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ABSTRACT The time interval of the observational data changes irregularly because of the difference of
sensors’ sampling rate, the communication delay and the target leaving observation region of the sensor
sometimes. These problems of asynchronous observation data greatly reduce the tracking accuracy of the
multi-sensors system. Therefore, asynchronous data fusion system is more practical than synchronous data
fusion system, and worthier of study. By establishing an asynchronous track fusion model with irregular
time interval of observation data and combining with the Track Quality with Multiple Model (TQMM),
an asynchronous track fusion algorithm with information feedback is proposed, and the TQMM is used
for weight allocation to improve the performance of the asynchronous multi-sensor fusion system. The
simulation result shows that the algorithm has better tracking performance compared with other algorithms,
so that this kind of problem of track-to-track fusion for asynchronous sensors is solved effectively.

INDEX TERMS Asynchronous fusion, multi sensors, track fusion, track quality with multiple model.

I. INTRODUCTION
The technology multi-sensor fusion tracking [1], [2], which
applies the data fusion [3], [4] to the target tracking, solved
some tracking accuracy problems in many situations, and
has a broad application prospect and great scientific value.
Further, distributed data fusion algorithms are very important
for target detection based on multi-sensors networks. The
time interval of the observational data changes irregularly
because of the difference of sensors’ the communication
delay, sampling rate and the target leaving observation region
of the sensor sometimes, so, the synchronous observation data
is always in ideal condition. As we know, such problems of
asynchronous observational data from sensors greatly reduce
the tracking accuracy of the multi-sensors system. Therefore,
the problem of asynchronous data fusion ismore practical and
difficult than synchronous data fusion. Asynchronous track
fusion is often mainly divided into two categories. One is that
different kinds of detection sensors have different and fixed
sampling periods and the other one is the time interval of
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target information provided by detection sensors has no rule,
meaning detection sensors have no fixed sampling interval.
The first category can also be divided into two parts according
to the starting time of different sampling periods. In both
categories, asynchronous information frommulti- sensor sys-
tems can be synchronized by track pretreatment [5]− [7],
and then be tracked by traditional synchronous track fusion
system. However, these pretreatment process schemes will
cause some errors increasing and reduce the reliability of data
fusion system.

Therefore, some researchers proposed a series of asyn-
chronous track fusion methods, algorithms and systems.
These studies have made a good contribution to the research
of asynchronous fusion technology. Some asynchronous
fusion algorithms introduce some traditional data registration
methods to the fusion systems for realizing the synchroniza-
tion of asynchronous data before fusion process, such as the
interpolation, extrapolation, least squares method and so on.
Some fusion algorithms deal with asynchronous data on the
basis of its receiving time, then select a proper fusion method
for this asynchronous data fusion, such as asynchronous
fusion algorithms based on information matrix [8], [9],
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asynchronous track fusion algorithm under the principle
of minimum error covariance matrix trace [10]− [12],
time-varying bias estimation for asynchronous multi-sensor
multi-target tracking systems [13], distributed weighted
fusion estimators with random delays [14] and Step by Step
Prediction Fusion based on Asynchronous Multi-sensor Sys-
tem (SSPFA) [15], [16], etc. The SSPFA algorithm mainly
uses the multi-sensor’s measurement information in a data
fusion cycle to get the filtering estimation, to obtain the local
state estimation and the corresponding error covariance of
each sensor at the last moment of data fusion cycle. Then,
after the state prediction of fusion time, SSPFA operates the
order weighting of the sensor prediction information based
on the obtaining order of sensor predictive values and the
principle of minimum error covariance matrix. Finally, the
multi-sensor asynchronous fusion is achieved.

In addition, there are some researches on asynchronous
fusion algorithms, such as [17], it proposed a novel asyn-
chronous multi-sonar data integration approach, in which the
GaussianMixture Probability Hypothesis Density (GMPHD)
filter is used to filter clutter for local sonar sensor.
Lu K et al. develop an exact fusion algorithm to solve track-
to-track fusion problem [18], under the condition that at each
time step only parts of the sensors send their local estimation
tracks to the fusion center. Formulas are derived to obtain the
exact cross-covariances between the local tracks by taking
into consideration the impact of the potential feedback from
the fusion center. In [19], it proposes a time registration
method based on state extrapolation to solve data synchro-
nization problem in multi-target tracking. In [20], oriented
on asynchronous data in multi-sensor data fusion system, a
real-time fusion architecture is put forward, which is in unbi-
ased minimum variance sense. The proposed asynchronous
fusion algorithm can solve the measurements sequentially
that does not need to preset fusion periods for fusion center
to synchronize asynchronous data transmitted frommulti sen-
sors. In [21], a sequential processing simultaneous spatiotem-
poral bias and state estimation algorithm for asynchronous
multi-sensor system is proposed. The spatiotemporal bias
is combined with target state to obtain an augmented state
vector, and the augmented state model is formulated. For
asynchronous multi-sensor with known but different sam-
pling periods, a sequential processing method is proposed
to handle the multiple measurements. The relationship of
sensor measurements, target state and spatiotemporal bias
is analyzed, and the corresponding measurement model is
formulated. An algorithm is used to handle the nonlinear-
ity between the augmented measurement and state vectors,
is proposed to jointly estimate the spatiotemporal bias and
target state.

