IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received February 25, 2020, accepted March 17, 2020, date of publication March 23, 2020, date of current version April 7, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2982688

AvaTar: Zero-Copy Archiving With New
Kernel-Level Operations

HYUNCHAN PARK !, YOUNGPIL KIM“2, (Member, IEEE),
AND SEEHWAN YOO '3, (Member, IEEE)

! Division of Computer Science and Engineering, Jeonbuk National University, Jeonju 54896, South Korea
2School of Computer Science, Semyung University, Jecheon 27136, South Korea
3Department of Mobile Systems Engineering, Dankook University, Yongin 16890, South Korea

Corresponding authors: Youngpil Kim (ypkim@semyung.ac.kr) and Seehwan Yoo (seehwan.yoo@dankook.ac.kr)
This work was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT)

under Grant NRF-2015R1C1A1A02037330, Grant NRF-2017R1C1B5016000, and Grant NRF-2020R1G1A 1005544, and in part by the
“Research Base Construction Fund Support Program™ through the Jeonbuk National University in 2017.

ABSTRACT The problem associated with current file archiving systems is a slow processing time owing to
unnecessary data copying. To address this problem, a novel archiving system with zero-copy merging and
splitting operations, referred to as AvaTar, is presented herein. For the operations, instead of copying the data,
the block allocation information of the files is manipulated at the kernel level. We implemented kernel-level
archiving primitives in a Linux kernel, called AvaTar-FS, and a user-level archiving tool, called AvaTar agent.
Our evaluation results indicated that AvaTar required only 0.48 s to extract 1,024 files from a 4 GB archive
file, which is 132-times faster when compared with traditional GNU Tar archiving. AvaTar affords practical
benefits in uploading files to a real-world cloud storage system, and successfully completes the transfer
of 1,024 files to Amazon Web Service cloud storage within 60.55% of the processing time required through
a traditional approach.

INDEX TERMS Merging and splitting, archiving and extraction, zero-copy, file system, cloud storage

system.

I. INTRODUCTION
Sharing files over cloud storage is easy. Once the setup is
complete, numerous files placed in resources such as Drop-
box or Amazon S3 directories can be automatically syn-
chronised and immediately accessed by any computer [16].
However, installing a new cloud storage client for these com-
mercial resources is a tedious task because all files have to
be synchronised in the cloud on first use [23]. Small and
numerous file transfers are prevalent on the cloud [6], [17],
and they hinder the best-utilising network bandwidth. It is
widely known that short-lived TCP sessions suffer from a
low network utilisation during the slow-start phase, and small
files transfer lead to slower start-up sessions. If we consider
the use of UDP, files can be sent at maximum speed, although
with decreased reliability of the communication channel.
Therefore, transmitting small files to a cloud is inefficient.
A popular and convenient solution to the problem of an
inefficient file transmission is the archiving of small files.

The associate editor coordinating the review of this manuscript and

approving it for publication was Lo’ai A Tawalbeh

VOLUME 8, 2020

We can efficiently utilise the network bandwidth if we merge
small files into a single large file and send them all at once.
After a single TCP slow-start, the session can fully utilise
the network bandwidth. The receiver can then extract the
archived file so that it has the original files.

Archiving and extraction are widely used operations for
managing large numbers of files. For example, we create an
archived file as a backup, and send it as an e-mail attachment
or keep it in cloud storage such as Amazon S3 Glacier. How-
ever, the current archiving technique has a performance prob-
lem. Existing archiving applications, such as GNU Tar and
GNU Ar, are extremely slow because the existing archiving
utilities require a large number of data copies. To archive the
files, we should read the data from the source files and then
write the data into the destination file. To extract files from the
archive, we should read and write data in a reverse manner.
These readings and writings involve numerous accesses for
the storage device, which is normally the slowest operation in
a computer system. The utilities also copy the data between
the user and kernel memory spaces. In fact, such accesses and
copies may be unnecessary because all data are already in

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 59315

https://orcid.org/0000-0001-9879-5531
https://orcid.org/0000-0002-9154-2336
https://orcid.org/0000-0001-5464-4619
https://orcid.org/0000-0002-2294-9829

IEEE Access

H. Park et al.: AvaTar: Zero-Copy Archiving With New Kernel-Level Operations

the storage device. Current archiving and extraction utilities
simply create identical data blocks in the storage device
through excessive readings and writings, wasting precious
system resources.

To resolve the problem of slow and inefficient archiving,
this paper presents a novel archiving system with kernel-level
supports, referred to as AvaTar. AvaTar makes two main con-
tributions to the current file archiving system. First, AvaTar is
the first zero-copy archiving system that executes archiving
and extraction extremely quickly. Because AvaTar does not
incur any data copies in either memory or storage, it is
faster and more efficient than traditional archiving systems.
To remove unnecessary data copies, AvaTar uses zero-copy
merging and splitting file operations, which are newly imple-
mented in the OS kernel. These operations relocate data
blocks between in-kernel data structures of the source and
destination files. Because the operations do not incur data
copies in the storage devices or between the user and kernel
memory space, AvaTar is extremely fast and efficient. Thus,
AvaTar uses zero-copy file merging and splitting as primitive
operations for archiving and extraction.

Second, AvaTar provides high-level compatibility by using
a file system image format as its archive file format. Thus,
a system without AvaTar can mount an archived file without
data copies. This is a novel idea that enables a system with-
out new operations to benefit from a zero-copy extraction.
This cannot be easily accomplished through a simple imple-
mentation using kernel-level merging and splitting proposed
in prior studies. AvaTar is the only system providing such
benefits.

We implemented and evaluated AvaTar using the Ext4 file
system and GNU Tar on Linux. Our evaluation results indi-
cated that AvaTar required only 0.48 s to extract 1,024 files
from a 4 GB archive file, which is 132-times faster when
compared with traditional GNU Tar archiving. We also con-
ducted several real-world experiments including transferring
the files over the commercial cloud system, Amazon Web
Services (AWS). Our experimental results demonstrate that
AvaTar transfers files to the cloud storage on AWS 1.65-times
faster compared to a traditional method when we transfer an
1 GB file containing 1,024 files.

The remaining sections are organised as follows: section II
describes the background and related studies conducted on
merging and splitting file operations; section III describes
the design of AvaTar and its components in detail; section IV
details its implementation and evaluation on a Linux system;
section V details our future considerations regarding AvaTar;
and section VI provides some concluding remarks regarding
this research.

