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ABSTRACT In the study, we develop a method to improve the accuracy of master–slave synchronization in
EtherCAT networks. The method involves two key compensations that are not considered in the EtherCAT
protocol. First, the propagation delay between the master and reference slave is measured, and the system
time of the reference slave is then compensated for the measured propagation delay. Second, the bias
component of the synchronization error between the master and reference slave is periodically estimated,
and system time of each slave is then compensated for the estimated bias component. The entire method
is implemented as part of the master application without modifying the EtherCAT protocol or requiring
excessive computation load or large memory space. Thus, the developed method is advantageous because it
can be immediately applied at low cost to existing EtherCAT networks. By performing extensive experiments
based on a Linux-based EtherCATmaster, we demonstrate that the developed method significantly improves
the accuracy of the master–slave synchronization in EtherCAT networks.

INDEX TERMS Distributed clock, EtherCAT, master–slave synchronization, propagation delay, slave–slave
synchronization.

I. INTRODUCTION
Industrial Ethernet networks are widely used for automation
applications in place of traditional fieldbus networks because
of their various benefits such as cost-effective implementa-
tion, flexible topologies, high bandwidth, and wide compat-
ibility [1]–[3]. EtherCAT is a prominent real-time protocol
among industrial Ethernet protocols with a desirable feature
that each slave processes the addressed data on the fly as
the frame moves downstream. Thus, the maximum effective
data rate even exceeds 100 Mbps in the full-duplex mode of
Fast Ethernet, and fast operation is enabled with cycle times
shorter than 100 µs. This property of EtherCAT is employed
for very fast control loops in high-end motion control or
power electronics applications [4]–[6].

In addition to exhibiting a short cycle time, EtherCAT
provides synchronization among the master and slaves based
on the distributed clocks (DC) mechanism where the ref-
erence slave’s clock is optionally adjusted to the master’s
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clock, and other non-reference slaves’ clocks are adjusted
to the reference slave’s clock. Although the DC mechanism
enables synchronous operation of devices in distributed sys-
tem applications, a recent demand has arisen for more precise
synchronization performance via distributed real-time preci-
sion control applications such as multi-axis motion control
systems including robots and computerized numerical control
machines [7]–[9].

The slave–slave time synchronization in EtherCAT net-
works is realized with a high degree of accuracy, as demon-
strated by a slave–slave jitter of less than 12 ns in [10].
Additionally, an accuracy improvement method is proposed
for slave–slave synchronization in EtherCAT networks, and
the performance is demonstrated via experiments in [11].

However, it is observed that EtherCAT suffers from poor
accuracy in master–slave synchronization, and two methods
have been proposed to improve master–slave synchroniza-
tion accuracy in [10], [12]. In [12], the cycle period of the
EtherCAT master application is adjusted to synchronize each
start time of the master and reference slave cycle periods, but
the system times of the master and reference slave are not
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considered to be synchronized. In [10], a prototype circuit
is developed to achieve high-quality time synchronization
between the master and slave devices using precision time
control protocol (PTCP) embedded in EtherCAT frames. The
approach requires modification of master and slave archi-
tectures in EtherCAT networks; thus, it is not feasible to
immediately apply the approach to off-the-shelf EtherCAT
master and slave devices.

Therefore, it is necessary to develop a new method
to overcome the disadvantages of the methods proposed
in [10], [12], and obtain a high degree of master–slave
synchronization accuracy in EtherCAT networks. Accord-
ingly, we initially investigate the causes of poor accuracy
in master–slave synchronization as follows. The EtherCAT
protocol does not consider the propagation delay between
the master and reference slave, and this causes a significant
error in master–slave synchronization [13]. The industrial
PC used as the computer platform for running the mas-
ter degrades synchronization performance via the jitter of
critical-frame transmission [10]. Only EtherCAT slaves are
equipped with special hardware for time synchronization that
is typically not provided for the master [14], [15]. The time
control loop (TCL) in the reference slave compensates for
the master–slave synchronization error by only a fixed 1 ns
correction of the reference slave clock every 10 ns without
considering the error magnitude [11].