With these novel algorithms, the first kind of asynchronous
problem could be basically solved; while, the second problem
could not be solved well.

According to the filtering predictive thought of the SSPFA,
an algorithm named TFASP (Track - to - Track Fusion
for Asynchronous Multi-sensor based on Step by Step

Prediction) was proposed [16], [27]. By the local state esti-
mation of multi-sensor fusion, the algorithm predicts the
sampling values in a fusion cycle. After weight fusion of
the same sensor’s predictive value at fusion moment, this
algorithm regards the fusion value as sensor’s equivalent
observation information at data fusion moment and achieves
the global fusion of asynchronous multi-sensors by the step-
by-step filter fusion finally. As the input value of the step-by-
step filter data fusion, local sensor’s weight fusion decides
the tracking performance of the algorithm. However, deter-
mined by the observation precision and sensors’ prediction
error, the weight of local sensor’s weight fusion has no direct
relation with the difftime between the sampling time and
fusion time. Therefore, the large error of local sensor’s state
estimation will reduce the tracking accuracy of the whole
system. Besides, there is no feedback mechanism [22], [23]
in the entire system. These problems cause some shortcoming
in this algorithm.

The motivation of this paper is how to better solve
the above problems in asynchronous data fusion based on
multi-sensor networks. In summary, the main contributions
of this paper can be listed as follows:

(1) Using the track quality of Kalman filtering [24]− [26],
combined with our proposed TQMM (the Track Quality with
Multiple Model) [27], a novel asynchronous multi-sensor
track fusion algorithm is proposed, named AFTQMM (Asyn-
chronous Fusion based on Track Quality with Multiple
Model).

(2) We introduced a feedback mechanism; the algorithm
feeds back one-step prediction of the global state estima-
tion to each local sensor, and then after getting the track
quality with multiple model of all sampling points based on
the feedback information, each local sensor can be assign
weights according to the TQMM of each sampling point,
which improves the accuracy of equivalent observation of
each local sensor at the fusion moment, as well as improves
the performance of global state estimation.

The paper is organized as below sections: Section II
demonstrates the concept of TQMM and local tracking.
In Section III, the definitions of asynchronous fusion algo-
rithm based on TQMM are given, then discusses the imple-
mentation details and advantages of AFTQMM. In Section
IV, the simulation results show that the algorithm has bet-
ter performance compared with other algorithms, and then
Section V concludes whole paper.

II. TRACK QUALITY WITH MULTIPLE MODEL AND LOCAL
TRACKING
A. TRACK QUALITY WITH MULTIPLE MODEL
In a distributed system, several networked sensors track the
target to form a local track and transmit it to the fusion center
for data registration, association and fusion. Distributed struc-
ture is widely used by engineers because of its good real-time
and fusion performance. TQMM is based on a distributed
fusion structure.
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If the dynamic equation and measurement equation of
multi-sensor networks system are:

X l (k + 1) = F l (k)X l (k)+ wl(k) (1)

Z l (k) = H l (k)X l (k)+ V l (k) , l = 1, 2, · · · ,NUM

(2)

In (1), X l(k) stands for the state vector of model l in k
moment, and X l(k + 1) stands for the state vector of model l
in k+1moment. F l(k) represents the one-step state transition
matrix frommoment k to k+1 under model l, and the system
process noise wl(k) is gaussian white noise sequence. In (2),
NUM is the amount of the filter models. Z l(k) represents the
sensor’s observed values of target state under model l. H l(k)
is measurement matrix, and measurement noise V l(k) stands
for gaussian white noise sequence.

