
Received March 5, 2020, accepted March 17, 2020, date of publication March 23, 2020, date of current version April 15, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2982669

Green and Secure Computation Offloading
for Cache-Enabled IoT Networks
M. ISHTIAQUE A. ZAHED , IFTEKHAR AHMAD, (Member, IEEE),
DARYOUSH HABIBI , (Senior Member, IEEE), AND QUOC VIET PHUNG , (Member, IEEE)
School of Engineering, Edith Cowan University, Perth, WA 6027, Australia

Corresponding author: M. Ishtiaque A. Zahed (mazizzah@our.ecu.edu.au)

ABSTRACT The ever-increasing number of diverse and computation-intensive Internet of things (IoT)
applications is bringing phenomenal growth in global Internet traffic. Mobile devices with limited resource
capacity (i.e., computation and storage resources) and battery lifetime are experiencing technical challenges
to satisfy the task requirements. Mobile edge computing (MEC) integrated with IoT applications offloads
computation-intensive tasks to the MEC servers at the network edge. This technique shows remarkable
potential in reducing energy consumption and delay. Furthermore, caching popular task input data at the edge
servers reduces duplicate content transmission, which eventually saves associated energy and time. However,
the offloaded tasks are exposed to multiple users and vulnerable to malicious attacks and eavesdropping.
Therefore, the assignment of security services to the offloaded tasks is a major requirement to ensure
confidentiality and privacy. In this article, we propose a green and secure MEC technique combining
caching, cooperative task offloading, and security service assignment for IoT networks. The study not
only investigates the synergy between energy and security issues, but also offloads IoT tasks to the edge
servers without violating delay requirements. A resource-constrained optimization model is formulated,
which minimizes the overall cost combining energy consumption and probable security-breach cost. We
also develop a two-stage heuristic algorithm and find an acceptable solution in polynomial time. Simulation
results prove that the proposed technique achieves notable improvement over other existing strategies.

INDEX TERMS Caching, energy, IoT, mobile edge computing, security.

I. INTRODUCTION
Internet of Things (IoT) is an integrated platform connect-
ing hundreds of wireless sensors, smart meters, electronic
equipment, andmobile devices [1]. These IoT entities collect,
share, and transfer data to network nodes and connected
devices for further processing.

In recent years, the remarkable advancements in IoT and
wireless networks [2]–[4] have emerged as a solution for
ubiquitous connectivity and intelligent data transfer. IoT
applications contribute to a number of sectors, including
smart healthcare, autonomous vehicles, industrial automa-
tion, monitoring ambient environment, and so on [1], [5]. The
value of the IoT market is expected to outreach $8.9 trillion
by 2020 [6].

These computation intensive IoT applications have cre-
ated enormous workloads on the existing networking sys-
tems [7]. The bandwidth-greedy and delay-sensitive tasks for

The associate editor coordinating the review of this manuscript and

approving it for publication was Chunsheng Zhu .

IoT applications not only result in excessive energy demand,
but also cause significant environmental consequences [2].
Mobile devices with limited battery capacity and compu-
tational resources are not suitable to address such com-
puting demand [4], [8]. Globally, the number of per day
battery replacements is anticipated to be 913 million consid-
ering three-year battery lifetime [9]. The IoT services also
put forward diverse quality of experience (QoE) require-
ments, including, but not limited to, low latency, inten-
sive computation capability, and high data rate [10], [11].
Therefore, industries, researchers, and policy makers are
constantly looking for high-performing, cost-effective, and
energy-efficient strategies for IoT applications.

Conventionally, cloud computing is considered for offload-
ing and remote execution of computing tasks [12]. This is
because the migration of tasks to the cloud servers can over-
come the limitations in computation capability and battery
lifespan of the user devices [4], [12]. However, the long
distance between the users and the cloud servers is a major
problem in adapting cloud-based services. Offloading of the

63840 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-4597-1391
https://orcid.org/0000-0002-7662-6830
https://orcid.org/0000-0002-6138-3944
https://orcid.org/0000-0001-8041-0197

M. I. A. Zahed et al.: Green and Secure Computation Offloading for Cache-Enabled IoT Networks

IoT tasks to the cloud servers not only causes backhaul con-
gestion, but also fails to meet the delay requirements of the
applications. Hence, cloud computing can not provide best
services to the IoT systems [11].

To confront these technical requirements, mobile edge
computing (MEC) has been introduced as an efficient solu-
tion for task offloading [11]–[13]. MEC achieves low trans-
mission delay compared to cloud computing by reducing the
distance between the servers and end users [11]. In MEC,
mobile devices can send their computation-intensive tasks
to the MEC servers placed at the network edge. This strat-
egy not only reduces the task computation time, but also
overcomes the problem related to limited battery capacity of
the mobile devices [4]. Computation offloading at different
edge nodes can reduce the task latency as well as commu-
nication load [14]. Furthermore, optimal allocation of the
computational resources also exhibits significant potential to
reduce energy consumption while maintaing latency require-
ments [15].

By 2025, the number of IoT connected devices will be
75.44 billion [16]. As a result, thousands of computation-
intensive IoT applications will require uninterrupted connec-
tivity and high-data rate. Conventional approaches are not
efficient to fulfill these requirements. Thus, MEC is antici-
pated as a key solution in designing low-latency and energy-
efficient solutions for IoT task offloading [5], [12].

In IoT systems, a number of users often request for
the offloading of the same data and similar tasks to the
MEC servers [10], [17]. The repeatedly requested tasks
are expected to be generated from diverse IoT applications
including smart vehicles, e-health services, interactive gam-
ing, smart homes, industrial monitoring, and virtual reality
applications [17]–[19]. Caching popular IoT data items at
the network edge can play an important role in reducing
the duplicate content transmission [3], [20]. Edge caching
significantly improves the efficiency of the content delivery
and task offloading by reducing not only the latency, but also
the energy consumption [4], [21]. On the other hand, edge
servers with computing and caching resources consume a
considerable amount of energy [4], [22]. Besides, the tasks
are diverse in terms of content popularity, input data size,
and computational complexity [2], [18]. Therefore, smart
management of the IoT systems with caching and computing
resources is crucial for achieving energy savings and simul-
taneously fulfilling the QoE requirements.