We carefully consider the characteristic of each inves-
tigated cause, and it is observed that the negligence of
master–slave propagation delay and master–slave synchro-
nization error magnitude in TCL is directly related to the
EtherCAT protocol itself, and they are recognized as two
critical disadvantages of the EtherCAT protocol for poor
master–slave synchronization. In the study, we focus on the
two critical drawbacks of the EtherCAT protocol and develop
a new synchronization method to solve the disadvantages and
obtain a high degree of synchronization accuracy.

The contribution of the study is summarized as follows.
In the initialization state, the master measures the propaga-
tion delay between the master and reference slave and then
compensates the system time of the reference slave for the
measured propagation delay. In the normal operation state,
the master periodically measures the synchronization error
between the master and reference slave and estimates the
bias component in the synchronization error via the exponen-
tial moving average (EMA) filter. Subsequently, the master
adjusts the system clock of each slave by the amount of
the estimated error bias, and this, in turn, compensates for
the master–slave synchronization error. The entire method
is implemented as part of the master application without
requiring an excessive computational load or large memory
space. Thus, the developed method exhibits an advantage that
it can be immediately applied to existing EtherCAT networks
at a low cost.

We perform extensive experiments using EtherCAT net-
works that consist of the Linux-based master and commer-
cial off-the-shelf EtherCAT slaves. The experimental results

FIGURE 1. Timestamps for propagation delay measurement in EtherCAT
networks.

demonstrate that the master–slave synchronization perfor-
mance significantly improves when compared to the perfor-
mance of the original EtherCAT network, and this verifies the
validity and usefulness of the developed method.

The remainder of the paper is organized as follows.
In Section II, we introduce master–slave and slave–slave
synchronization of the DC mechanism in the original Ether-
CAT protocol. Section III describes our development of a
newmethod to improve master–slave synchronization perfor-
mance. In Section IV, we describe the experiments performed
and discuss the experimental results. Finally, we present con-
clusions in Section V.

II. SYNCHRONIZATION OF EtherCAT DC MECHANISM
In the section, we describe the detailed operation of the
DC synchronization mechanism in the EtherCAT protocol,
and determine the causes for performance degradation of
master–slave synchronization in EtherCAT networks. First,
we designate the clocks and times employed by the master
and slaves in the DC mechanism. The master is assigned
the system time by the system clock of the operating system
on which the master program runs. The slave is assigned
the local time by an internal clock, and the slave manages
the global clock, the system time, that has elapsed since
January 1, 2000 and is held in the System_Time register in 1
ns units. Specifically, the reference time is used to denote the
system time of the reference slave. The reference slave is typ-
ically selected by the DC-enabled slave that is closest to the
master.

The synchronization between the master and slaves is per-
formed in three phases as follows: propagation delay mea-
surement, offset compensation, and drift compensation.

A. PROPAGATION DELAY MEASUREMENT
The master triggers propagation delay measurement by send-
ing a broadcast write (BWR) datagram to each slave. When
the datagram is received at the port of a slave, the slave
records the timestamp and separately stores it in the corre-
sponding Receive_Time_Port 0 to 3 slave registers. As shown
in a simple network topology depicted in Fig. 1, t ip denotes the
time at which the BWR datagram arrives at port 0 of the i-th
slave on the processing path, and t if denotes the time at which
it returns to port 1 of the i-th slave on the forwarding path. The
processing direction denotes the direction involving passage
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FIGURE 2. Drift compensation procedure in EtherCAT networks.

through the EtherCAT processing unit, and the forwarding
direction denotes the direction not involving passage through
the EtherCAT processing unit.

After each slave completes writing of the timestamps
to the Receive_Time_Port registers, the master reads the
Receive_Time_Port register of each slave and collects all the
timestamps. Based on the collected timestamps and identified
network topology, the master then calculates the propagation
delay of each slave between the reference slave and each
non-reference slave, and the calculated delay is then written
to the System_Time_Delay register of each slave [16].
It is noted that the System_Time_Delay register of the

reference slave is set to zero because the propagation delay of
each slave is defined by the data transmission delay between
the reference slave and each slave. The propagation delay
measurement is performed only once when the network is
initialized.