Il. BACKGROUND AND RELATED WORK

A. DATA BLOCK MANAGEMENT IN I-NODE

In modern file systems, there are two methods for managing
data blocks in an I-node: using block numbers and using
extents. When using block numbers, the numbers of data

59316

blocks are directly written into each I-node, and when using
extents, the metadata of extents indicating physically adjacent
data blocks are written [10].

I-nodes with block numbers are used in numerous
UNIX-like traditional file systems such as Unix file system
(UFS) [19], Ext2 [7], and Ext3 [26]. In these file systems, data
blocks consist of direct and indirect blocks. A direct block
stores a pointer (block number) to a data block. An indirect
block contains references to direct or other indirect blocks.
Depending on the level of indirect reference, indirect blocks
are classified into three types: single, double, and triple indi-
rect blocks. Traditional file systems efficiently trade perfor-
mance with capacity, leveraging the depth of both direct and
indirect blocks. For small files, direct blocks are used for
quick and easy access, whereas indirect blocks are used for
storing a number of data blocks for large-size files.

I-nodes with extents have been used in some recent file
systems including Ext4 [18], BtrFS [24], NTFS [20], and
XFS [25]. An extent is a group of contiguous data blocks, and
is represented by a range of blocks. Two metadata are used
for the range, namely the number of the first block and the
number of contiguous blocks in the extent. The typical data
structure used for writing an extent is a tree. Extents require
a smaller storage space for metadata than writing blocks, and
thus the number of I/O operations for the metadata is also
reduced. Eventually, the performance of the file access to
the user data is also enhanced. Although the fragmentation
occurring on an extent-based file system degrades the 1/O
performance, we can mitigate this through a pre-allocation
or lazy allocation of contiguous data blocks. Owing to these
advantages, most modern file systems generally adopt an
extent-based i-node. Therefore, we implemented our AvaTar
prototype on an extent-based file system, Ext4.

B. RELATED WORK

Y. Kim et al. [13] suggested merging and splitting operations
for large-size multimedia files. In their study, the splitting
operation divides a single file into two parts for a fast modifi-
cation of a portion of a movie file, and a merging operation is
used to form them into a single file. These operations run on
the OS kernel, and are implemented on Ext4, FAT, and exFAT
file systems. The authors focused on in-kernel operations, and
not on an end-user abstraction. To provide an archiving facil-
ity for the end-user, AvaTar includes a user-level component
that is responsible for creating metadata for the archived files
and for an extraction of the files from an archive. In addition,
the authors consider only two file cases, which limits the
functionality as a general archiving tool.

Y. Yoo et al. [29] suggested a remove operation for the
middle parts of a file by manipulating an i-node. When
removing the middle parts of a file in conventional file sys-
tems, the remaining data after the removal should be read and
written back as a new file. Thus, the performance of the file
systems can be largely degraded because it takes much time
to copy the remaining data. The authors’ scheme changes
the mapping information between the logical file address and

VOLUME 8, 2020

H. Park et al.: AvaTar: Zero-Copy Archiving With New Kernel-Level Operations

IEEE Access

physical block address when removing middle parts of a file.
AvaTar provides more general abstractions for the merging
and splitting file operations. With AvaTar’s two abstractions,
we can manipulate any locations of a file, regardless of its
removal or attachment.

S.W. Jung et al. [12] attempted to represent an arbitrary
file by connecting multiple blocks. The authors built a pro-
totype system that manages a linked list of allocated blocks
in an i-node such that the list can be recognised as a sin-
gle file. Although the structure allows a flexible relocation
of blocks, the authors did not propose specific operations,
such as splitting or merging operations. In addition, they did
not provide any performance evaluations. Compared to their
approach, AvaTar presents a complete design, and its efficacy
was validated through extensive experiments conducted on
commercial cloud applications.

Several studies have addressed the issues of archiving
systems used for storage purposes [8], [11], [21], [28]
and the archiving method for several domains [14], [27].
Y. Diao et al. suggested StonesDB which is the database
for archiving the data from a sensor network on the
flash-based storage device [8]. Their main goal is to provide
energy-efficient data storage in a specific environment that
has a hierarchical node structure. T. F. Gosnell suggested a
secure data archiving system with various functionality for
management such as deleting the expired information with-
out leakage or falsification [11]. R. Ohran et al. suggested
a method for archiving and mirroring mass storage. Their
main idea is the careful synchronization of the two mass
storage to preserve the data integrity [21]. T. Yang et al.
suggested DEBAR, the backup and archiving system using
the deduplication [28]. The goal of DEBAR is to present
a space-efficient archiving system while providing a scal-
able performance. V. Kobla et al. suggested several features
including a extraction, key-frame indexing, and retrieval for
a compressed video storage system [14]. J.M. Vau et al. sug-
gested a communication technique for the multimedia mes-
sages between two servers [27]. They focused on avoiding
data loss while transferring.

However, in terms of feasibility, previous approaches have
commonly suffered from a significantly poor performance
of the user-level archiving and extraction. In this regard,
AvaTar provides a differentiated archiving and extraction
performance using a zero-copy technique.

1ll. DESIGN

In this section, we present the design of AvaTar. First,
we describe the goals and main ideas required to satisfy
them. Second, we illustrate the overall architecture and main
components of AvaTar, including the zero-copy file merging
and splitting techniques, which are the key mechanisms.

A. GOALS AND MAIN IDEAS

The primary goal of AvaTar is providing an extremely fast and
efficient archiving system. The root cause of a slow archiv-
ing is the numerous data copies required in both memory

VOLUME 8, 2020

and storage devices. Data copying can be completely elimi-
nated through new kernel-level operations, namely, zero-copy
merging and splitting. Instead of copying identical data from
the source files to the destination file, the operations relo-
cate the indexes of the data blocks from the source i-nodes
to the destination i-node. The manipulation of i-nodes can be
achieved extremely quickly in the kernel memory and does
not involve any data copies. This also reduces the storage
space considerably. The AvaTar file system (AvaTar-FS) is
a component of AvaTar that provides the zero-copy opera-
tions. We describe such operations in detail when we discuss
AvaTar-FS.

Another goal of AvaTar is providing compatibility with
existing systems that do not use AvaTar-FS. AvaTar-FS intro-
duces new system calls, that requires modifications to the
existing kernel. Despite the several advantages of introducing
new system calls, it is impractical to assume that all existing
cloud nodes adopt AvaTar-FS. Fortunately, we do not this
assumption at least for the extraction. To provide the benefit
of a zero-copy extraction even in a system without AvaTar-FS,
we define an archived file format that is compatible with
a conventional file system image. For example, if AvaTar
generates an ISO 9660 image, which is widely used and
equipped in several different operating systems (OSs), we can
mount the image and easily access the files without data
copies. We call this proposed archived file format as an
AvaTar image, which we will describe in further detail in
following subsection III-C.