Privacy and security concerns of the offloaded tasks are
major threats in MEC [13], [23]. The MEC servers, which
are located at the network edge, are in close proximity to the
attackers and vulnerable to hostile attacks [24]. Furthermore,
the security protections at the edge nodes are less stringent
because of the limited computational capability compared to
the cloud servers [23]. IoT applications deal with different
types of confidential information [1], [25]. Potential security
breach can lead to system failures and cause life threaten-
ing consequences for the end users [26], [27]. The security
requirements of different applications are also diverse in

terms of authentication, confidentiality, and integrity pro-
cess [1], [26]. However, the preventive services for security
threats inevitably originate computation overheads and lead
to additional computing delay and energy consumption [23],
[24]. Therefore, in IoT task offloading, addressing these con-
flicting issues simultaneously is a major research challenge.

In this study, we design a green and secure task offloading
technique for IoT systems. The proposed model explores
caching, cooperation among the base stations (BSs), and
security service provisioning to achieve energy savings and
reduce probable security-breach cost. The optimal allocation
of the IoT tasks to the MEC servers ensures faster task execu-
tion. However, the offloaded tasks are vulnerable to malicious
attacks and eavesdropping. Optimal allocation of the security
services to the offloaded tasks is a must to accomplish robust
security protection. Nonetheless, the security services also
cause overheads in terms of energy and delay. Therefore, the
problem statement of this research is developed as: designing
a novel MEC technique for green and secure task offload-
ing in IoT networks by exploiting caching, cooperation, and
security service assignment. Whereas, the strategy not only
reduces energy consumption and probable security-breach
cost, but also optimally allocates offloaded tasks and main-
tains delay requirements. In this article, we introduce an
optimization model and solve the research problem.

The key contributions of this study are summarized as
follows.

• We introduce a green and secure task offloading tech-
nique for MEC in IoT networks. The designed sys-
tem model incorporates caching, cooperation among the
MEC servers, and security requirements of the tasks to
improve system performance.

• The proposed MEC technique is formulated as a
constrained non-linear program (NLP) optimization
problem, which reduces both energy consumption and
probable security damage. Then, we convert the NLP
into an integer linear program (ILP). The proposed
model also maintains delay threshold and optimally
allocates tasks for caching and computing at the MEC
servers.

• To reduce the complexity of the solution procedure,
we decompose the optimization model into two sub-
problems and develop a two-stage heuristic algorithm.
The proposed heuristic achieves a sub-optimal solution
in polynomial time.

• We also analyze the system performance of our intro-
duced technique and compare them with existing solu-
tions [4], [5], [13], [28]. The system performance
is measured in terms of energy consumption, proba-
ble security-breach cost, and average delay. Numeri-
cal results show that our proposed technique achieves
significant energy savings and reduction in probable
security-breach costs compared to other techniques.

The remainder of this article is as follows. Section II high-
lights the existing studies on MEC. In Section III, we provide

VOLUME 8, 2020 63841

M. I. A. Zahed et al.: Green and Secure Computation Offloading for Cache-Enabled IoT Networks

a comprehensive description of the proposed system model
for IoT networks and introduce different system parame-
ters. Section IV designs an optimization problem combining
caching, cooperative task offloading, and security issues.
A two-stage heuristic algorithm is developed in Section V
to solve the optimization problem in polynomial time. In
Section VI, we illustrate the system performance and prove
the effectiveness of the proposed MEC technique. Finally,
Section VII provides the concluding remarks.

II. RELATED WORK
In recent years, a flurry of research has focused on the remote
execution of computational tasks at the network edge. This
section provides a brief outline of the existing studies in the
field of MEC.

A. ENERGY-EFFICIENT AND LATENCY-CRITICAL MEC
MEC has emerged as a key technology to overcome the prob-
lems related to limited battery capacity and computational
resources of themobile devices [11]–[13]. In [29], the authors
explained the role ofMEC and identified energy consumption
and latency as the prime performance indicators for task
offloading.

A partial offloading scheme for computational tasks is
designed in [30] to exploit both cloud computing and MEC
for latency-critical IoT applications. Kherraf et al. [31] devel-
oped an optimized strategy for edge server placement and
workload allocation. The research determined the minimum
number and probable locations of the edge servers to reduce
the overall expenditure without violating the delay require-
ments. Although these studies achieved significant latency
reduction, the energy related issues were not addressed.

In [32], the authors introduced a reinforcement learning
based energy-aware autonomous technique for the collabora-
tion of edge devices. A reward based model is also proposed
to encourage user participation, which further improved the
performance gain. An architecture combining energy harvest-
ing IoT sensors and MEC servers was developed in [33].
The study optimally allocated network edge resources and
achieved energy savings, which eventually improved the life-
time of the IoT sensors.

Cheng et al. [11] proposed a virtual machine allocation
and computation offloading scheme for remote users. The
authors considered unmanned aerial vehicle assisted edge
servers for MEC and utilized deep-reinforcement learning.
The authors in [34] introduced an adaptive technique and
optimally offloaded the tasks at the edge servers and clouds.

Balasubramanian et al. [35] investigated the mobility
management perspectives of MEC and developed a novel
architecture to ensure smooth handovers in different net-
work slices of a 5G-IoT network. The proposed model
ensured subscription-based network connections and not only
improved packet delivery ratio, but also achieved latency
requirements. Sun et al. [36] also designed a mobility man-
agement technique by combining Lyapunov optimization and
multi-armed bandits theory for seamless handover and task

offloading. The proposed framework reduced delay without
exceeding energy budget.

Zhang et al. [12] exploited multi-access heterogeneous
networks and designed a low-complexity three-stage solu-
tion process for the problem. The aforementioned strategies
investigated the concerns related to task execution delay and
energy consumption. However, these schemes did not explore
the potential of cooperative task offloading and security
aspects at the edge nodes.

B. COOPERATION AMONG THE EDGE SERVERS IN MEC
Cooperative computation offloading achieved further
improvement in energy savings [5] and latency reduc-
tion [37]. Fan and Ansari [37] designed an application-aware
scheme for IoT task offloading at the edge cloudlets. The
study cooperatively allocated the network resources based
on the QoE demands and decreased the average response
time. Misra and Saha [5] jointly optimized task computa-
tion, resource allocation, and path selection for fog comput-
ing based IoT applications. The study considered software
defined rule-capacity and not only achieved energy savings,
but also decreased average delay.

In [28], the authors introduced the concept of fair coopera-
tion to encourage the owners participation in fog computing.
The fog nodes shared a specific portion of their computation
resources and optimized both service time and energy cost.
Guo et al. [8] presented a task offloading strategy to reduce
the energy consumption and execution time of the offloaded
tasks in ultradense IoT networks. Nonetheless, the potential
of edge caching was not investigated in these works.

C. COLLABORATION OF MEC AND CACHING
Caching frequently requested information at the network
edge is an effective measure to reduce the duplicate content
transmission [20], [21]. The joint utilization of MEC and
caching can significantly reduce the energy requirement [4]
and task execution time [3].