B. OFFSET COMPENSATION
The offset of each slave is defined as the difference between
the master’s system time and each slave’s local time and
manifests when each slave is powered up at a different time.
The master reads the local time of each slave and calculates
its offset by determining the difference between the master’s
system time and each slave’s local time, while consider-
ing the propagation delay of each slave. After calculating
each slave’s offset, the master writes this value into the Sys-
tem_Time_Offset register of each slave.

The process is performed only once when the network is
initialized. Based on the local time and offset stored in the
System_Time_Offset register, each slave compensates for its
offset by calculating the system time every 10 ns as follows:

tsys_time = tloc_time + toffset , (1)

where tsys_time, tloc_time, and toffset denote system time, local
time, and offset of each slave, respectively.

C. DRIFT COMPENSATION
The drift of the reference slave is defined as the difference
between the master’s system time and reference time, and
the drift of a non-reference slave is defined as the difference
between the reference time and each slave’s system time. The
drift of each slave is caused by the jitter of the master clock
and frequency differences of oscillators among the slaves.
As shown in the drift compensation procedure in Fig. 2,

the reference slave’s local time is adjusted to follow the mas-
ter’s system time, while the local time of each non-reference
slave is adjusted to follow the reference slave’s system time.
To compensate for the drift, the master periodically sends

configured address physical write (FPWR) and configured
address physical read multiple write (FRMW) datagrams.
While sending the FPWR and FRMW datagrams, the master
also writes its own system time into the FPWR datagram,
and the reference slave reads the master’s system time from
the FPWR datagram. Simultaneously, the reference slave
writes the reference time into the FRMW datagram, and
each non-reference slave reads the reference time from the
FRMW datagram. Whenever each slave receives the FPWR
and FRMW datagrams, it calculates the drift 1t using the
offset, propagation delay, and time received from the FPWR
(the master’s system time for the reference slave) or FRMW
(the reference time for the non-reference slaves) datagram as
follows:

1t = (tloc_time + toffset )− (trecv_time + tprop_delay), (2)

where trecv_time denotes the time received from the FPWR
or FRMW datagram, and tprop_delay denotes the propaga-
tion delay stored in the System_Time_Delay register of
each slave. The calculated drift 1t is written into the Sys-
tem_Time_Difference register of each slave.
Each slave’s local time is updated by the TCL every 10

ns based on the value of the drift. When the calculated drift
1t corresponds to zero, each slave’s local time is increased
by 10 ns every 10 ns. When the calculated drift 1t is not
zero, based on the sign of each slave’s 1t , the non-zero drift
is compensated as each slave’s local time is increased by 9
ns every 10 ns for positive 1t and by 11 ns every 10 ns for
negative 1t .

The frequency of each slave’s drift compensation is set
by the Speed_Counter_Start register, and this determines the
time period for the execution cycle of the drift compensa-
tion and is typically set as significantly higher than 10 ns
[11], [16]. It is noted that the drift compensation of the
reference slave is optional as a configuration condition of
the EtherCAT DC synchronization mechanism, and the drift
compensation of the reference slave must be turned on to
ensure that the time synchronization works between the mas-
ter and all the slaves.

D. CAUSES FOR SYNCHRONIZATION PERFORMANCE
DEGRADATION
Based on the analysis results of the previous subsections,
we observe two primary causes for the performance degra-
dation of the master–slave synchronization in EtherCAT
networks.

First, the propagation delay between the master and ref-
erence slave is not measured and is set to zero as stated in
Subsection II-B; thus, the reference slave’s offset is calculated
without considering the propagation delay between them.
The negligence results in a significant synchronization error
between the master and reference slave because the reference
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slave applies (1) and (2) with zero propagation delay. Fur-
thermore, the master–reference slave synchronization error
inevitably leads to another significant synchronization error
between the master and each non-reference slave because
non-reference slaves attempt to synchronize with the refer-
ence time via drift compensation.
Second, as stated in Subsection II-C, the drift compensa-

tion of each slave considers only the sign of the drift, and this
can decrease its effect. The effect of the drift compensation is
maximized by considering the size as well as the sign of the
drift such that the correction size of each slave’s local time
should not be fixed at 1 ns every 10 ns but a variable time
size every 10 ns based on the size of its drift.

