the
weights, and the closer the distance to the vehicle, the higher
the interest of the object.

Based on this study, it is possible to use the object detection
system more efficiently by dividing the region of interest
based on the risk of the object without examining the entire
image frame.

FIGURE 13. Using a centroid of object for segmentation a row.

First, to execute this process, the position of the object
detected in the image frame is calculated based on the image
resolution, as depicted in Fig. 13. If there are many objects to
be detected in the image, calculate the average of the object’s
center point, as depicted in Eq. 19, and define it as ai,t , where
ai,t is the y-axis baseline of the computable area in the image
frame. The range to be detectedmust be set through the y-axis
reference line. The range can be calculated in conjunction
with the vehicle speed.

As the speed increases, the section where the object must
be examined during driving becomes narrower. Therefore,
in this study, the proportional value based on the vehicle speed
can be defined by Eq. 20, and the y-axis area can be specified
in the image frame. The detection area applied in the first step
can be applied to the detection of the object through the fusion
between the 3D sensor and the image sensor applied based on
the results of the position tracking study.

The object detected in the y-axis region of interest can be
computed as a result of the previously-studied object and can
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FIGURE 14. Process of Adaptive ROI based on object weight.

FIGURE 15. Result of calculation weight value from object.

FIGURE 16. GPU utilization with 3D LIDAR and vision.

be calculated as a continuous trajectory through the particle
filter. In this study, the risk is calculated as the risk weight
between the vehicle and the obstacle. Then, the distances
are weighted by distances for detected obstacles, as depicted
in Figs. 10 and 11—the closer the distance to the vehicle,
the more continuity is obtained for detection.

ci,t = yi,t +
hi,t
2

(19)

ai,t =
1
n

∑
ci,t (20)

IV. RESULTS AND DISCUSSION
The object detection system developed by fusing a 3DLIDAR
and an image sensor achieved a detection rate of 78.3%.
Furthermore, the proposed system alleviates to a considerable
extent the disadvantages of the object-detection method using
deep learning. In the case of the image sensor, normal detec-
tion is difficult whenmany objects appear simultaneously, but
the proposed system that fuses an image sensor with a 3D
LIDAR can detect all objects encountered by the system.

A single sensor has a long delay, as depicted in Tables 2–5,
and the delay time of the image sensor is approximately
70 ms. However, the delay time of the proposed system is
at least 200 ms. Furthermore, at 81%, the GPU utilization of
the proposed system is considerably higher.

TABLE 2. Result of object detection rate (vehicles).

TABLE 3. Result of object detection rate (pedestrian).

TABLE 4. Comparison of detection rate with other research (vehicles).

TABLE 5. Comparison of detection rate with other research (pedestrian).

The purpose of this study is to investigate an object detec-
tion system with a faster processing speed through the active
area of interest control. The experimental environment was
conducted on a campus where many moving objects and
stationary objects could be detected irregularly. As depicted
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FIGURE 17. Result of object detection with 3D LIDAR and vision.

FIGURE 18. Result of vehicles detection by LIDAR and vision.

FIGURE 19. Result of pedestrian detection with 3D LIDAR and vision.

in Fig. 17 ∼ 19, the detection accuracy is high in the fused
frame between the 3D image and the image for the object
detected in the driving environment. Furthermore, even if a
large number of objects are detected, the object is detected
and tracked accurately. The object in the detection box of
Fig. 17 ∼ 19 are continuously detected, while the object in
the other area is not influenced by the processing load.

Furthermore, as depicted in Fig. 17 ∼ 19, the row detects
the entire area to detect abrupt pedestrians that may appear
in front of the vehicle, and the y-axis area is controlled, such
that it is possible to cope with the unexpected situation along
the road. To reduce process load due to the detection of the
entire x-axis region, the load factor is significantly reduced
by dividing the region of interest around the detected object.