In [2], an iterative algorithm is introduced for energy-
efficient caching and MEC without degrading delay require-
ments. The algorithm combined optimal caching and
computing to achieve an acceptable solution within lower
time span over other techniques. A centralized framework for
MEC and caching is proposed in [3], which jointly optimized
computation and spectrum resources to reduce overall latency
of the system.

In [39], the authors proposed a mobility-aware strategy
incorporating caching and MEC for heterogeneous networks.
They investigated the impact of content diversity, backhaul
capacity, and user mobility on the network throughput and
achieved significant performance gain. Tan et al. [40] also
introduced a framework combining MEC and caching based
on deep Q-learning. The mobility-aware approach not only
optimally allocated network resources, but also decreased
system cost.

Hao et al. [4] explored energy-efficient approach for task
offloading and caching. They reduced energy consumption at

63842 VOLUME 8, 2020

M. I. A. Zahed et al.: Green and Secure Computation Offloading for Cache-Enabled IoT Networks

TABLE 1. Summary of existing and proposed mobile edge computing techniques.

the user devices for a MEC system with constrained storage
and computation resources. Chen et al. [38] utilized software-
defined networking for cooperative computing and caching.
The framework optimized spectrum, caching, and computing
resources for energy-efficient solution and decreased the cost
of network usage. However, the studies did not consider
probable security threats and confidentiality of the offloaded
tasks.

D. SECURITY ASPECTS IN MEC
The computation-intensive tasks, which are offloaded to the
MEC servers, are prone to security breach [23], [27]. Security
services adopted at the edge nodes also cause energy and
latency overheads [13]. Therefore, the optimization of the
security defense techniques is a topic of prior interest inMEC.

In [13], the authors utilized a cryptographic technique for
the security of the offloaded tasks and developed an optimal
strategy for computation offloading and resource allocation.
Jiang et al. [26] designed a dynamic programming based
scheduling policy for security-critical tasks. The authors con-
sidered different cryptographic algorithms and assigned secu-
rity services for the tasks based on their requirements. The
study achieved considerable energy savings while maintain-
ing latency and security requirements.

He et al. [27] scrutinized the security aspects of IoT and
MEC. The study also developed a low-cost and novel tech-
nique to control the security services of different applications.
The authors in [41] proposed different models to reduce the
risk of failures at IoT nodes. The integrated approach not
only minimized traffic power, but also ensured reliability of
the cloud-based network. A joint approach combining radio
resource provisioning, security enhancement, and MEC is
proposed in [42]. The authors reduced execution delay sub-
ject to physical layer security and energy budget conditions.
However, most of these studies did not consider cachingwhile
investigating security issues in MEC.

E. NOVELTY OF THIS WORK
Table 1 summarizes the state-of-the art research in mobile
edge computing and compares the proposed technique with
existing works. Most of these studies reduced either energy

consumption or associated delay in MEC. Some of these
works also considered caching and cooperation between the
nodes. Although few studies considered security require-
ments as a constraint in MEC, the probable security risk
was not optimized in any of them. Furthermore, none of
these studies jointly investigated caching, cooperation, and
security issues inMEC for IoT applications. In this article, we
optimize the assignment of computing, storage, and security
resources to reduce the energy consumption and probable
security risk without violating the delay requirements.

III. SYSTEM MODEL
In this section, we introduce a green and secure model for
MEC and caching in an IoT network. The proposed model
comprises system overview, communication model, compu-
tation model, caching model, and security model. The brief
description of the system model is as follows.

A. SYSTEM OVERVIEW
Fig. 1 presents a network comprising a number of BSs at the
edge nodes, multiple subscribers, and mobile devices. Each
of the BSs possesses an MEC server with finite computation
and storage capacity. The set of the edge nodes is represented
as N = {1, 2, 3, . . . , n, . . . ,N }. These edge nodes receive
offloading requests through the respective BSs and execute
the tasks at the connectedMEC servers. These nodes also col-
laborate with other nodes to share the network resources and
minimize caching redundancy. The computing and caching
capacity of an edge node (n-th node) is defined by Fn and Cn,
respectively.

The internet subscribers are connected to the nearest edge
node and the set of the user equipment (UE) in the n-th node is
denoted as Un = {U1,U2, . . . ,Uk,n, . . . ,UK ,n}. Uk,n repre-
sents the k-th user device, which is connected to the edge node
n. Every user device Uk,n is defined as a 2-tuple {ϑ lk,n,Pk,n}.
ϑ lk,n and Pk,n represent the computation capability and the
transmission power of Uk,n, respectively.
The user devices utilize network resources for task compu-

tation, and some of the popular tasks are repeatedly requested
by multiple users. The set of the computation tasks con-
sidered in this model is T = {t1, t2, . . . , ti, . . . , tI }. Each

VOLUME 8, 2020 63843

M. I. A. Zahed et al.: Green and Secure Computation Offloading for Cache-Enabled IoT Networks

FIGURE 1. Green and secure task offloading and caching model for MEC.

of these computation tasks has specific requirements to be
executed [4], [26]. A task ti is defined as {δi, ωi, µi, ρi}. δi
denotes the input data size, ωi is the computational require-
ment for task completion,µi represents the task deadline, and
ρi is the expected security level protection.

B. COMMUNICATION MODEL
In this model, we consider orthogonal spectrum allocation
for the users to avoid the interference effect, and each UE is
assigned one channel [12]. The uplink transmission rate [4]
of the UE Uk,n to the edge node n is expressed as

Rk,n = B log2
(
1+

Pk,ngk,n
σ 2

)
(1)

where B, gk,n, and σ 2denote the channel bandwidth, trans-
mission channel gain, and noise power, respectively. For
simplicity, we consider constant channel gain [4] and noise
power [2], [3]. The bandwidth is identical for all the channels
connecting the users to the BSs [12].

The output data size of the executed task is very small com-
pared to the input data size and the corresponding downlink
data rate is greater than the uplink data rate [4]. Therefore,
similar to the existing studies [5], [13], we ignore the down-
load time and energy of the output data.

C. COMPUTATION
In this model, a task can be either executed locally at the
mobile devices or offloaded to any of the edge nodes [2],
[5]. The overheads related to task execution are calculated as
execution latency and energy consumption [2], [5].