AvaTar Agent

Source files AvaTar image

Archivi =
Extracting
User Merging uSplitting

Source i-nodes Merged i-node

Kernel (Zero-copy for merging and splitting)

FIGURE 1. AvaTar architecture.

B. ARCHITECTURE

As shown in Figure 1, AvaTar consists of three components,
namely AvaTar image, AvaTar file system (AvaTar-FS),
and AvaTar agent. AvaTar image is a format for archived
files. AvaTar-FS provides the zero-copy operations, and
AvaTar agent is a user-level application that directly utilises
AvaTar-FS for file archiving and extraction. These compo-
nents are described in detail in the following subsections.

C. AvaTar IMAGE
AvaTar image is a file format for archival and extraction.
A detailed file format is not specified in our design, except

59317

IEEE Access

H. Park et al.: AvaTar: Zero-Copy Archiving With New Kernel-Level Operations

that the format should comply with that of conventional file
systems. The benefit of using a mountable image format is
that the image file can be integrated as a part of the existing
file system, and thus does not inherently require data copies,
which is a bottleneck of a user-level splitting operation. The
mounting of the file system is simply achieved by reading the
file system’s metadata into the in-memory data structures of
OS kernel. Subsequently, the files in the AvaTar image can
be directly accessed through a conventional file system inter-
face. Although mounting a file system requires more system
resources than a kernel-level split operation, such resources
are still extremely small and can be applied in a shorter time
than data copying. Thus, a system without AvaTar-FS can also
obtain the benefit of a zero-copy extraction.

In this paper, AvaTar image is formatted as a GNU Tar,
which is a widely used file archiving format owing to its
simple image formatting and its ability to be mounted as a
file system using open-source software such as Ratarmount,
Archivemount, and Tarindexer [1], [4], [5]. We only modify
the block size of the Tar format from 512 B to 4 KB because
512 B is smaller than a storage block size, and is incom-
patible with conventional file systems. Note that an AvaTar
image can comply with any other file system formats without
any modification to the current design because there are no
restrictions regarding the AvaTar image format. Moreover,
AvaTar image works well even it is stored in not-extent based
file system such as Ext2. Because the mount system does
not rely on the file system containing the AvaTar image file,
the data block management method of file system does not
related with the behavior of AvaTar.

D. AvaTar FILE SYSTEM

AvaTar-FS is a kernel-level component providing zero-copy
merging and splitting operations. In this study, AvaTar-FS
is based on an extent-based file system and implemented
on Ext4-FS. We first describe its interfaces and behaviours,
followed by an explanation regarding the internal technique
used in its operations. '

1) MERGE AND SPLIT: NEW FILE OPERATION INTERFACES

The operations are provided through new system calls,
i.e. merge() and split(). A merge() operation takes two argu-
ments as input, namely the descriptors of the destination
and the source files. Subsequently, the operation merges a
source file into the tail of the destination file. Such merging
is achieved by relocating the data blocks from the source file
to the destination file. To merge several files into a single
AvaTar image, a user application should invoke the merge()
system call several times. For each merge call, the user puts

1our prior work presents the main mechanism of zero-copy operations
in [22]. As our prior work was published in a Korean domestic journal,
we introduce its detailed mechanism in this section. The prior work pro-
vides the prototype of the kernel-level splitting and merging operations
only, even its interfaces and behaviors are different from AvaTar-FS. This
paper suggests a whole new system to provide the archiving and extraction
functionalities based on primitive operations.

59318

the merging source file name such that the file is attached after
the same destination file. As a result of the merging, the file
offset of the destination file is moved to the end of the file, and
the source file is removed to protect the file system integrity
from multiple allocations of a single block.

The split() operation takes three arguments as input,
namely the descriptors of an AvaTar image, a file name to
be created, and the length of the split. Initially, an empty file
is created with the file name. The AvaTar image is then split
into two parts: the first part is from the beginning to the split
length, and the second part is the rest of the AvaTar image.
The data blocks belonging to the first part are relocated to a
new file, and the other data blocks remain in the AvaTar file.
As a result of the splitting, the AvaTar file is decreased in
size and the offset is moved to the beginning of the file. The
size of the created file is set to the third argument, the length
of the split. Similar to a merge() operation, the split() oper-
ations should be repeatedly called to split every file in the
AvaTar image. Note that these two operations do not con-
sider the metadata of the original files for archiving, such as
their names, lengths, or timestamps. The metadata should be
maintained by the user application applying the operations.
We provide an example of a user application for the archiving
and extraction, an AvaTar agent, which demonstrates how to
use the operations while maintaining the metadata.

2) ZERO-COPY OPERATIONS: ENABLING TECHNIQUE

The enabling technique for a merge() and split() is applying
zero-copy operations, which means merging and splitting the
files without data copying. To realise zero-copy operations,
AvaTar-FS relocates the allocated blocks from the source files
to a destination file. When we merge two files, for example,
we detach all of the allocated blocks from the i-node of the
source file. The blocks are then attached to the i-node of the
destination file at the end of the file. Although the concept of
the block relocation technique is simple, its implementation
depends on the block management scheme of the file system
applied. In this paper, we present a block-relocation technique
for an extent-based file system, Ext4.

Figure 2(a) shows example block relocations for a merge()
operation. A user application first creates the metadata block
of file #1, and then calls a merge() operation for merging file
#1 to the AvaTar image. AvaTar-FS traverses the extent tree of
file #1 and detaches the first extent from the tree. The extent
is then attached after the metadata block, which is also an
extent. Because the metadata extent and the attaching extent
are physically adjacent, they are merged into a single extent.
Another metadata block for file #2 is then allocated, and is
also merged into the previous extent for the same reason.
Finally, the extents of file #2 are relocated to the AvaTar
image.