Besides,

E
[
wl(k)

]
= 0 (3)

Cov
(
wl (k) ,wl(τ )

)
= E

[
wl (k)wl

T
(τ )
]
=Ql(k)δkτ (4)

In (4), Ql (k) is a nonnegative definite matrix. Besides,

E
[
vl(k)

]
= 0 (5)

Cov
(
vl (k) , vl(τ )

)
= E

[
vl (k) vl

T
(τ )
]
= Rl(k)δkτ (6)

In (6), Rl (k) is the positive definite matrix.
System process noise and measurement noise are indepen-

dent of each other, that is, to meet

Cov
(
wl (k) , vl(τ )

)
= 0 τ = 1, 2, · · · ,k, · · · (7)

Local track quality is very important, it determines the
track quality of whole system, which means the final track
quality of system after fusion will not be too high if the local
track quality is poor [19].

Assuming that the one-step prediction and its covari-
ance of the state of model l(l = 1, 2, · · · ,NUM ) in
time k are X l (k + 1|k) and Pl (k + 1|k) respectively, then
the state’s one-step prediction and covariance of model
l(l = 1, 2, · · · ,NUM ) of sensor i(i = 1, 2, · · · ,N ) in k + 1
time based on model l (l = 1, 2, · · · ,NUM) state in the k
time are

vl (k + 1) = Z (k + 1)− H l(k + 1)X̂ l (k + 1|k) (8)

S l (k + 1) = H l (k+1)Pl (k+1|k)H l (k+1)
T
+Rl(k) (9)

To describe our track quality, a standardized distance equa-
tion [17] could be defined as follow.

d l (k + 1) = vl (k + 1)
T
S l (k + 1)

−1
vl(k + 1) (10)

The track quality of model l in time k+ 1 is

U l (k + 1) = αU l (k)+ (1− α)d l(k + 1) (11)

In equations, the value of U represents our track quality.
Obviously, the smaller U is, the better track quality is. Here,

α is a historical power factor with the range from 0 to 1, and
α = 1/5 in follow simulation.

When k+1 = 4, the track quality of sensor i in model l is

U l (4) = d l(4) (12)

Therefore, TQMM of sensor i in time k+ 1 is

U (k + 1) =
∑N

j=1
U l(k + 1)uk+1(l) (13)

B. LOCAL TRACKING
To meet the target mobility and obtain more pre-
cise local estimate information, IMM (Interacting Multi-
ple Model) filtering algorithm [27] can be adopted for
the local tracking of multi-sensors. For reducing the
computational complexity and improving the real-time per-
formance of information processing, only three kinds of IMM
filtering algorithms are applied. In this function, the system
state vector X = [x ẋ ẍ yẏ ÿ z ż z̈]T , and the model
prior probability U = [1 0 0]. The total output of the IMM
filters is the weighted average [28] of the filtering results
of multiple filters, and the weight is the model probability.
Which model plays a leading role has a high probability,
ranging from 0.9 to 1, while the other models have a low
probability, less than 0.1 and close to 0. Besides, the transition
probability of Markov model is

Pij =

 0.95 0.025 0.025
0.025 0.95 0.025
0.025 0.025 0.95

 (14)

III. ASYNCHRONOUS FUSION ALGORITHM BASED ON
TQMM
A. MAIN IDEA AND BASIC FLOW
The main idea of the AFTQMM algorithm includes: the
observed filter prediction at the fusion moment is gotten from
each sensors’ local state estimated information, and obtained
the predicted value of the fusion moment observation; then,
using the weight fusion on same sensor’s several prediction
values to obtain each sensors’ observed information at the
fusion moment; finally, global fusion estimation output of
asynchronous multi-sensor is achieved based on step by step
filtering fusion process. The basic implementation process of
the algorithm is shown in Figure 1.

B. ASYNCHRONOUS FUSION MODEL
According to the basic process in Figure 1, and if the data
fusion period is T , the number of sensors used in this period
is N . The basic fusion model of this asynchronous fusion
algorithm can be given as shown in Figure 2.

C. STEPS OF ALGORITHM
As shown in Figure 1 and Figure 2, the algorithm AFTQMM
includes four functional units: multi-model prediction, feed-
back function, weights fusion of each local sensor unit and
step by step filtering fusion. The process of the algorithm can
be shown below.
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FIGURE 1. The basic process of asynchronous fusion algorithm based on TQMM.

FIGURE 2. Asynchronous fusion model of AFTQMM.