III. METHOD FOR IMPROVING MASTER–SLAVE
SYNCHRONIZATION ACCURACY
First, we observe the actual experimental results in
Figs. 8(a) and 8(b) that demonstrate the distribution of the
synchronization errors between the master and reference
slave in conventional EtherCAT networks with two and six
slaves. As shown in Figs. 8(a) and 8(b), it is clearly observed
that the sample mean is not near zero, and samples exhibit
significant bias components although the DC mechanism of
the EtherCAT protocol works normally, and this motivates
the development of a method for improving the master–slave
synchronization accuracy.

Based on the analysis results in Subsection II-D, it is
concluded that the two main causes of the bias components
in Figs. 8(a) and 8(b) are related to the negligence of the
propagation delay between the master and reference slave
and size of each slave’s drift in the drift compensation.
We develop two compensation methods in the following sub-
sections to solve the aforementioned problems and improve
master–slave synchronization performance.

A. COMPENSATION FOR PROPAGATION DELAY BETWEEN
MASTER AND REFERENCE SLAVE
We develop a method to compensate for the propagation
delay between the master and reference slave that initially
requires the propagation delay to be measured. In the mas-
ter application, we consider the timestamp, tmp0, immediately
after sending a datagram to the reference slave, and the
timestamp, tmp1, immediately after datagram is returned to
the master. Subsequently, the master reads the values of the
Receive_Time_Port 0 register, trp0, and Receive_Time_Port 1
register, trp1, from the reference slave and calculates the prop-
agation delay, tm,rpd , as follows:

tm,rpd =
(tmp1 − t

m
p0)− (trp1 − t

r
p0)

2
, (3)

the derivation of which is illustrated in Fig. 3. The propa-
gation delay between the master and reference slave is not
measured by a constant value and instead varies at each
measurement; thus, it is necessary to appropriately deal with
the time-varying characteristic of the propagation delay in
the measurement [17], [18]. Hence, the procedure of the

FIGURE 3. Measurement of master–reference slave propagation delay.

propagation delay measurement is repeated 1,000 times, and
the averaged propagation delay is selected as the propaga-
tion delay measurement between the master and reference
slave.

Subsequently, the measured propagation delay between
the master and reference slave is compensated for in the
normal operation state of the master application as follows.
Whenever the FPWR datagram containing the master’s sys-
tem time is periodically sent to the reference slave, the master
calculates the compensated system time by adding the present
system time and measured propagation delay and sends the
compensated system time as opposed to the present system
time. While receiving the FPWR datagram, the reference
slave reads the master’s compensated system time from the
FPWR datagram as trecv_time in (2). Hence, when drift com-
pensation is performed in the reference slave, compensa-
tion for the propagation delay is simultaneously performed
because the reference slave attempts to compensate for the
drift calculated from (2), where trecv_time already contains the
propagation delay.

In summary, without modification of the original Ether-
CAT protocol, compensation for the propagation delay is real-
ized between themaster and reference slave via sending of the
compensated system time of the master to the reference slave.
The overall compensation procedure is shown in the flow
chart in Fig. 4. Furthermore, another desired result is real-
ized wherein the synchronization performance between the
master and each non-reference slave also improves because
non-reference slaves perform drift compensation based on
the reference time that has been already compensated for the
propagation delay between the master and reference slave.

B. REDUCTION IN SYNCHRONIZATION ERROR
We develop a method to overcome the disadvantage of drift
compensation in EtherCAT networks and decrease the syn-
chronization error between the master and each slave. Based
on the observation in Figs. 8(a) and 8(b), the bias component
of the synchronization error is considered as a measurement
of the synchronization error and used for feedback informa-
tion on the synchronization error. With the selection of the
bias as the feedback signal to represent the synchronization
error, we consider an approach where the master periodically
estimates the bias of the synchronization error between the
master and reference slave and uses the estimated bias for
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FIGURE 4. Compensation procedure for master–reference slave
propagation delay.

bias compensations of the non-reference slaves and reference
slave.