Figure 2(b) shows an example of block relocations for a
split() operation. In the figure, the AvaTar image consists
of 3 extents and 11 blocks including two metadata blocks.
We split the AvaTar image into four files. First, the very
first block should be split after the metadata block is read

VOLUME 8, 2020

H. Park et al.: AvaTar: Zero-Copy Archiving With New Kernel-Level Operations

IEEE Access

file #1 file #2 AvaTar image
extent #1 (2:4) extent #1 (14:2) #2 (20:3) extent #1 (10:6) #2 (20:2) #3 (32:3
203 (4|5| [14)i5] |ol21f22 |10|11|12|13|14|15| |20|21| |32 33|34
\ \ So Se N N / ¥4 AN \ D metadata blOCk
\ o S 4 PR ' Ddata block
1]2(3]4(s56 1415] [o[21[22 11]12[13(14 20p1| |32[33[34
AvaTar image with three extents file#l file #2

(a) merge() operation

(b) split() operation

FIGURE 2. Example of block relocations for zero-copy merging (a) and splitting (b).

by an extraction application. The file containing the meta-
data block is removed immediately after the splitting. The
next four blocks are then split and relocated to file #I,
which is newly created by AvaTar-FS. In this case, the extent
should be divided into two extents, one with four data blocks
and another with one remaining block. The user application
then reads the metadata for the next file in block #15 and
calls a split() to remove the block. The metadata block
will be removed as same as the metadata block for file #1.
Consequently, the AvaTar image only contains two extents:
#2 (20:2) and #3 (32:3), which are data blocks of file #2. Thus,
the user application changes the AvaTar image as file #2 by
manipulating the metadata.

Based on our experience with the implementation of the
technique used in the Ext4 file system, the block relocation
technique can be easily implemented in a conventional file
system because such a system already has numerous services
and functions to manipulate an extent or a list of blocks.
Thus, we believe that the merge() and split() operations can
be supported by several file systems within an extremely
short timeframe if the benefits of such operations are widely
accepted.

E. AvaTar AGENT

AvaTar agent is a user-level component that is responsible
for the archiving and extraction of an AvaTar image using
merge() and split() operations. AvaTar agent has the same
usage as the other archive utilities such as GNU Tar. As the
only difference between AvaTar agent and other utilities,
AvaTar agent uses AvaTar-FS for merge() and split(), whereas
the others use a conventional read() and write().

For merging, AvaTar agent takes the target file name and
the source file names as input. The agent then creates the
metadata block and calls the merge() operation for each file.
Regarding the metadata block, AvaTar agent stores the meta-
data, such as the name, size, timestamps, and access controls
in the original file system, which has the same size as the
data block. One metadata block is required for a source file.
The data blocks of the corresponding source file are then
relocated into the AvaTar image using a merge() operation
of the AvaTar file system.

By splitting the image file, AvaTar agent can extract the
source files from an AvaTar image. Firstly, AvaTar agent

VOLUME 8, 2020

reads the metadata block and creates a source file according
to the metadata. The agent then removes the metadata block
from the AvaTar image using a split() operation. The metadata
block is relocated into the temporary file, which the agent
immediately removes. Next, the agent calls a split() operation
again to relocate the data blocks corresponding to the source
file size from the AvaTar image to the created file. As a result,
the AvaTar file is decreased in size and the file offset points
out the next metadata block. This procedure is repeated to
split every file in the AvaTar image.

If a system does not have the AvaTar file system, and
the AvaTar agent cannot use a zero-copy split, the splitting
can be conducted using a mounting operation. Because an
AvaTar image is formatted as a conventional file system
image, it can be mounted without additional supports from
the OS kernel. As described in Section III-C, the current
AvaTar image is formatted as a modified Tar, which is not
a standard file system format. Thus, AvaTar agent provides a
mount functionality for a modified Tar file based on the file
system in user space (FUSE). Because AvaTar agent is a user
application, the installation overhead is relatively small. As
a consequence, AvaTar can provide the benefit of zero-copy
splitting for a system with or without AvaTar-FS.

IV. EVALUATION

In this section, we evaluate the performance of the AvaTar
archiving system. For the experiments, we assume that a user
composes and extracts an archive file from/to multiple files
in the cloud storage.

First, we present the performance of the AvaTar file system,
which takes advantage of a zero-copy merge and the split
files. Second, comparing a traditional multiple files transfer
against AvaTar, we show the practical benefits under the
cloud archiving scenario.

A. EVALUATION METHOD

We implemented AvaTar agent and AvaTar-FS on Linux.
The current AvaTar-FS runs on Linux kernel 4.4.0. In addi-
tion, we implemented the AvaTar mount utility based on a
conventional user-level Tar-mount utility [4]. Because the
mount utility is based on FUSE [2], it can be executed without
an installation or modification of the system.

59319

IEEE Access

H. Park et al.: AvaTar: Zero-Copy Archiving With New Kernel-Level Operations

To evaluate AvaTar, we first generate the source files
with random data extracted from /dev/urandom. AvaTar then
generates an AvaTar image, which is an archive file, from
which AvaTar extracts the original files. To demonstrate the
performance of a zero-copy merge and split, AvaTar agent
uses either AvaTar-FS or a normal ext4 file system. Finally,
we validate the consistency of the binary data in the target
file by comparing the splitting results produced by Tar and
AvaTar using the ‘diff” utility.

B. PERFORMANCE OF AvaTar

This section presents the performance of AvaTar, comparing
it with a traditional archiving solution, GNU Tar, on ext4-FS.
To present the performance of AvaTar-FS, we conduct a
merging and splitting of the files over a cloud storage. For
the cloud storage, we use AWS, which consists of an instance
type of t3a.medium for the Seoul region, two vCPUs, and
4 GB of memory. The target storage consists of 10 GB of
a general purpose SSD (gp2) volume of Amazon’s Elas-
tic Block Store (EBS). During the experiments, the virtual
machine (VM) was sustained in I/O burst mode, providing a
maximum bandwidth of 3,000 IOPS or a rate of 250 MB/s.
After 30 min of burst mode, the maximum I/O bandwidth was
limited to 1/30 that of burst mode.> To obtain a consistent
performance, we renewed the volume after a single run of
all experiments such that the VM continued running in burst
mode. For all experiments, we measured the processing time
for five different runs and herein present the average only.
The variations were sufficiently small to ignore.

We present the performance of archival and extraction
with AvaTar, varying the number of files and their size. The
labels in the graph, ‘Tar: archive’ and “Tar: extract’ indicate
the performance results of archiving several source files and
extraction an archive file using GNU Tar, respectively. Sim-
ilarly, ‘AvaTar: archive’ and ‘AvaTar: extract’ indicate the
archiving and extraction performances when using AvaTar.
’AvaTar: mount’ indicates the results using the AvaTar-mount
utility applied for an extraction of the AvaTar-image instead
of an extraction with AvaTar.

In addition, we present the impact of a page cache, which is
generally used to mitigate the slow file I/O performance when
accessing a physical storage device. We measure the time of
the archiving and extraction operations for two cases: when
the target files are not cached and when they are. Usually,
we cannot expect that all source files for archiving will be
cached, or that the transferred archived file will be entirely
cached owing to its large size.