Assuming the global state fusion estimation and the corre-
sponding error covariance of the system are Xf (k − 1|k − 1)
and P (k − 1|k − 1) in the fusion time moment tk−1 respec-
tively. N (N ≥ 0) is the number of sensors with observed
information in fusion period, and the observation value of
each sensor i (i = 1, 2, · · · ,N ) is Mi (Mi ≥ 0). In Figure 2,
the fusion model is established on the basis that each sensor
has at least 2 sampling points in the fusion cycle, whichmeans
Mi ≥ 2. However, due to the randomness of data provided by
multiple sensors, various situations will occur in the fusion
cycle (tk−1, tk ], which are mainly divided into two categories.
One is N = 0, that is, the fusion center cannot obtain
the continuous target information within a certain interval.
The other is N > 0, according to the number of observations,

Mi is divided into two parts, one is Mi = 1, the other is
Mi ≥ 2. There are different ways to optimize the fusion
process for different situations.

When N = 0, one step prediction is made based on the
state estimate value of the previous fusion time to obtain the
state estimate of the current fusion time. However, in the case
of N = 0 continuous existence, the information obtained
by this method will reduce the effectiveness of the fusion
algorithm due to the accumulation of prediction errors. With
the improvement of sensor performance, sensors are usually
used effectively to detect and track the target in an all-round
way, to avoid the continuous occurrence in the fusion center
N = 0 as far as possible. When N > 0, if Mi = 1,
the weighted fusion process can be eliminated, directly
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predict and participate in step by step filtering fusion. While,
if Mi ≥ 2, the algorithm can operate according to the
asynchronous fusion model described in figure 2. In addition,
when some sensors have observation information at the time
of fusion, the observation information can be directly used to
participate in the step by step filtering fusion.

The number of multi sensors with observation information
and the number of observations in fusion cycle (tk−1,tk ] are
defined as N and Mi(i = 1, 2, · · · ,N ) respectively. In addi-
tion, the target state estimation and the corresponding covari-
ance error of sensor i in observed time tj,i(j = 1, 2, · · · ,Mi)
can be defined as x̂i

(
tj,i|tj,i

)
and pi

(
tj,i|tj,i

)
. The following is

the detailed introduction to the process of obtaining the state
estimation X̂f (k|k) and error covarianceP (k|k) of the system
track at the time tk of fusion center.

1) MULTI-MODEL PREDICTION
Check for N . When N 6= 0, all sampling points[
t1,i, t2,i, · · · , tMi,i

]
of the sensor i in fusion circle are

searched, and then one step prediction is made based on three
models to predict the information of each sampling pinot to
the fusion time tk . The process is as is described as follows.
Calculate the time difference, that is

1tj,i = tk − tj,i, j = 1, 2, · · · ,Mi (15)

In (15), the local state estimation and the error covariance
of each sensor in time tj,i are x̂i

(
tj,i|tj,i

)
and pi

(
tj,i|tj,i

)
. For

time difference, the corresponding state transition matrix
F lj,i

(
tj,i
)
(l = 1, 2, 3) could be gotten by the IMM filtering,

and then the predictive value of observation could be got.

Z li
(
tk |tj,i

)
=H l

i (k)·F
l
j,i
(
tj,i
)
·x̂i
(
tj,i|tj,i

)
, l=1, 2, 3 (16)

In (16),H l
i (k) is the observation matrix of sensor i’s model

l. The multi-model prediction could be got based on the
observed prediction Z li

(
tk |tj,i

)
of model l

Zi
(
tk |tj,i

)
=

∑3

i=1
Z li
(
tk |tj,i

)
· uil(k) (17)

In (17), uil(k) is defined as the probability of sensor i’s
model l at time tk .

2) FEEDBACK ELEMENT
Operate one step prediction for the system state estimation at
time tk−1. The state vector and its covariance are shown as
follow equations respectively.

X̂f (k|k − 1) =
∑3

l=1
X̂ lf (k|k − 1) · ul (k) (18)

P (k|k − 1) =
∑3

l=1
ul (k) ·

{
Pl (k|k − 1)

+

[
X̂ lf (k|k − 1)− X̂f (k|k − 1)

]
×

[
X̂ lf (k|k − 1)

− X̂f (k|k − 1)
]′}

(19)

In (18) and (19), ul(k) represents the probability of the
system’s model l at time tk . X̂ lf (k|k − 1) and Pl (k|k − 1)
represent the one step prediction and error covariance of
system track at time tk−1 based on model l respectively. The
expression is as follows.