• Local Computing

The execution latency and energy consumption to process
the task ti at the UE Uk,n is

dLoci,k,n =
ωi

ϑ lk,n
(2)

and

ELoci,k,n = ε(ϑ
l
k,n)

2ωi (3)

where ϑ lk,n is the computing capacity of the mobile device
and ε(ϑ lk,n)

2 is the consumed energy in every computation
cycle. The energy coefficient ε depends on the device chip
architecture and ε = 10−25 [4].
• Edge Computing
In MEC, the computing task is offloaded to the connected

edge node using a wireless channel. The time required to
offload the task ti of user device Uk,n to the edge node n is
expressed as

dOffi,k,n =
δi

Rn,k
(4)

Associated energy consumption for task offloading is

EOffi,k,n = Pk,n
δi

Rn,k
(5)

In contrast to most of the existing studies [2], [4], [13],
while calculating energy consumption, we consider not only
the mobile devices, but also the MEC servers. Furthermore,
in this model, the edge nodes work cooperatively.

If the task ti of the UE Uk,n is executed at the edge node m,
the task propagation time from n to m [43] is expressed as

dPri,n,m = δiθn,m (6)

63844 VOLUME 8, 2020

M. I. A. Zahed et al.: Green and Secure Computation Offloading for Cache-Enabled IoT Networks

where θn,m is the time to transmit per unit content and θn,m =
θ0γn,m + θ1. Similar to the existing studies, we consider that
θn,m is linearly proportional to the distance as the content
requires more time to travel a longer distance [37], [44]. γn,m
represents the distance between the nodes n and m, while θ0
and θ1 are the linear coefficients [44].
According to well-established energy proportional model,

the transmission energy linearly depends on data size and
delivery distance [38], [45]. Energy required to transfer the
task from node n to node m is expressed as

EPri,n,m = δiγn,mPTr (7)

where PTr is the energy coefficient between two edge nodes,
which is fixed for a specific link [38], [45].

The task execution time and energy consumption for task
ti, which is executed at the edge node m, are as follows

dExi,m =
ωi

ϑm
(8)

and

EExi,m = εs(ϑm)
2ωi (9)

where ϑm represents the allocated computation frequency
by the node m to each of the executed tasks. εs is the
energy coefficient of the MEC server. According to existing
study [12], MEC servers are energy-efficient compared to
mobile devices. In this study, we consider εs = 10−26 [2].

D. CACHING
In this model, we consider task caching, which denotes that
the input data of the executable task is stored at the MEC
server [2]. When the mobile device requests the edge node
for task offloading, the MEC server checks whether the task
data is cached at the MEC server or any of the nearby servers.
If the task is cached, the mobile device can save the time for
offloading delay and propagation delay. Associated energy
consumption is also reduced by caching. After executing
the tasks at the designated MEC server, the output result is
forwarded to the user device. However, the caching capability
of a MEC server is constraint and all the requested tasks can
not be cached at the servers. The caching capacity of a MEC
server at node n is represented by Cn.
Although different users request for diverse task offload-

ing, the popular tasks are requested by a number of users.
Consequently, the caching of a popular task reduces repeated
data transmission and network overheads. The probability
that task ti is requested by an user connected to the edge node
n is represented as pni , where 0 < pni < 1 and

∑I
i=1 p

n
i = 1.

The consumed energy at the MEC server for task caching
is proportional to the stored data size [38]. Hence, the energy
consumption at node n for caching task ti is

ECai,n = δiPCaT (10)

where PCa and T denote caching power density and caching
duration, respectively.

E. SECURITY
The offloaded tasks at the MEC servers are vulnerable to
malicious attacks, eavesdropping, and spoofing [26]. The
tasks also have different security requirements [27]. Hence,
different cryptographic algorithms are used for data encryp-
tion and decryption in MEC [13]. Along with the strength
and robustness of security protection algorithm, the energy
and delay overheads increase significantly [26]. On the other
hand, the preventive measures can not stop 100% security
breach. Therefore, the quantification of the security risk is
a major challenge in designing optimization strategies.

In this model, we define different cryptographic algorithms
as different security levels [26]. The offloaded tasks are
encrypted and decrypted at the user devices andMEC servers,
respectively [13]. This process is computationally expensive
and causes associated overheads (e.g., delay, energy) [13],
[26]. If this encryption-decryption process is more stringent,
the overheads are higher. On the other hand, different appli-
cations have different requirements, such as industrial mon-
itoring applications are more security sensitive compared to
interactive gaming.

The set of security protection levels is defined as S =
{s1, s2, . . . , sl, . . . , sL}. In this study, security protection level
(sl) represents the robustness of the designated cryptographic
algorithm. If there are L number of cryptographic algorithms,
then the algorithms with minimum and maximum robustness
are denoted as s1 = 1 and sL = L, respectively [24],
[26]. Other algorithms are also defined accordingly. More-
over, the associated overheads (e.g., delay, energy) for these
cryptographic algorithms are already determined in previous
studies [24], [26]. Associated time and energy overheads
of sl are represented as αl (in ms/MB) and βl (in J/MB),
respectively.

The probable security breach cost of task ti having security
protection sl is expressed as

ψ l
i =

{
1− e−(ρi−sl), if sl < ρi

0, if sl ≥ ρi
(11)

where ρi defines the expected security level of task ti.
According to this model, the security breach cost exists for

a task, which does not achieve expected security protection.
Otherwise, this cost is zero. This security breach cost rep-
resents the vulnerability of the offloaded task to malicious
attacks or eavesdropping when the expected protection is not
achieved [26].

IV. PROBLEM FORMULATION AND TRANSFORMATION
In this section, we design an ILP model and jointly optimize
energy consumption and security breach cost while maintain-
ing delay conditions.

The proposed model is based on following considerations.
• The users are connected to the nearest BSs.
• All the BSs with MEC servers are under a single admin-
istrative domain and the geographical position of the
users are known.

VOLUME 8, 2020 63845

M. I. A. Zahed et al.: Green and Secure Computation Offloading for Cache-Enabled IoT Networks

• The tasks can be offloaded to the host edge-node or any
of the neighboring MEC servers.

• The link capacity is constrained, and 0n,m denotes the
bidirectional link-capacity between edge node n and m.

Although the execution of a task at an edge node reduces
the energy cost of mobile devices, it can cause security breach
or violate delay condition. Furthermore, the caching of a
frequently requested task over a less popular task can alleviate
network traffic and reduce both energy cost and delay. In
this article, our proposed model optimally caches popular
computation-intensive tasks, offloads the tasks to the MEC
servers, and assigns security protections to the offloaded
tasks.