1) UNCACHED ARCHIVING AND EXTRACTION

First, Figure 3a shows the performance results of non-cached
file archiving for various file sizes, achieving a file archiv-
ing for 1,024 files with a change to the file size from
64 to 4.096 MB. In the figure, we can see that AvaTar shows

2https://docs.aws.amazon.com/AWSECZ/latest/UserGuide/ebs—volume—
types.html

59320

a much shorter and consistent processing time than that of
Tar. Both AvaTar and Tar show similar performance results
for small sized files of 64 MB. However, the performance
of Tar seriously decreases. Tar takes 63.71 s for extracting
an archive file of 4,096 MB. By contrast, AvaTar takes only
0.48 s for extraction, which is only 0.75 % the processing
time of Tar. Note that the performance of Tar degrades with
the file size; however, AvaTar shows a consistent process-
ing time of approximately 0.49 s for extraction and 1.84 s
for archiving, regardless of the file size. AvaTar-mount also
shows an extremely low but consistent performance, with an
average speed of 1.03 s, but is twice that of the extraction
using AvaTar. We believe that AvaTar-mount is still signifi-
cantly useful when AvaTar-FS cannot be applied because its
mounting is still much faster than extraction using Tar.

Next, Figure 3b shows the performance results of
non-cached file archiving for fixed-size data. We conducted
file archiving operations for 1 GB of data when changing
the number of files from 64 to 4,096. In the figure, AvaTar
consistently shows a better performance than Tar. In this
experiment, Tar shows a relatively consistent processing time
of approximately 16 s. However, the processing time of
AvaTar increases with the number of files because AvaTar
should manipulate the metadata of each file, and the num-
ber of system calls for zero-copy merging and splitting also
increases. However, the worst result with AvaTar was 6.54 s in
the case of archiving 4,096 files, which is only 39.49% of the
result from Tar archiving. In the graph, the performance gap
is at maximum 16.13 s when archiving 64 files. In this case,
AvaTar consumes only 0.3 % of the Tar processing time. The
results of AvaTar-mount show a similar trend as the results
of AvaTar, but are slightly slower than the extraction with
AvaTar.

2) CACHED ARCHIVING AND EXTRACTION

To present the performance of AvaTar and Tar using
memory-cached data, we warm up the page cache by reading
files before supplying the actual archiving and extraction
workload. We then conduct the same experiments using the
non-cached configurations. Figure 4 shows the performance
results of cached file archiving for a) a fixed number of files
and b) a fixed data size. When we compare Figures 4a(a) and
3b(a), Tar completes the archiving and extraction twice as fast
when the data are cached except for data sizes of 2 and 4 GB.
Because the size of the system memory is 4 GB, the 2 and
4 GB data cannot be fully cached. Note that Tar requires
double the size of the cache memory because the data will
be copied for writing to a new file. Thus, Tar incurs a cache
wiping or pollution problem with necessarily duplicated data.
By contrast, AvaTar show similar results regardless of the
cached data because AvaTar does not deal with the data.

In Figure 3b(b), the results of Tar are exactly half the
results shown in Figure 4a(b) because the data sizes are
all 1 GB, and the data can be fully loaded into the 4 GB
system memory. AvaTar still shows similar results as in the
previous experiment. In our configurations, however, AvaTar

VOLUME 8, 2020

H. Park et al.: AvaTar: Zero-Copy Archiving With New Kernel-Level Operations

IEEE Access

Processing time (seconds)
0 10 20 30 40 50 60 70

Tar: extract

e 63,7 1

Tar: archive

ey SRR DT | 635’7

B64 MB

3 Y ocoocoocoo
CEmme e hobninb e s
o B BN ER NoXo o INoJIe o] S RN SN VARV

O AN — oW

2128 MB

m256 MB

@512 MB

01024 MB

[@2048 MB

234096 MB

AvaTar: mount AvaTar: archive AvaTar: extract

0O~
[EISIeN-N Sy

(a) Uncached file archiving performance for 1,024 files.

FIGURE 3. Performance results of uncached file archiving.

is still faster than Tar for all cases applied. AvaTar extracts the
64 files within 0.043 s which is only 0.52% of the result of Tar.
For the worst case, AvaTar archives the 4,096 files in 6.46 s,
which is 75.39% the result of Tar.

An interesting result occurred with AvaTar-mount. The
mount is achieved within 0.48 s for 4,096 files, which
is 16.32% of the AvaTar extraction. However, we can-
not conclude that AvaTar-mount will be more helpful than
AvaTar-extraction because the data are not fully cached when
the data size is extremely large or when the other workloads
continuously compete for the cache.

TABLE 1. Memory footprint for 1,024 file archiving in MB.

Data size (MB) [64 128 256 512 1024 2048 4096
Tar-extract 136 265 524 1045 2085 3696 3693
Tar-archive 134 264 523 1045 2085 3695 3687
AvaTar-extract 23 23 23 27 29 25 29
AvaTar-archive 5 5 5 5 5 5 9

Table 1 compares the memory footprint when we use
AvaTar and Tar. The measured footprint obtained when we
conduct the archiving and extraction of 1,024 non-cached
files while varying the size of the total working set. As the
result indicate, the memory footprint of AvaTar is extremely
small and almost constant. Owing to the zero-copy merge
and split operations, AvaTar-FS only touches the metadata,
instead of caching the user data.

VOLUME 8, 2020

Processing time (seconds)

Tar: extract

Tar: archive

i i
b5 . 1 1
E lo : |
ﬁ 3 1 1
5 [033 ' i B 64 files
= [0.66] 1
s E31.27 ' \
< R 2.99 | ! B 128 files
2 jois ! !
£ B025 ! ! 0256 files
g [Do44 ! -
- [20.83 ! !
s E3 162 ! ! 0512 files
S [T 3.271 !
< EEETTmmmmmmem] 6.54 .
N , ' 01024 files
2 @032 1 1
Z 023 ' |
£ [@0.53 | 1 02048 files
5 [0386 ! !
= =1 1.28 1 !
S =223 ! 84096 files
< T 425 !

(b) Uncached file archiving performance for 1 GB of data.

By contrast, Tar consumes as much memory as the data size
utilised. As the working set increases, Tar consumes more
memory bandwidth and page cache; thus, memory-intensive
cloud applications and services may be negatively affected.
Concisely, AvaTar is more friendly to other cloud services
because it minimises the page cache pollution.

In summary, the first experiments demonstrate that AvaTar
archiving with zero copy operations provides a much better
performance than a traditional user-level archiving system as
expected. In our experiments, the best archiving time with
AvaTar is only 0.48 s, whereas traditional archiving with Tar
is 63.71 s. That shows AvaTar is 132 times faster than the
traditional archiving system. In addition, the results show that
the performance of AvaTar is not related with the data size,
whereas the performance of a user-level archiving system
is dependent upon this size. Although the performance of
AvaTar is correlated with the number of files, AvaTar pro-
vides a much better performance than the user-level archiving
system when dealing with a large number of files.