X̂ lf (k|k − 1) = F l(k − 1)X̂ lf (k − 1|k − 1) (20)

Pl (k|k − 1) = F l (k − 1)Pl (k − 1|k − 1)F l (k − 1)
T

+Ql(k − 1) (21)

In equations, the F l (k − 1), X lf (k − 1|k − 1) and
Pl (k − 1|k − 1) represent the state transition matrix, state
estimation and error covariance of system track’s model
l at time tk−1 respectively, and Ql (k − 1) is a nonnegative
definite matrix.

3) WEIGHTs FUSION OF LOCAL SENSORS
In the feedback function, the state at the previous moment of
the fusion center can got one step prediction and fed back to
each local sensor. The predicted value of local sensor state
can be obtained. Based on the TQMM of the predicted state
value of the system, the weight of each predicted state is
further determined to realize the weights fusion. The process
of determining the weight factor is shown in figure 3.

In the fusion cycle (tk−1, tk ], the innovation and covariance
of sensor i (i = 1, 2, · · · ,N )’s observation based on system
track one step prediction from the time tj,i (j = 1, 2, · · · ,Mi)

to the fusion time tk are as follows.

νli,j (k) = zi(tk |tj,i)− H l
i (k) X̂f (k |k − 1 ) (22)

S li,j (k) = H l (k)P (k |k − 1 )H l
i (k)

T
+ Rl (k − 1) (23)

According to the principle in section II, the TQMM of
each sensor i’s sampling point j be defined as Ui,j (k).The
measurement degree of TQMM of the sensor i’s sampling
point j could be obtained.

hji (k) = exp{−Ui,j (k)} (24)

The corresponding weight is

ωij (k) = hj
i
(k) /

Mi∑
j

hji (k) (25)

Finally, by weights fusion, the equivalent observation data
of the sensor i at time tk are obtained as follows.

Zi(k) =
Mi∑
j=1

wji (k)Zi(tk |tj,i) (26)

4) STEP BY STEP FILTERING FUSION
Through the above steps, we can get the observation infor-
mation Z1 (k) ,Z2 (k) , · · · ,ZN (k) of N sensors in fusion
time tk . Using the idea of step by step filtering fusion from
document [15], the global state fusion estimation and the
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FIGURE 3. The process of determining the weight factor.

corresponding error covariance at the fusion time can be
obtained. {

X̂f (k|k) = X̂N (k|k)
P(k|k) = PN (k|k)

(27)

Known, the equations X̂f (k|k − 1) = F (k − 1) X̂f (k − 1|
k−1) and P(k|k−1) = F (k − 1)P(k−1|k−1)F (k − 1)T+
GQGT are true, the specific expression of (27) is as follows.
When N = 1, let’s make X̂1(k|k − 1) = X̂f (k|k − 1) and
P1(k|k − 1) = P(k|k − 1), then

X̂1 (k|k) = F (k − 1) X̂f (k − 1|k − 1)

+K1 (k)
[
Z1 (k)− HX̂1(k|k − 1)

]
(28)

P1(k|k) = [I − K1(k)H (k)]P1(k|k − 1) (29)

When N ≥ 2,

X̂N (k|k) = F (k − 1) X̂f (k − 1|k − 1)+

×

∑N

i=1

{
Ki(k)

[
Zi(k)− H (k) X̂i(k|k − 1)

]}
(30)

PN (k|k) =
{∏N

i=1
[I − Ki(k)H (k)]

}
P1(k|k − 1) (31)

In above equations, Ki(k) is the filtering gain matrix of
sensor i (i = 1, 2, · · · ,N ), and its calculating formula is as
follows:

Ki(k)=Pi(k|k − 1)H (k)T

×

[
H (k)Pi(k|k − 1)H (k)T + Ri (k)

]−1
(32)

When i = 2, · · · ,N , we can get X̂i(k|k − 1) = X̂i−1(k|k)
and Pi(k|k − 1) = Pi−1(k|k).

IV. SIMULATION EXPERIMENT
A. SIMULATION ENVIRONMENT
In the simulation verification, Root Mean Square Error
(RMSE) and Trace of Error Covariance Matrix (TECM)

[16], [23], [27] were selected as target tracking performance
indicators for comparative analysis. Assuming that six sen-
sors fixed on the same platform make asynchronous obser-
vation on the same target, due to the limitations of the
sensors themselves and the communication delay between
local nodes and the fusion center, the sampling time of the
track data obtained by the fusion center may deviate from the
fixed sampling period.