The approach is justified by the well-known property
that the non-reference slaves synchronize with the refer-
ence slave in EtherCAT networks with a high degree of
accuracy via the DC mechanism [10]. The aforementioned
property prompts the concept wherein the bias estimate
of only the master-reference slave synchronization error is
sufficient to compensate for synchronization errors of the
non-reference slaves as well as the reference slave without
performance degradation. The procedure to estimate the bias
of the master–reference slave synchronization error is out-
lined as the master periodically measures synchronization
error between the master and reference slave; a low pass
filter (LPF) is applied to the measured errors; and the output
of the LPF is selected as the bias estimate for bias compensa-
tions of all the slaves.

The detailed procedure of the overall developed method
is described as follows. The master measures the synchro-
nization error between the master and reference slave by
reading the System_Time_Difference register of the reference
slave because it is periodically updated with a new time
difference between the master and reference slave based on
the DC mechanism. We suppose that1tk is the master–slave
synchronization error at the k-th sampling time, i.e., the value
of the System_Time_Difference register of the reference slave
read at the k-th sampling time.
We employ the following EMAfilter as an appropriate LPF

to estimate the bias component from the master–reference
slave synchronization error samples:

1T k = α1tk + (1− α)1T k−1, (4)

where 1T k denotes the output of the EMA filter for the
master–reference slave synchronization error at the k-th

sampling time, the initial condition is set as1T 0
= 1t0, and

α is a designed constant smoothing factor such as 0 < α < 1.
Subsequently, we design a method to send the estimated

bias back to each slave and correct its system time by exploit-
ing the role of each slave’s offset that is used in the periodic
correction of the system time at each slave as described in the
offset compensation (1). Hence, the master reads the offset
stored in the System_Time_Offset register of each slave and
modifies it as follows:

tnew_offset = toffset −1T k , (5)

where tnew_offset denotes the new offset compensated for the
bias of the master–slave synchronization error. The master
then writes the new offset back to the System_Time_Offset
register of each slave, and the system time of each slave is
effectively compensated for the bias component whenever the
offset compensation in each slave is performed based on (1).
By periodically repeating the procedure, the developed

method compensates for the bias of the synchronization error
between the master and each slave only using the bias esti-
mate of the master–reference slave synchronization error.
Thus, the compensation for the bias of each slave’s synchro-
nization error significantly decreases the master–slave syn-
chronization error and improves synchronization accuracy
between the master and each slave. The overall procedure of
the developed method is shown in the flow chart in Fig. 5.

IV. EXPERIMENT
A. SETUP
We perform extensive experiments to verify the synchroniza-
tion performance of the developed method using the IgH
EtherCAT master stack [19], which is a Linux-based open-
source EtherCAT master. The experimental setup is con-
structed using commonly available commercial off-the-shelf
devices, as shown in Fig. 6. The EtherCAT master runs on a
SeeedStudio’s BeagleBone Green board based on Linux ker-
nel 4.9.59 with the RT patch, and EtherCAT slaves run on TI’s
TMDSICE3359 boards and Infineon’s XMC4800 EtherCAT
kits.

We consider two network configurations for the experi-
ments: one is configured with a master and two TI slaves, and
the other is configured with a master, two TI slaves, and four
Infineon slaves. A function generator is connected to each
general purpose input (GPI) of the master, reference slave,
and last slave to measure the synchronization error between
themaster and each slave.Wemeasure synchronization errors
of only the reference and last slaves while excluding interme-
diate slaves because the synchronization error between the
master and last slave is the worst [13]. Thus, the intermediate
slaves always guarantee better synchronization performance
than the last slave. A PC is used to analyze the experimental
results.

B. MEASUREMENT OF SYNCHRONIZATION ERRORS
With respect to the synchronization error measurement, it is
necessary to simultaneously obtain the system times of the
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FIGURE 5. Procedure for synchronization error compensation.

FIGURE 6. Setup for experiments.

master, reference slave, and last slave and calculate the system
time differences between the master and reference slave and
between the master and last slave, which are considered as
synchronization errors of the reference slave and last slave,
respectively.