Considering that it requires more than 200 ms in process
delay time to detect the whole area through fusion between
the existing 3D LIDAR and the image, the delay time of the
proposed system is approximately 100–120 ms, which is a
50% reduction.

However, because it is necessary to detect the entire area
of the x-axis in a section where a large number of objects is
detected, a delay time of approximately 130 ms is required.
Nonetheless, the results illustrate that the delay time reduc-
tion effect is approximately 35%, and the detection rate is not
significantly affected.

V. CONCLUSION
In this study, we developed an object-detection system that
matches 3D LIDAR data with image frames. First, to remove
noise from 3D LIDAR data, segmentation between the
ground and the objects was performed using the 3DRANSAC
method. For the accurate definition of object data in the
segmented 3D data, matching between the 3D images and
the 3D data was performed using interpolation. To reduce the
inherent inaccuracy of position information of the 3D images
and facilitate accurate object positioning, the positions of the
objects detected in the images were matched with the 3D data
points. Fast processing speed was achieved by implementing
dilation interpolation, with the associated drawbacks allevi-
ated by removing the preprocessed 3D noise data.

The result of object detection using a 2D image-based
object detector. The five vehicles depicted could be detected
discontinuously depending on the image condition, and their
exact positions cannot be known even if they are detected.
However, Fig. 17 ∼ 19 illustrates the matched image,
in which the data containing the depth information of each
object are matched to each feature point. We used a single
image sensor, and the other sensors supplemented the conti-
nuity of object tracking and recognition based on the object
results recognized through the image sensor. Moreover,
to address the disadvantages of the technologies, we proposed
an optimization technique.

As depicted in Fig. 18, using the image sensor, the delay
time based on object detection is 50 ms, and even if many
objects are recognized, thee processing time is 78 ms.
However, the object detection rate was 57.9%. When used
in other studies, the image detection technique used in this
study—with a high detection rate of 70–90%—exhibited a
low detection rate because it recognized and detected not only
the car but also the pedestrian; the detection rate according
to the recall calculated within the currently obtainable frame
was confirmedwithout setting the limit distance. The purpose
of this study is to investigate an object detection technique to
enable autonomous navigation in a real-world environment,
so no other constraints are made, and the results are not
produced.

The object detection and follow-up study through conver-
gence between RADAR and image sensor illustrates the same
result as the detection rate of the previous research. Because
object detection using only image sensors is a single-stage-
based recognition technology for high-speed object recogni-
tion, the continuity of object recognition is greatly reduced if
the relative speed is high or the environment is affected by the
image. To compensate for this, we use a radar that can acquire
the existence of objects in two-dimensional space points.
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The resulting detection rate is 56.2%. The object detection
and tracking depend on the result of the image sensor, so the
detection rate was similar. However, as depicted in Fig.16,
it is possible to produce the exact result once detected.

The convergence between 3DLIDAR and the image sensor
enabled more accurate object detection and tracking due to
the large quantity of 3D point data, including accurate dis-
tance values. As depicted in Table 4, the detection rate was
as high as 78.3%, which is a result of comparison with other
studies. Moreover, the high data of 3D LIDAR was able to
be controlled only by a system load of 81% of the GPU.
However, we have conducted research to improve the high
latency time of 230 ms.

To address these disadvantages, the concept of adaptive
ROI was proposed, and low latency of 93 ms was achieved
without a reduction in the detection rate. Based on the object
tracking, all obstacles in the obtainable frames are detected,
and the ROI is actively-controlled based on the risk to the
result, and the delay time reduction achieved is at least 50%.
The system can detect a pedestrian and the car simultane-
ously, and can detect the situation even when the relative
speed is great than 60 km/h, as depicted in Fig. 18. As pre-
sented in Table 5, most studies detect an object with a delay
time of at least 300 ms and a detection rate of 55% or less
when simultaneous detection of a pedestrian and a car is
performed. However, the proposed study has a detection rate
of 78.3% and a delay time of less than 100 ms.
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