Therefore, the offset1t with respect to the fixed sampling
period in the actual sampling period of the sensor should
be considered. Moreover, at some sampling moments, there
is no sampling information because the target escapes from
the tracking area of the corresponding sensor. In this sce-
nario, the track fusion problem is a typical asynchronous
fusion problem of the second kind. Each sensor associates the
observed data, forms the target track, and reports the resulting
track and the associated observed value to the fusion center.
However, because the measurement errors and observation
coordinates of each sensor are not uniform, data from each
sensor needs to be preprocessed before fusion, which usually
includes data space alignment, gross error rejection and so
on. 600 monte carlo simulation experiments were conducted
(M = 600). The expressions of RMSE and TECM are as
follows.

RMSE =

√∑M
n=1 ((x − x̂n)2 + (y− ŷn)2 + (z− ẑn)2)

M
(33)

TECM =

(∑M
n=1 trace(P

n)
)

M
(34)

In (33) and (34), x̂n, ŷn, ẑn are the position information of
the nth simulation fusion track, and Pn is the error covariant
matrix of the nth simulation tracking.

B. RESULTS AND ANALYSIS
The algorithm performance is considered from three aspects:
first, examining influence of the number of sensors on
AFTQMM’s track performance; then, checking influence of
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TABLE 1. Parameter setting of example 1.

FIGURE 4. The flight path of the maneuvering target.

fusion cycle on AFTQMM’s performance; finally, proving
the limitation of SSPFA, applicability of TFASP and the
optimal solution of AFTQMM on second problem of asyn-
chronous fusion by the appropriate sampling period and the
number of sensors.

The performance of AFTQMM is tested in three aspects.
First, the effect of sensor number on tracking performance
of AFTQMM is tested. Secondly, the influence of fusion
period on the performance ofAFTQMM is examined. Finally,
it proves the applicability of TFASP to these problems and the
optimization of AFTQMM to solve these problems.

1) EXAMPLE 1
The sampling periods of six target detection sensors are 0.2s,
0.5s, 0.8s, 1.0s, 1.2s and 1.5s. The offset of the fixed sampling
period1t obeys the uniform distribution on [0, 1/1000]. The
parameter setting of Example 1 is shown in Table 1, and the
flight path diagram is shown in Figure 4.

a) A system with three, four, five and six sensors were
used to track the maneuvering target at same time. The fusion
period of the four systems (the fusion period of four systems
is 1.0s) was used to examine the influence of the number of
sensors on the tracking performance of AFTQMM algorithm

FIGURE 5. RMSE versus sampling time for different sensor number.

FIGURE 6. TECM versus sampling time for different sensor number.

The Figure 5, Figure 6 and Table 2 prove that with the
increasing of the number of sensors, the RMSE and TECM
curves of AFTQMM algorithm decrease, and the tracking
performance of the system gradually improves. The number
of sensors has a great influence on the tracking accuracy of
the system. The more sensors in the system, the better the
performance. But as the number of sensors increased further,
the improvement became smaller and smaller.

b) Examine the influence of fusion cycle on algorithm per-
formance. We track the maneuvering target by systems with
fusion periods T of 0.5, 1.0, 1.5, 2.0 and 2.5 simultaneously
(five systems are all six-sensors system).

When tracking the maneuvering target, with the increasing
of fusion cycle, the RMSE (in Figure 7 and table 3) and
TECM (in Figure 8 and table 3) curves keep rising, and the
track performance of the system reduces gradually. However,
after the fusion period increases to T = 1.5s, the system
fusion accuracy doesn’t decrease obviously.

c) Based on the conclusion of experiments above, with con-
sideration of the systematic complexity, the operating rate and
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TABLE 2. The relationship between RMSE, TECM average value and the number of sensors.

TABLE 3. The relationship between RMSE, TECM average value and the fusion period.

TABLE 4. The comparison of RMSE, TECM average values of three fusion algorithms.

FIGURE 7. RMSE versus sampling time for different fusion period.

FIGURE 8. TECM versus sampling time for different fusion period.

the track performance, five-sensor system with fusion period
T = 1.0s is applied to track themaneuvering target and verify
the performance of SSPFA, TFASP and AFTQMM.

FIGURE 9. The comparison of RMSE of three fusion algorithms.