The caching variable for task ti at node n is defined as

xni =

{
1, if node n caches input data (δi) of task ti
0, otherwise

(12)

When task ti of user device Uk,n is executed at the MEC
server of node m, the decision variable is expressed as

yi,kn,m =

{
1, if task ti of Uk,n is executed at node m
0, otherwise

(13)

For task ti, the selection of security protection level sl is
defined by the binary variable

zli =

{
1, when sl is selected for task ti
0, otherwise

(14)

According to the previous section, when an offloaded task
is cached at the MEC server, the offloading delay and propa-
gation delay can be reduced. Therefore, the delay expression
for computing and caching of task ti of UE Uk,n is written as

DCi,k,n =
N∑
m=1

yi,kn,m{(1− x
m
i)(d

Off
i,k,n + d

Pr
i,n,m)+ d

Ex
i,m} (15)

The delay overhead for security protection of task ti of UE
Uk,n is

DSi,k,n =
N∑
m=1

yi,kn,m

L∑
l=1

zliαlδi (16)

Similarly, the corresponding expressions for energy con-
sumption are

ECi,k,n =
N∑
m=1

yi,kn,m{(1− x
m
i)(E

Off
i,k,n + E

Pr
i,n,m)+ E

Ex
i,m} (17)

and

ESi,k,n =
N∑
m=1

yi,kn,m

L∑
l=1

zliβlδi (18)

If we also consider the local execution of IoT tasks,
delay and energy expressions for task ti of UE Uk,n can be
expressed as

Di,k,n =
(
1−

N∑
m=1

yi,kn,m
)
dLoci,k,n + D

C
i,k,n + D

S
i,k,n (19)

and

Ei,k,n =
(
1−

N∑
m=1

yi,kn,m
)
ELoci,k,n + E

C
i,k,n + E

S
i,k,n (20)

Therefore, the overall energy consumption for task
caching, offloading, and security services is

E =
I∑
i=1

N∑
n=1

(
ECai,n +

K∑
k=1

pni Ei,k,n
)

(21)

Probable security breach cost for the edge computing of
task ti of UE Uk,n is

ψi,k,n =

N∑
m=1

yi,kn,m

L∑
l=1

zliψ
l
i (22)

Hence, the overall security breach cost is

ψ =

I∑
i=1

N∑
n=1

K∑
k=1

pni ψi,k,n (23)

The total cost of the IoT system is quantified as a combina-
tion of the energy consumption and security breach cost. To
formulate the joint optimization problem, the overall cost is
formulated as

φ = ηE + (1− η)ψ (24)

where η is the weighting parameter, which investigates the
trade-off in between the energy consumption and security
breach cost. When η is higher, the system provides more
emphasis on energy over security and vice versa. η varies
from 0 to 1 based on operators’ requirements.

Before considering the energy consumption and probable
security cost in the joint optimization problem, we normalize
these parameters [21] because their units are different.

In this article, the optimization problem is modeled as

minimize
x,y,z

φ (25)

subject to Di,k,n ≤ µi, ∀ti ∈ T , ∀Uk,n ∈ Un, ∀n ∈ N
(26)

I∑
i=1

xni δi ≤ Cn, ∀n ∈ N (27)

N∑
m=1

yi,kn,m ≤ 1, ∀ti ∈ T , ∀Uk,n ∈ Un, ∀n ∈ N

(28)
L∑
l=1

zli = 1, ∀ti ∈ T (29)

I∑
i=1

N∑
n=1

K∑
k=1

yi,kn,mp
n
i ϑm ≤ Fm, ∀m ∈ N (30)∑I

i=1
∑K

k=1 y
i,k
n,m(1− x

m
i)δi∑I

i=1
∑K

k=1 y
i,k
n,m(1−xmi)d

Pr
i,n,m

≤0n,m,

∀n,m ∈ N (31)

Here, the delay condition for all the tasks is maintained
by constraint (26). Constraint (27) bounds the input data

63846 VOLUME 8, 2020

M. I. A. Zahed et al.: Green and Secure Computation Offloading for Cache-Enabled IoT Networks

size of the cached tasks. According to constraint (28), to
avoid redundancy, a specific task of a particular subscriber
is not offloaded to more than one MEC server. Similarly,
constraint (29) guarantees that each of the tasks are assigned
a specific security protection service. Constraint (30) denotes
that the total amount of computation offloaded to an edge
node is limited by the computing capacity of the node.
According to constraint (31), the data rate of task propagation
from one node to the other can not exceed the link capacity.

The proposed optimization model is an NLP. This is
because the energy and delay expressions in (15) - (18) and
constraint (31) have quadratic terms. Optimization problems
of this category are computationally expensive and solved by
heuristics based on relaxations and approximations. Nonethe-
less, we transform this NLP into an ILP and solve the problem
using an ILP solver. This solution is utilized as a benchmark
to quantify the acceptance of the heuristics.

We consider two binary decision variables wi,kn,m and qi,k,ln,m
for the ILP transformation. The associated constraints are
defined as follows

wi,kn,m ≤ 1− xmi , ∀ti ∈ T , ∀Uk,n ∈ Un, ∀n,m ∈ N
(32a)

wi,kn,m ≤ yi,kn,m, ∀ti ∈ T , ∀Uk,n ∈ Un, ∀n,m ∈ N
(32b)

yi,kn,m − x
m
i ≤ wi,kn,m, ∀ti ∈ T , ∀Uk,n ∈ Un, ∀n,m ∈ N

(32c)

and

qi,k,ln,m ≤ zli, ∀ti ∈ T , ∀Uk,n ∈ Un,
∀n,m ∈ N ,∀sl ∈ S (33a)

qi,k,ln,m ≤ yi,kn,m, ∀ti ∈ T ,∀Uk,n ∈ Un,
∀n,m ∈ N , ∀sl ∈ S (33b)

zli + y
i,k
n,m − 1 ≤ qi,k,ln,m , ∀ti ∈ T , ∀Uk,n ∈ Un,

∀n,m ∈ N ,∀sl ∈ S (33c)

Therefore, delay and energy expressions in (15) - (18) are
transformed into following equations

DCi,k,n =
N∑
m=1

{
wi,kn,m(d

Off
i,k,n + d

Pr
i,n,m)+ y

i,k
n,md

Ex
i,m
}

(34)

DSi,k,n =
N∑
m=1

L∑
l=1

qi,k,ln,m αlδi (35)

and

ECi,k,n =
N∑
m=1

{
wi,kn,m(E

Off
i,k,n + E

Pr
i,n,m)+ y

i,k
n,mE

Ex
i,m
}

(36)

ESi,k,n =
N∑
m=1

L∑
l=1

qi,k,ln,m βlδi (37)

The constraint in (31) is rewritten as∑I
i=1

∑K
k=1 w

i,k
n,mδi∑I

i=1
∑K

k=1 w
i,k
n,mdPri,n,m

≤ 0n,m, ∀n,m ∈ N (38)

Thus, the optimization problem in (25) is updated into an
ILP. In this article, IBM ILOGCPLEXOptimization Studio is
used to solve the ILP problem. Nonetheless, the computation
time to achieve an acceptable solution depends on the input
parameters. Therefore, it is difficult to solve the problem
involving a large number of servers and users within prac-
tical time. In the following section, we propose a two-stage
heuristic solution to overcome this limitation and achieve an
acceptable solution within a reasonable time limit.