C. UPLOADING TO CLOUD STORAGE

In this section, we consider a practical use case of AvaTar,
namely uploading data to cloud storage. Cloud storage is a
popular service that provides an object-based storage, such
as Amazon S3, Google Drive, OneDrive, or Dropbox. Such
a service provides not only file storage but also several

59321

IEEE Access

H. Park et al.: AvaTar: Zero-Copy Archiving With New Kernel-Level Operations

Processing time (seconds)

Processing time (seconds)

0 10 20 30 40 50 60 70 0 5 10 15 20
025 1 i i ' ' i i
45 5 0.84 1 1 1 1 1 1 S 1
E [m226 1 : | : : : g |
5 [ZA 4.18) ' - ' ' i 5 H
5 [832 ! ! - - [5 '
g 1 1 1 g I
1 1 1 1
DTN e 63.97 1
1 1 1
1 1 1
= ! 2 !
5 i i 5 :
= 1 1 5 1
i . ' L X
ﬁ 1 1 g 1
B0 : o0 200 TR 63.99) !
1 1 1 1 1 1 1
b5 042 1 1 1 1 1 1 b5 1
£ Jo4 | i i i ' ‘ £ i
5 0043 1 1 | 5
g poss | , H i 864 MB 5 @64 files
= [o0.61 1 1 1 | &
g post | ' X ' g
< f#0.61 ! ! ! ! 128 MB < 128 files
g B Lo | i i ‘ g
E B 189 ' i i 0256 MB = 0256 files
= [@190 | ! ! 1 2
= 1 1 1 I <
- (@183 1 1 1 | e
S @176) ! ! ' o512 MB & o512 files
S B : : : E
3 1.82
< F H H H 1 01024 MB < 01024 files
] 0.23 1 1 | | =
g Jo20 | i i ‘ 3
g 1020] I I @2048 MB g 02048 files
= 10.19 ! ! ! ! !
E Yoo | i i 2
g Jou1o | ! ! ' 84096 MB s B4096 files
< 1029 i | i <

(a) Cached file archiving performance for 1,024 files.

FIGURE 4. Performance results of cached file archiving.

functionalities for the file objects, such as sharing over the
Internet, versioning, indexing, and searching. Users upload
their files onto the cloud storage, and can access the files
whenever and wherever they want. The upload client uploads
the requested files one by one using the HTTP PUT method.
The uploading with AvaTar is more efficient because AvaTar
agent archives the source files into a single file, and then sends
the file under the maximum network bandwidth. After the
transmission, AvaTar agent should extract the file, and then
register the extracted files using the PUT method locally.

To demonstrate the efficiency of AvaTar, we conducted a
practical experiment under four uploading scenarios: upload-
ing with a traditional method, uploading a Tar-archived
file, uploading an AvaTar image, and uploading an AvaTar
image onto a server without AvaTar-FS. In the last sce-
nario, the AvaTar image should be mounted using AvaTar
agent, which is compatible with another file system. For
cloud storage, we generate an AWS EC2 instance using a
t3a.medium type within the Seoul region. We then build the
cloud storage service on the instance using ownCloud, which
is an open-source based object storage system that provides a
commercial-level performance [3]. For the client, we use an
on-premise system located in Jeonju, which is approximately
200 km from the AWS Seoul region. We sent files from
the client system to the ownCloud server. Thus, our exper-
imental environment reflects real traffic over the Internet.
To present the archiving performance for small files, we fix

59322

(b) Cached file archiving performance for 1 GB of data.

the total amount of data to transmit to 1,024 MB, and observe
the performance by changing the number of files from
64 to 4,096.

The detailed procedures of the experiments are as fol-
lows: 1) A traditional upload: We upload each file to
the cloud storage server through the HTTP PUT method.
To simply implement the eventual synchronisation proto-
col in cloud storage, we sequentially send the target files
one by one. 2) Tar-archived upload: The files are archived
using Tar in a client system, and the archived file is sent
to the ownCloud server through the secure copy protocol
(SCP), which is a TCP-based file transfer p1r0toc01.3 We then
extract the file using Tar on the server, and register the files
using HTTP PUT. 3) AvaTar-image upload: This is similar
to a Tar-archived upload but uses AvaTar instead of Tar.
4) AvaTar-image upload and mount: This is the same as an
AvaTar image upload, but only uses the AvaTar mount utility,
instead of a file extraction with AvaTar.

The overall results are shown in Figure 5, which indicates
the elapsed time for each upload scenario for cloud stor-
age. For every archiving scenario, the size of the archived
file is approximately 1,024 MB and the sending of the file
through SCP takes 23.88 s. As shown in Figure 5, the shortest

3SCP is outdated and the rsync and sftp are recommended as its alterna-
tives (https://www.openssh.com/txt/release-8.0). We have used SCP because
it is well-known and easy-to-use. Note that any other method or protocol can
be used for transferring AvaTar image.

VOLUME 8, 2020

H. Park et al.: AvaTar: Zero-Copy Archiving With New Kernel-Level Operations

IEEE Access

[
f—rn — — —— — — TS R RN TS TS TS TS T IRV 11005.57
4096 750.32
e e e 1 728.34
8
he 3 195.27
e 7.60
E 512 6
£
z.
256 BTraditional upload
M Tar-archived upload
B AvaTar-image upload
B AvaTar-image upload and mount
0 100 200 300 400 500 600 700 800 900 1000 1100

Elapsed time (seconds)

FIGURE 5. Performance results of four uploading scenarios.

uploading time is 39.25 s when we upload 64 files using a
traditional upload. In this case, the size of each file is 16 MB,
which is sufficiently large to fully utilise the network band-
width. Although not presented in the graph, the registration
of 64 files, after the reception of the files, takes 26.82 s. When
uploading 128 files, as shown in Figure 5, the traditional
upload takes 59.13 s, which is slightly shorter than that of
an AvaTar-image upload. However, Tar-archived uploading
takes 92.59 s, which is approximately 56% longer than a
traditional upload.

Figure 5 shows the clear benefit of using AvaTar as the
number of files increases. For 256 files, as shown in the
figure, the AvaTar-image upload takes 82.07 s, which is
78.37% that of a traditional upload, at 104.72 s. At the same
time, the Tar-archived upload is still slower than a traditional
upload by approximately 8.72%.