Based on Figure 9 and Table 4, RMSE curve of SSPFA
algorithm is below the local track RMSE curve when
five-sensor system tracks the maneuvering target. From the
whole tracking, the track accuracy of SSPFA is higher than
that of the local track based on RMSE average character-
ization; while, the RMSE curve of the former fluctuates,
and the algorithm does not converge. Besides, the RMSE
curves of AFTQMM and TFASP are both lower than that
of local track and SSPFA. Compared with the local track,
the track accuracies of AFTQMM and TFASP are increase by
46.69% and 40.58%. And the track accuracy of AFTQMM is
obviously higher than that of TFASP algorithm, with the track
accuracy increasing by 10.28%.

Figure 10 and Table 4 show, when tracking the maneuver-
ing target, the TECM curve of SSPFA algorithm fluctuates
up and down with local tracking TECM curve as the center
and does not converge. Except for the initial tracking time,
the TECM curve of TFASP algorithm almost coincides with
the TECM curve of local tracking, and the tracking accu-
racy is not significantly improved. But the TECM curves of
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FIGURE 10. The comparison of TECM of three fusion algorithms.

TABLE 5. Parameter setting of Example 2.

AFTQMM are completely below that of local track, SSPFA
and TFASP, which can improve the track accuracy.

2) EXAMPLE 2
The scenario setup of Example 2 is similar to Example 1,
its parameter setting is shown in Table 5. The target flies
a constant speed in 0-20s, performs a turn maneuver at a
turn rate of 0.157rad/s in 20-40s, then flies at a constant
speed in 40-60s, performs a turn maneuver at a turn rate of
-0.157rad/s in 60-80s, and performs a constant speed in 80-
120s. The total flight time of the target is 120s. The flight path
diagram is shown in Figure 11.

a) A system with three, four, five and six sensors were
used to track the maneuvering target at same time. The fusion
period of the four systems (the fusion period of four systems
is 1.0s) was used to examine the influence of the number of
sensors on the tracking performance of AFTQMM algorithm.

The Figure 12, Figure 13 and Table 2 prove that with
the increasing of the number of sensors, the RMSE and
TECM curves of AFTQMM algorithm decrease, and the
tracking performance of the system gradually improves.

FIGURE 11. The flight path of the maneuvering target.

FIGURE 12. RMSE versus sampling time for different sensor number.

However, after the number of sensors is greater than 5,
the fusion of the system is not significantly improved. In the
engineering application, the relationship between tracking
performance and system complexity should be considered
comprehensively, and an appropriate number of sensors
should be selected to achieve high tracking accuracy, enable
real-time processing of the fusion center, and reduce the
engineering cost as far as possible.

b) Examine the influence of fusion cycle on algorithm per-
formance. We track the maneuvering target by systems with
fusion periods T of 0.5, 1.0, 1.5, 2.0 and 2.5 simultaneously
(five systems are all six-sensors system).

When tracking the maneuvering target, with the increasing
of fusion cycle, the RMSE (in Figure 14 and Table 7) and

TECM (in Figure 15 and Table 7) curves keep rising, and the
track performance of the system reduces gradually.

However, after the fusion period increases to T = 1.5s,
the system fusion accuracy doesn’t decrease obviously.
In engineering application, with consideration of the
relationship between the track performance and the computa-
tion speed, the appropriate number of sensors can achieve the

VOLUME 8, 2020 59519



K. Zhang et al.: Asynchronous Data Fusion Algorithm for Target Detection Based on Multi-Sensor Networks

TABLE 6. The relationship between RMSE, TECM average value and the number of sensors.

TABLE 7. The relationship between RMSE average value and the fusion period in AFTQMM.

FIGURE 13. TECM versus sampling time for different sensor number.

FIGURE 14. RMSE versus sampling time for different fusion period.

better track accuracywithout influencing the system real-time
capability. c) Based on the conclusion of experiments above,
with consideration of the systematic complexity, the operat-
ing rate and the track performance, five-sensor system with

FIGURE 15. TECM versus sampling time for different fusion period.

fusion period T = 1.0s is applied to track the maneuvering
target and verify the performance of SSPFA, TFASP and
AFTQMM.

Based on Figure 16 and Table 8, RMSE curve of SSPFA
algorithm is below the local track RMSE curve when
five-sensor system tracks the maneuvering target. From the
whole tracking, the track accuracy of SSPFA is higher than
that of the local track based on RMSE average character-
ization; while, the RMSE curve of the former fluctuates,
and the algorithm does not converge. Besides, the RMSE
curves of AFTQMM and TFASP are both lower than that
of local track and SSPFA. Compared with the local track,
the track accuracies of AFTQMM and TFASP are increase by
62.92% and 57.01%. And the track accuracy of AFTQMM is
obviously higher than that of TFASP algorithm, with the track
accuracy increasing by 13.76%.