V. A TWO-STAGE HEURISTIC SOLUTION
In this section, we decompose the proposed model into two
sub-problems, which are successively solved to achieve an
acceptable solution in polynomial time. The first stage of the
heuristic solves the caching and computing problem. Then,
in the second stage, we assign security protections to the
offloaded tasks based on the solution of the first stage.

A. CACHING AND COMPUTING PROBLEM
The caching and computing problem investigates the optimal
allocation of the resources at the MEC servers. We select
the tasks for caching and MEC considering the energy con-
sumption and delay requirements. In this part, we do not
investigate the security requirements and consider the secu-
rity components as zero. Thus, in equations (19) and (20)
respectively DSi,k,n = 0 and ESi,k,n = 0. We also relax the
binary decision variables xni , y

i,k
n,m,w

i,k
n,m and convert the ILP

into a linear programming (LP) model.
The caching and computing problem is relaxed as

minimize
x,y,w

E (39)

subject to (26)-(28), (30), (32), (38), and

xni , y
i,k
n,m,w

i,k
n,m ∈ [0, 1] (40)

In Algorithm (1), we present the relaxation and rounding
based solution for the caching and computing problem. First,
we relax the binary variables and solve the LP problem. If the
model is feasible, we get the solutions for the variables in float
data type. Otherwise, the system will return error message.
After that, we sort the caching variable {xni } in descending
order and convert into {Xni } (Line 6). This is because, a higher
value of {xni } is expected to represent a more suitable task {ti}
for caching. Next, we consider the caching capacity constraint
and assign binary values to {Xni } (Line 7-15). We consider 0.5
as a benchmark to convert the variables from float to binary
and assign the caching variables accordingly (Line 16).

In the following part of the algorithm, we consider {xni }
as a known parameter and solve the problem LP2, which
considers both {yi,kn,m} and {w

i,k
n,m} as float type variables (Line

18-20). If LP2 is feasible, we extract the solution and set flag
to zero. We sort the values in {yi,kn,m} and convert into {Y i,kn,m}.
Then, the rounding procedure in Algorithm 2 is utilized to
convert {Y i,kn,m} and {W

i,k
n,m} into binary values.

In Algorithm 2, the rounding procedure also uses 0.5 as
a benchmark for the conversion and checks the computation
offloading constraint in (30). Eventually, the value of {Y i,kn,m}

VOLUME 8, 2020 63847

M. I. A. Zahed et al.: Green and Secure Computation Offloading for Cache-Enabled IoT Networks

Algorithm 1 Caching and Computing Based on Relaxation
and Rounding

1: Relax the binary variables xni , y
i,k
n,m,w

i,k
n,m,∀ti ∈ T ,

∀Uk,n ∈ Un, and ∀n,m ∈ N
2: Solve the LP problem

LP1 : minimize
x,y,w

E

subject to (26)-(28), (30), (32), and (38)
3: if LP1 is feasible then Obtain the solution
4: else Return error
5: end if
6: Sort the caching variable (xni) in descending order and

convert into Xni
7: for n = 1 to N do
8: for i = 1 to I do
9: if (Xni ≥ 0.5) and (

∑I
i=1 X

n
i δi ≤ CN) then

10: Xni ← 1
11: else
12: Xni ← 0
13: end if
14: end for
15: end for
16: Update xni from Xni
17: while flag=1 do
18: Set the value of xni and consider yi,kn,m,w

i,k
n,m ∈ [0, 1]

19: Solve the LP problem

LP2 : minimize
y,w

E

subject to (26),(28),(30), (32), and (38)
20: if LP2 is feasible then
21: Obtain the solution and flag← 0
22: Sort the task offloading variable (yi,kn,m) in

descending order for different tasks and convert into Y i,kn,m
23: Transform Y i,kn,m and W i,k

n,m into binary values
according to Rounding procedure

24: Update yi,kn,m and wi,kn,m from Y i,kn,m and W i,k
n,m

25: Calculate energy and delay for all the tasks.
26: else
27: Convert next element in Xni ← 1
28: if (

∑I
i=1 X

n
i δi ≤ CN) then

29: Update xni
30: else
31: Return error
32: break
33: end if
34: end if
35: end while

is updated to 1 and {W i,k
n,m} is set accordingly. If this allocation

violates the data rate constraint in (38), the variables are set
back to zero.

Algorithm 1 takes these values from the rounding proce-
dure and updates {yi,kn,m} and {w

i,k
n,m}. Then, we calculate the

associated energy and delay for all the tasks.

Algorithm 2 Rounding Procedure
1: procedure Rounding
2: for n = 1 to N do
3: for m = 1 to M do
4: for k = 1 to K do
5: for i = 1 to I do
6: if (Y i,kn,m ≥ 0.5) and constraint (30)

upholds then
7: Y i,kn,m← 1
8: W i,k

n,m← Y i,kn,m(1− x
m
i)

9: if constraint (38) is violated then
10: Y i,kn,m,W

i,k
n,m← 0

11: end if
12: else
13: Y i,kn,m,W

i,k
n,m← 0

14: end if
15: end for
16: end for
17: end for
18: end for
19: end procedure

If LP2 is not feasible, we consider following tasks in the
sorted list of {Xni } and cache the tasks. Then, the process is
repeated until we successfully find an acceptable solution.
Otherwise, the system returns error.

B. SECURITY SERVICE ASSIGNMENT PROBLEM
The security service assignment problem investigates which
security level protection should be assigned to an offloaded
task at the MEC server, subject to that the offloading deci-
sions have been made. In Algorithm 2, we assign the secu-
rity services to minimize the probable security breach cost
and energy consumption. The delay condition is also strictly
maintained.

First, we calculate the probable security breach costs, asso-
ciated overheads, and overall cost {φsi,l} for all the tasks and
possible security services (Line 3-6). Then, we choose the
security protection service l ′ for all the tasks considering the
minimum value of {φsi,l} and initialize the associated variable
to 1 (Line 8).