The measurement procedure is described in detail as fol-
lows. The system times are obtained by calling the sys-
tem time functions of Linux and TI-RTOS for the master
and slaves, respectively, and the simultaneous acquisition is
obtained by calling the system time function in synchroniza-
tion with the rising edge GPI interrupt from the external
square wave signal provided by the external function genera-
tor. Subsequently, as soon as the system time function returns
with each system time of the master and slave, the master
stores the master system time in memory while the slaves
send the slave system times to the master at each operation
cycle, and the sent slave system times are stored in memory
by the master. After completion of each experiment round,
the system times of the master, reference slave, and last slave
stored at each operation cycle are saved in an SD card, and
the saved experimental results are transferred and analyzed
on the analysis PC [11], [13].

In the procedure, in order to more precisely measure the
synchronization errors, we consider two types of latencies:

FIGURE 7. Measurement of latencies: (a) GPI detection latency (b) system
time acquisition latency.

the GPI detection latency and system time acquisition latency,
which represent the time required from the GPI signal input
to the GPI interrupt occurrence, and time required from the
call of the system time function to its return with system time,
respectively. Hence, we estimate and compensate for the two
latencies when analyzing the experimental results.

As shown in Fig. 7(a), the GPI detection latency is esti-
mated by connecting a general purpose output (GPO) and a
GPI in each master and slave and measuring the time differ-
ence from the GPO signal generation to the GPI interrupt.
The measurement operation is repeated 1,000 times, and the
average system time difference is selected as the estimate of
the GPI detection latency. The GPI detection latencies of the
master on Linux and slaves on TI-RTOS are estimated as
13.71 µs and 0.95 µs, respectively.
As shown in Fig. 7(b), the system time acquisition latency

is estimated by measuring the time difference between two
consecutive calls of the system time function in each master
and slave. The system time function is called 1,000 times, and
the average time difference of 999 time differences between
the two consecutive calls of the system time function is
selected as the estimate of the system time acquisition latency.
The system time acquisition latencies of the master on Linux
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FIGURE 8. Distribution of synchronization errors between master and
reference slave: (a) Conventional method (two slaves) (b) Conventional
method (six slaves) (c) Compensation for propagation delay (two slaves)
(d) Compensation for propagation delay (six slaves) (e) Compensation for
propagation delay and bias (two slaves) (f) Compensation for
propagation delay and bias (six slaves).

and slaves on TI-RTOS are estimated as 0.28 µs and 0.49 µs,
respectively.

In the step of analyzing the experimental results on the
analysis PC, the two estimated latencies are subtracted from
the obtained system times of the master, reference slave, and
last slave, and this results in a more precise measurement of
synchronization errors between the master and each slave.

The master operation cycle is set to 1 ms, which implies
that the master sends one packet every 1 ms. The period of the
external square wave signal is set to 2 ms. For an experiment
round, 100,000 samples are obtained after waiting for 5 min
for the system to stabilize, and cold reset is initially per-
formed tominimize the effect of the previous experiment. The
smoothing factor of the EMA filter for the synchronization
error estimation is set as α = 0.25, and the operating cycle of
the developed method for the synchronization error reduction
is set to 100 ms.

C. RESULT
We perform the experiments for three cases as follows: con-
ventional method, compensation for only the propagation
delay between the master and reference slave, and com-
pensation for both the propagation delay and bias. We use
the experimental results and compare their synchronization

FIGURE 9. Distribution of synchronization errors between master and last
slave: (a) Conventional method (two slaves) (b) Conventional method (six
slaves) (c) Compensation for propagation delay (two slaves)
(d) Compensation for propagation delay (six slaves) (e) Compensation for
propagation delay and bias (two slaves) (f) Compensation for
propagation delay and bias (six slaves).

performances and verify the improvement in accuracy owing
to the developed method.