Figure 12 shows that when the target starts the second
maneuver, the RMSE curve of ATFQMM will fluctuate
within a narrow range, also, the same fluctuation can be
seen in figure 14 and figure 16. And then, the RMSE curve
will come back to the steady state following the continuous
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TABLE 8. The comparison of the RMSE average values of three fusion algorithms.

FIGURE 16. The comparison of the RMSE of three fusion algorithms.

maneuvering. Researches show that the curve’s fluctuation
is resulted from the prediction error increasing of target
maneuvering. The error of one-step prediction is decided by
approximation level of the state transition matrix to the actual
motion. The weighted array of multi models can approach to
the state transition matrix of any maneuvering target, to get
the smaller prediction error. But, in order to adapt to the
target maneuver, the probability of each model needs a short
time for corresponding adjustment. Firstly, when using IMM
filtering algorithm for local nodes tracking, three models
need a short adjustment for the target maneuvering. Secondly,
the probabilities of the three motion nodes, which still need
an adjustment. Thirdly, for adapting the target maneuvering,
feedback element also needs a short adjustment in the multi-
model prediction for system state estimation. The model
probability adjustment will be performed at each sampling
point, and the RMSE curve can be stable over several sam-
pling periods. Besides, the model probability adjustment is
determined by the model possibility, and the model possi-
bility is determined by the one-step prediction error and its
covariance. The whole multi-model system is a negative feed-
back system. When the prediction error increases, the system
will adjust the model possibility by predicting error and its
covariance, then adjust the model’s probability to help the
state transition matrix (after the weighted array) approach
to the maneuvering state. Therefore, the next-time forecast
error will decrease. So, Fig. 9 shows that the amplitude and
duration of RMSE curve jitter have little influence on the
performance of the algorithm.

Figure 17 and TABLE 8 show, when tracking the
maneuvering target, the TECM curve of SSPFA is
almost completely above the TECM curve of local track.

FIGURE 17. The comparison of the TECM of three fusion algorithms.

The phenomenon further proves the drawbacks of SSPFA
in solving the second kind of asynchronous fusion. But the
TECM curves of AFTQMM and TFASP are completely
below that of local track, which can improve the track
accuracy.

The experiment above examines the relationship among
the AFTQMM performance, fusion cycle and the number of
sensors. Besides, it also proves two things. Firstly, AFTQMM
and TFASP can solve the second kind of asynchronous fusion
which cannot be solved by SSPFA. Secondly, the perfor-
mance of AFTQMM is better than that of TFASP. Reasons
are as follows:

First, in fusion period, equivalent observation values are
obtained in different ways. The difficulty of asynchronous
fusion lies in how to get the high-precision equivalent obser-
vation of fusion moment based on the sampling points of
non-fusion moment in fusion cycle. The accuracy of equiv-
alent observations is determined by the accuracy of the the
most of the sensor’s observation, SSPFA only adopts the
observation’s error of the local sensors at fusion moment
increases, then, the track accuracy of the whole system
decreases.

But, ATFTQMM assigns weight through TQMM, which
is synthetically decided by sampling accuracy and prediction
error. In this way, the whole system forms a negative feedback
mechanism, so high precision sampling point achieves bigger
weight, and vice versa. Therefore, this algorithm possesses
higher fusion accuracy.

Second, the data processing methods of the fusion center
are different. SSPFA performs the weight fusion of the two
predictions at fusion time accordingly under the condition of
minimum trace of the error covariance matrix. The sequential
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approach of SSPFA causes root-mean-square error fluctuat-
ing on local estimated error curves of each sensor.

While, TFASP updates state estimation ways for step by
step filtering fusion, by the information obtained by weighted
combination of each sensor. And, AFTQMM also gets the
global estimation by step by step filtering fusion. However,
AFTQMM increases the feedback mechanism of local nodes
in the fusion center, assists local nodes for weight assign-
ment, gets more accurate equivalent observations, and then
improves the fusion effect.

V. CONCLUSION
This paper studies the problems of the asynchronous track
fusion under the condition of irregular sampling interval
based on multi-sensor networks. It sets a model for this kind
of asynchronous track fusion and puts forward a distributed
asynchronous track fusion algorithm with information feed-
back. To improve the stability of the system and the accuracy
of equivalent observations, this paper introduces the feedback
mechanism from fusion center to local nodes, which effec-
tively upgrades the system performance.
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