In the following step, we evaluate the associated delay
(Di,k,n) for every task and check the delay condition (Line
13-14). If any of these offloaded tasks violates the delay
requirement, we update the minimum value of {φsi,l} while
maintaining delay requirements. The associated security pro-
tection level is labeled as l ′ and the security service assign-
ment is completed (Line 17-21).

Finally, we calculate energy consumption (E), security
breach cost (ψ), and overall cost (φ) for the system.

C. POLYNOMIAL TIME COMPLEXITY
This section presents the polynomial time complexity of the
two-stage heuristic solution.

63848 VOLUME 8, 2020

M. I. A. Zahed et al.: Green and Secure Computation Offloading for Cache-Enabled IoT Networks

Algorithm 3 Security Service Assignment
1: for i = 1 to I do
2: for l = 1 to L do
3: Calculate ψ l

i from equation (11)
4: Determine delay overhead, DSi,l = αlδi
5: Determine energy overhead, ESi,l = βlδi
6: Evaluate φSi,l = ηE

S
i,l + (1− η)ψ l

i
7: end for
8: Choose the security protection l ′ for task ti with

minimum value of φSi,l and assign z
l′
i ← 1

9: end for
10: for n = 1 to N do
11: for k = 1 to K do
12: for i = 1 to I do
13: Calculate the associated delay Di,k,n from

equation (34)
14: if (Di,k,n > µi) then
15: Choose the security protection l ′ for task

ti with minimum value of {φSi,l},which satisfies the delay
condition in equation (26).

16: for l = 1 to L do
17: if l = l ′ then
18: zli ← 1
19: else
20: zli ← 0
21: end if
22: end for
23: end if
24: end for
25: end for
26: end for
27: Calculate E, ψ , and φ from equations (21), (23), and (24)

In Algorithm 1, first, we solve the LP1 optimization
problem. The solution of such an LP model is achieved in
polynomial time [46]. Then, the sorting procedure has a
computational complexity of O(IlogI) and the complexity
for N number of edge nodes is O(NIlogI). The following
steps converting the caching variable into the binary format
involves two for loops. This conversion has a complexity of
O(NI). The LP2 optimization problem also has polynomial-
time complexity. The sorting of the task offloading vari-
able possesses a computational complexity of O(N 2KIlogI).
Complexity of the following steps involving rounding and
binary conversion isO(N 2KI). Therefore, the solution for the
caching and computing problem can be achieved in polyno-
mial time.

In Algorithm 2, the steps calculating the cost functions
and selecting security protection for every task have the
computational complexity of O(L). Hence, the complexity
involving these steps (Line 1-9) isO(2IL). The following part
of the algorithm has three for loops and the step choosing
security protection (Line 15) has computational complexity
of O(L). The next steps select security protections among L
security levels and the corresponding complexity is alsoO(L).

FIGURE 2. Simulation scenario for green and secure MEC.

TABLE 2. Summary of simulation parameters.

Therefore, the overall complexity of the security service
assignment involving the above mentioned for loops is
O(2NKIL) ≈ O(NKIL).
Eventually, it is evident that, the proposed two-stage

heuristic algorithm can be solved in polynomial-time.

VI. SIMULATION RESULTS AND DISCUSSION
In this section, we investigate the system performance of the
proposedMEC technique and validate the effectiveness of the
technique over existing models. The system performance is
measured in terms of energy consumption, probable security
breach cost, average delay, and task offloading percentage. In
the first part of this section, we describe the simulation set-
tings. Then we provide the numerical results and discussions.

We consider a small-scale network with six edge nodes,
which is presented in Fig. 2. Each of these nodes possesses
a BS with an MEC server, and the coverage area of a node
is 200 m × 200 m [3]. The users are evenly distributed and
connected to the nearest BS. The user devices offload tasks
to the BSs usingwireless channel. The channel gain is defined
as gk,n, = 127+30logbk,n, where bk,n is the distance (in km)
between the edge node n and user device Uk,n [4].
In this article, the user tasks are generated based on uniform

distribution [12] and the task popularity follows Zipf proba-
bility distribution with a skewness parameter of 0.56 [3]. The
linear coefficients for content transmission delay are chosen

VOLUME 8, 2020 63849

M. I. A. Zahed et al.: Green and Secure Computation Offloading for Cache-Enabled IoT Networks

TABLE 3. Cryptographic algorithms for security protection.

as θ0 = 5ms/km and θ1 = 22.3ms [37].We consider η = 0.2
as a default value for the trade-off coefficient and provide
more emphasis on security over energy. However, we also
consider two other values of η (0.1 and 0.5) and highlight
their impact. The summary of the key simulation parameters
are presented in Table 2. The simulation parameters carry
these default values, unless mentioned otherwise.

To assign security protections based on the requirements of
the offloaded tasks, we consider five different crytographic
algorithms [26], [50]. These algorithms can be categorized
according to their security strengths. However, the energy
and delay overheads usually increase with an upsurge in
security strength. In Table 3, we summarize diverse levels
of security strength and associated overheads for different
security protection algorithm.

In this article, we compare the performance of our pro-
posed MEC system with the following strategies presented
in the existing literature.

• Task caching and offloading (TCO) technique:
This method [4] utilizes task caching along with MEC.
The popular tasks are cached at the BSs and energy criti-
cal tasks are offloaded to the nearest MEC servers. How-
ever, the study does not consider cooperation between
the BSs and security aspects of task offloading.

• Cooperative mobile edge computing (CMEC) tech-
nique:
In this approach [5], [28], the MEC servers connected
to different nodes work collectively. The most suitable
MEC server offloads the task of an user considering
associated delay and energy consumption. Nonetheless,
the potential of task caching and the security breach
issues of the offloaded tasks are not investigated.

• Secure task offloading (STO) technique:
The security aspects of the offloaded tasks are addressed
in this model [13]. The model utilizes cryptographic
algorithm for data encryption and decryption of an
offloaded task. However, the STO technique neither
considers the collective operation of the edge servers
nor caching. Moreover, the technique does not address

FIGURE 3. The comparison of energy consumption for different MEC techniques with the changing (a) computation capacity of the MEC
server; (b) number of user devices; (c) average computations per task; (d) average input data size.

63850 VOLUME 8, 2020

M. I. A. Zahed et al.: Green and Secure Computation Offloading for Cache-Enabled IoT Networks

FIGURE 4. The comparison of probable security breach costs for different MEC techniques with the changing (a) computation capacity
of the MEC server; (b) number of user devices; (c) average computations per task; (d) average input data size.

different security requirements of the offloaded tasks
and the security breach cost.

In contrast to the aforementioned techniques, we not only
reduce energy consumption, but also decrease probable secu-
rity breach cost while maintaining delay requirements of the
IoT applications.