As shown in Figure 5, an AvaTar-image upload achieves
the best performance when the number of files is larger than
256. In the case of 1,024 files, the result with AvaTar is
211.49 s, which is only 60.55% of the result of a tradi-
tional upload at 349.28 s. The result is impressive because
it includes all Internet traffic, and AvaTar achieves 1.65 times
faster performance than traditional cloud files transfer.

Even with the AvaTar-mount utility, the result was 60.73%
that of a traditional upload. In this case, the extraction and
mounting of an AvaTar-image takes 0.66 and 1.28 s, respec-
tively. Although the Tar-archived upload is also faster than
that of the traditional method, the result of the AvaTar-image
upload is 12.55% faster than the that of the former.

VOLUME 8, 2020

We observed similar results when uploading 2,048 and
4,096 files, in which only the registration time is increased.
By contrast, the traditional upload shows that the uploading
time increases with the number of files owing to an inefficient
use of network bandwidth.

One reason for the excellent performance of an AvaTar
upload is that AvaTar mitigates the inefficiency of tradi-
tional HTTP-based file transfer methods. In a traditional
file transfer, every file transfer uses a separate TCP ses-
sion. By contrast, AvaTar makes a single session, and
transfers all files as an archive, maximising the network
bandwidth.

The results of this experiment can be summarised as fol-
lows: 1) sending a large archived file is better than sending
several small files, as expected; 2) AvaTar decreases the
archiving and extraction times significantly, and thus its over-
all result is better than that of the existing user-level archive
system; and 3) even when the new AvaTar-FS is unavail-
able, the benefit of AvaTar still remains with the user-level
AvaTar-mount utility.

It should be noted that our contribution can be increased if
an AvaTar-image upload is implemented inside the cloud stor-
age system. In our experiment, the final registration proce-
dure in the cloud storage server copies the extracted files from
their original path to the data path of the cloud storage server,
which is an unnecessary data copying. If we can remove the
data copying from the cloud storage server, the benefit of
AvaTar will become even clearer than in the experimental
results presented herein.

59323

IEEE Access

H. Park et al.: AvaTar: Zero-Copy Archiving With New Kernel-Level Operations

V. DISCUSSION

A. CONSIDERATION FOR COMPRESSION

One considerable design choice is the compression. AvaTar
does not include a component explicitly for compression
because compression is controversial in terms of its gain and
loss. Compression requires additional reading and writing
for the storage device, particularly in the case of a large file
that cannot be stored in the main memory. It also requires
a large amount of computational power, and cannot guar-
antee a reduction of the data size for multimedia files that
have already been highly compressed. Thus, compression
remains a choice of users because there is no restriction on
the compression for an AvaTar image, which is simply a
regular file. Online compression techniques that compress
the data stream for a transfer through a network are already
provided, and such techniques can be used on AvaTar without
any conflict [9], [15].

B. CONSIDERATION FOR ORIGINAL FILES

The other issue is how we manage the original files after
merge() and split() operation. As the extents are moved to
AvaTar image from the original files, the original files will
become unavailable. To prevent this, we can just copy the
extents instead of moving them. As a result, original files and
AvaTar image share the data blocks. Such multiple allocations
of data blocks are not allowed in conventional file systems.
However, the concept that several files share the data blocks
are already used by the hard link. If we provide the proper
policy to manage the sharing of data blocks in AvaTar FS,
the original files and AvaTar image can exist together without
any problem. Because it requires a more intensive discussion
about the related file system semantics and behaviors, we do
not address the issue in this paper.

VI. CONCLUSION

This paper presented AvaTar, a novel kernel-level archiving
system. Using zero-copy merging and splitting primitives,
AvaTar significantly improves the performance of archiving
and extraction. We implemented AvaTar on a recent version
of Linux, and evaluated it against the conventional archiving
tool GNU Tar. Further, we presented the practical perfor-
mance of AvaTar when applied to the commercial cloud
storage service AWS. Our results show that AvaTar accel-
erates the performance of traditional file archiving by up
to 132 times, and shortens the file upload time to commer-
cial cloud storage by up to 60.55%, when compared with
a traditional method. In addition, the memory footprint of
AvaTar is extremely small and mostly constant regardless of
the archiving data size. In addition to performance improve-
ments, AvaTar also supports compatible file archiving using
AvaTar images, which are easily mountable on conventional
file systems. We believe that AvaTar is beneficial for both
cloud providers and users; cloud providers can reduce their
overall provisioning costs, and cloud users can receive an
improved quality of service.

59324

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers of
the IEEE Access for their valuable comments and suggestions
for improving the quality of this article.

REFERENCES

[1] Archive Mount: A Fuse Filesystem For Mounting Archives in Formats
Supported by Libarchive. Accessed: Mar. 24, 2020. [Online]. Available:
https://github.com/cybernoid/archivemount/

[2] Linux Fuse (Filesystem in Userspace). Accessed: Mar. 24, 2020. [Online].
Available: https://github.com/libfuse/libfuse/

[3]1 Owncloud: Open-Source Personal Cloud Collaboration Platform.
Accessed: Mar. 24, 2020. [Online]. Available: https://owncloud.org/

[4] Ratar: Random Access Read-Only Tar Mount. Accessed: Mar. 24, 2020.
[Online]. Available: https://github.com/mxmInkn/ratarmount/

[5] Tarindexer: Python Module For Indexing Tar Files For Fast Access.
Accessed: Mar. 24, 2020. [Online]. Available: https://github.com/devsnd/
tarindexer

[6] I. Bermudez, S. Traverso, M. Mellia, and M. Munafo, “Exploring the
cloud from passive measurements: The Amazon AWS case,” in Proc. IEEE
INFOCOM, Apr. 2013, pp. 230-234.

[7]1 R.Card, “Design and implementation of the second extended filesystem,”
in Proc. 1st Dutch Int. Symp. Linux, 1995.
[8] Y. Diao, D. Ganesan, G. Mathur, and P. J. Shenoy, “Rethinking data

management for storage-centric sensor networks,” in Proc. CIDR, vol. 7,
2007, pp. 22-31.

[9] F. Fusco, M.P. Stoecklin, and M. Vlachos, “NET-FLi: On-the-fly compres-
sion, archiving and indexing of streaming network traffic,” Proc. VLDB
Endowment, vol. 3, nos. 1-2, pp. 1382-1393, Sep. 2010.

[10] P. B. Galvin, G. Gagne, and A. Silberschatz, Operating System Concepts.
Hoboken, NJ, USA: Wiley, 2018.

[11] T. F. Gosnell, “Data archiving system,” U.S. Patent 7801871 B2,
Sep. 21 2010.