Figs. 8 and 9 show the distributions of all the measured
samples of synchronization errors between the master and
reference slave and between the master and last slave, respec-
tively. We compare Figs. 8(a), 8(c), with Figs. 8(b), 8(d) and
Figs. 9(a), 9(c) with Figs. 9(b), 9(d), and it is observed that
the distribution center in the case of the propagation delay
compensation is closer to zero. This verifies that the syn-
chronization accuracy is significantly improved between the
master and each slave even when applying the compensation
for only the propagation delay. However, it is also observed
that an appreciable deviation from zero still remains. Addi-
tionally, we compare Figs. 8(c), 8(e), with Figs. 8(d), 8(f) and
Figs. 9(c), 9(e) with Figs. 9(d), 9(f), and it is observed that the
distribution center in the case of both the propagation delay
and bias compensation is significantly closer to zero, which
verifies that the bias compensation considerably improves
synchronization accuracy and is essential to improve the fine
synchronization performance.

Figs. 10 and 11 show the mean and root mean
square (RMS) of the synchronization errors up to each
sampling instant between the master and reference slave
and between the master and last slave, respectively.
Comparing Figs. 10(a), 10(e) with Figs. 10(b), 10(f) and
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FIGURE 10. Mean and RMS of synchronization errors between master
and reference slave up to each sampling time: (a) Conventional method
(two slaves) (b) Conventional method (six slaves) (c) Compensation for
propagation delay (two slaves) (d) Compensation for propagation delay
(six slaves) (e) Compensation for propagation delay and bias (two slaves)
(f) Compensation for propagation delay and bias (six slaves).

TABLE 1. Statistical properties of synchronization errors between master
and slaves.

Figs. 11(a), 11(e) with Figs. 11(b), 11(f), it is observed that
the mean and RMS of the synchronization errors sharply
decrease for the developed method when compared to that
of the conventional method, and this also verifies that the
synchronization accuracy significantly improves between
the master and each slave. Additionally, Figs. 10 and 11
demonstrate a stable dynamic operation of the developed
method with a fast time response because the mean and
RMS rapidly reach steady states through the initial transient
states.

To further demonstrate the developed method, we repeat
each round of experiment nine more times for the conven-
tional method and compensation for both propagation delay
and bias and calculate statistics, as summarized in Table 1.

FIGURE 11. Mean and RMS of synchronization errors between master
and last slave up to each sampling time: (a) Conventional method (two
slaves) (b) Conventional method (six slaves) (c) Compensation for
propagation delay (two slaves) (d) Compensation for propagation delay
(six slaves) (e) Compensation for propagation delay and bias (two slaves)
(f) Compensation for propagation delay and bias (six slaves).

In Table 1, GMEAN denotes the grand mean of synchroniza-
tion errors, i.e., themean of all themeans of the 10 experimen-
tal results and MRMS denotes the mean of the RMS values
of the 10 experiments. The statistics also demonstrate that
the developedmethod significantly improves synchronization
performance when compared to the conventional method.

V. CONCLUSION
In the study, we developed a method to improve synchroniza-
tion accuracy between the master and each slave in EtherCAT
networks. The propagation delay was measured between the
master and reference slave, and the system time of the refer-
ence slave was then compensated for the measured propaga-
tion delay. The bias component of the synchronization error
between the master and reference slave was estimated, and
the estimated bias was then used to compensate for the bias of
the synchronization error between the master and each slave.
The compensations for both the propagation delay and bias
component of the synchronization error effectively decreased
the synchronization error and significantly improved syn-
chronization accuracy between the master and each slave.

The developed method was implemented as part of the
master application without modification of the original
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EtherCAT protocol or requirement of an excessive compu-
tational load or large memory space. Thus, the developed
method exhibits an advantage that it can be immediately
applied to existing EtherCAT networks at a low cost. We con-
structed the experimental setup using commercial off-the-
shelf devices for EtherCAT networks, and the experimental
results verified that the developed method significantly
improves synchronization accuracy between the master and
each slave when compared to the conventional method.

On the other hand, the synchronization performance of
the developed method inevitably depends on the jitter of the
master system time because each slave system time is synchro-
nized to the master system time. Therefore, in addition to the
developed method, proper management to reduce jitter in the
system time of the operating system running the master will
also be effective in improving master–slave synchronization
in EtherCAT networks.
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