[12] S. W. Jung, S. Young Ko, Y. J. Nam, and D.-W. Seo, “Block link file
system supporting fast editing/writing for large-sized multimedia files in
multimedia devices,” in Proc. IEEE Int. Conf. Consum. Electron. (ICCE),
Jan. 2012, pp. 457-458.

[13] Y. Kim, Y. Woo, H. Lee, and E. Seo, “Design and implementation of
split/merge operations for efficient multimedia file manipulation,” Com-
put. Standards Interfaces, vol. 48, pp. 80-89, Nov. 2016.

[14] V. Kobla, D. S. Doermann, and K.-I. Lin, “Archiving, indexing, and
retrieval of video in the compressed domain,” Proc. SPIE, vol. 2916,
pp. 78-89, Nov. 1996.

[15] C. Krintz and S. Sucu, “Adaptive on-the-fly compression,” IEEE Trans.
Parallel Distrib. Syst., vol. 17, no. 1, pp. 15-24, Jan. 2006.

[16] G.Lee, H. Ko, S. Pack, V. Pacifici, and G. Dan, “Fog-assisted aggregated
synchronization scheme for mobile cloud storage applications,” IEEE
Access, vol. 7, pp. 56852-56863, 2019.

[17] S. Li, Q. Zhang, Z. Yang, and Y. Dai, “Understanding and surpassing
dropbox: Efficient incremental synchronization in cloud storage services,”
in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2014, pp. 1-7.

[18] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and L. Vivier,
“The new Ext4 filesystem: Current status and future plans,” in Proc. Linux
Symp., vol. 2, 2007, pp. 21-33.

[19] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry, “A fast file
system for UNIX,” ACM Trans. Comput. Syst. (TOCS), vol. 2, no. 3,
pp. 181-197, Aug. 1984.

[20] NTFS Technical Reference: How NTFS Works, Microsoft, Washington,
DC, USA, 2009.

[21] R. S. Ohran, “Method and system for mirroring and archiving mass
storage,” U.S. Patent 6 397 307 B2, May 28 2002.

[22] H. Park, J.-H. Jang, and J. Lee, “Design and implementation of Kernel-
level split and merge operations for efficient file transfer in cyber-physical
system,” IEMEK J. Embedded Syst. Appl., vol. 14, no. 5, pp. 249-258,
Oct. 2019.

[23] V. Persico, A. Montieri, and A. Pescape, “On the network performance
of Amazon S3 cloud-storage service,” in Proc. 5th IEEE Int. Conf. Cloud
Netw. (Cloudnet), Oct. 2016, pp. 113-118.

[24] O.Rodeh,J. Bacik, and C. Mason, “BTRFS: The Linux B-tree filesystem,”
ACM Trans. Storage, vol. 9, no. 3, pp. 1-32, Aug. 2013.

VOLUME 8, 2020

H. Park et al.: AvaTar: Zero-Copy Archiving With New Kernel-Level Operations

IEEE Access

[25]

[26]
[27]

[28]

[29]

A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and G. Peck,
“Scalability in the XFS file system,” in Proc. USENIX Annu. Tech. Conf.,
vol. 15, 1996, pp. 1-15.

S. Tweedie, “Ext3, journaling filesystem,” in Proc. Ottawa Linux Symp.,
2000, pp. 24-29.

J.-M. Vau, J. Moelle, O. Furon, and O. Rigault, “Method for archiving
multimedia messages,” U.S. Patent 10528 981 B1, Jul. 27 2006.

T. Yang, H. Jiang, D. Feng, Z. Niu, K. Zhou, and Y. Wan, “DEBAR:
A scalable high-performance de-duplication storage system for backup and
archiving,” in Proc. IEEE Int. Symp. Parallel Distrib. Process. (IPDPS),
2010, pp. 1-12.

Y. Yoo, S. Sopharath, Y. Woo, J. Kim, and Y. Ko, “Design and implemen-
tation of the metadata modification concept minimizing file modification,”
in Proc. TENCON-IEEE Region 10th Conf., Oct. 2018, pp. 1499-1503.

HYUNCHAN PARK received the B.S., M.S., and
Ph.D. degrees in computer science from Korea
University, Seoul, South Korea. He was a Research
Professor with Korea University, from 2014 to
2016. He is currently an Assistant Professor with
the Division of Computer Science and Engineer-
ing, Jeonbuk National University. His current
research interests include storage systems, partic-
ularly with flash-based devices, as well as virtual-
ization and operating systems.

VOLUME 8, 2020

YOUNGPIL KIM (Member, IEEE) received the
B.S.,M.S., and Ph.D. degrees in computer science
and engineering from Korea University, Seoul,
South Korea, in 2002, 2004, and 2015, respec-
tively. He was appointed as a Research Professor
with the College of Informatics, Korea University.
In 2019, he joined the School of Computer Sci-
ence, Semyung University, Jecheon, South Korea,
where he is currently an Assistant Professor.
His research interests include system reliability,

the kernel architecture used in operating systems, cloud computing, and

system-level security.

d%h

SEEHWAN YOO (Member, IEEE) received the
B.S., M.S., and Ph.D. degrees in computer sci-
ence from Korea University, Seoul, South Korea,
in 2002, 2004, and 2013, respectively. From
2013 to 2014, he worked with the Software
Platform Lab, LG Electronics. He is currently
an Associate Professor with the Department of
Mobile Systems Engineering, Dankook Univer-
sity, Yongin, South Korea. His current research
interests include cloud computing systems, and

system security for mobile applications and services.

59325

	INTRODUCTION
	BACKGROUND AND RELATED WORK
	DATA BLOCK MANAGEMENT IN I-NODE
	RELATED WORK

	DESIGN
	GOALS AND MAIN IDEAS
	ARCHITECTURE
	AvaTar IMAGE
	AvaTar FILE SYSTEM
	MERGE AND SPLIT: NEW FILE OPERATION INTERFACES
	ZERO-COPY OPERATIONS: ENABLING TECHNIQUE

	AvaTar AGENT

	EVALUATION
	EVALUATION METHOD
	PERFORMANCE OF AvaTar
	UNCACHED ARCHIVING AND EXTRACTION
	CACHED ARCHIVING AND EXTRACTION

	UPLOADING TO CLOUD STORAGE

	DISCUSSION
	CONSIDERATION FOR COMPRESSION
	CONSIDERATION FOR ORIGINAL FILES

	CONCLUSION
	REFERENCES
	Biographies
	HYUNCHAN PARK
	YOUNGPIL KIM
	SEEHWAN YOO