In this article, we have generated the results using IBM
ILOG CPLEX optimization studio and MATLAB R 2016b.
The simulations are conducted on a PC with Intel(R) Core i5
3.8 GHz processor and 16 GB RAM. The simulations are run
for 50 times and the average values are taken as numerical
results.

Fig. 3 presents the energy consumption for different MEC
techniques with respect to diverse system parameters. The
STO technique has maximum energy consumption because it
utilizes neither caching nor cooperation of the MEC servers.
Furthermore, this technique also experiences energy over-
head because of the security algorithm. The energy consump-
tion in the CMEC technique is further improved because
the MEC servers are operated collectively. Although the
TCO technique does not consider cooperation among the
MEC servers, it utilizes caching and saves the transmission
energy required for the cached-task input data. However,
our proposed technique explores both caching and coopera-

tion in MEC. Therefore, the energy consumption decreases
significantly, in spite of the energy overheads caused by
the security services. The energy savings achieved in the
proposed technique is evident in Fig. 3.

Fig. 3(a) shows that the energy consumption decreaseswith
an upraise in the computation capacity of the MEC server,
which varies from 12GHz to 20GHz. This is because a higher
computation capacity allows more tasks to be offloaded at the
MEC servers, which provides faster and energy-efficient task
execution.

According to Fig. 3(b), the energy consumption increases
with the number of the user devices, while the com-
puting capacity remains constant. The MEC servers with
finite capacity can not offload all the tasks when more
user devices are in the network. Hence, a large portion
of the tasks are executed locally and energy consumption
increases.

From Fig. 3(c), we observe that the energy consumption
increases when the average computations per task is higher.
This is because the MEC servers with a fixed computation
capacity offloads lower number of user tasks with higher
computation requirements. As a result, the number of the
locally executed tasks increases. If the computation require-
ment is smaller, then more tasks are executed at the edge and
significant energy savings is achieved.

VOLUME 8, 2020 63851

M. I. A. Zahed et al.: Green and Secure Computation Offloading for Cache-Enabled IoT Networks

In Fig. 3(d), we show the energy consumption for changing
input data size for different tasks. The energy consumption
is higher when the data size increases because it requires
more energy to transmit and offload the tasks to the MEC
servers.

Fig. 4 shows the probable security-breach cost for theMEC
techniques discussed in this article. The TCO technique and
the CMEC technique do not consider the security aspects
of MEC. Therefore, in both techniques, the offloaded tasks
are prone to malicious attacks and the probable security
breach cost is high. The STO technique achieves significant
reduction in probable security-breach cost because it adopts
cryptographic algorithm for security protections. However,
this technique does not consider specific security require-
ments of different tasks. Our proposed MEC model performs
best and achieves significant reduction in probable security-
breach cost compared to the STO technique.
In Fig. 4(a), we present the probable security-breach cost

for changing computation capacity of the MEC server. An
increase in the computation capacity offloads more tasks to
the MEC servers. On the other hand, the offloaded tasks are
vulnerable to eavesdropping and malicious attacks. There-
fore, the probable security-breach cost increases when com-
putation capacity is higher.

Fig. 4(b) shows that the probable security-breach cost
decreases when number of user devices increase. In this
scenario, the computation capacity remains constant. If the
number of user devices is high, the MEC servers have more
options to choose for task offloading. Then the finite com-
putation capacity is utilized to offload less vulnerable tasks
and more vulnerable tasks are executed locally. In this model,
local execution does not have probable security-breach cost.
Hence, this cost is lower for a system with more user devices
while the capacity of the MEC servers remains fixed.

We present the impact of the average computations per task
on the probable security-breach cost in Fig. 4(c). When the
value of the average computations is small, the MEC servers
can offload more tasks. Therefore, the probable security-
breach cost is higher. This cost does not vary significantly
because the security overheads are mainly dependent on the
data size, not on the computation requirement.

According to Fig. 4(d), the probable security-breach cost
is higher when average input data size increases. This is
because the increase in the data size not only causes delay, but
also introduces energy overheads. Therefore, for some of the
offloaded tasks, the system compromises stringent security
protection to meet delay requirements and achieve energy
savings.

In Fig. 5, average delay is presented as a function of
different system parameters. Fig. 5(a) shows that the delay
reduces sharply with increasing computation capacity. When
the computing capacity increases from 12GHz to 20GHz, the
delay reduces by 12%. Higher computation capacity enables
more tasks to be offloaded at the MEC server and ensures
faster execution. On the other hand, when computation capac-
ity is fixed, an increase in the number of user devices does

FIGURE 5. Average delay for changing (a) computation capacity of the
MEC server and number of user devices; (b) average computations per
task and average input data size.

not allow to offload the additional tasks. Hence, those tasks
are executed locally and increases average delay. For 16 GHz
computation capacity, the upsurge in the number of user
devices from 80 to 120 increases average delay by 8%.

From Fig. 5(b), we observe that average delay increases
when either average computations per task or average input
data size increases. As the average input data size for IoT
tasks is small, the changes in average delay with respect to
average computations is significantly dominant compared to
the changes regarding input data size.

Fig. 6 shows the joint impact of computation capacity
and the number of user devices on task offloading. MEC
servers with higher computation capacity accommodates
more tasks and increases the percentage of the offloaded
tasks. An improvement in computation capacity from 12 GHz
to 20 GHz upraises the task offloading percentage from 29%
to 45% for a system with 80 user devices connected to each
node. When the number of user devices become 100, the
task offloading percentage declines to 22% and 31% for
12 GHz and 20 GHz computation capacity, respectively. This
is because the servers with limited capacity cannot offload the
tasks of the additional user devices.

In this article, the trade-off coefficient (η) is varied as
0.1, 0.2, and 0.5. These three values represent extremely

63852 VOLUME 8, 2020

M. I. A. Zahed et al.: Green and Secure Computation Offloading for Cache-Enabled IoT Networks

FIGURE 6. Task offloading percentage for changing computation capacity
of the MEC servers and number of user devices.

FIGURE 7. Energy consumption for different trade-off coefficients with
changing (a) computation capacity of the MEC servers and (b) number of
user devices.

secure, highly secure, and moderately secure conditions,
respectively. When η possesses a low magnitude, the system
shows more sensitivity to the security issues compared to
energy consumption. Fig. 7 shows that an increase in the
magnitude of η compromises security concerns and achieves
further energy savings. Similarly, in Fig. 8, it is evident that
the probable security-breach cost upraises when η increases.
Stringent security can be achieved by reducing η and sac-
rificing energy efficiency. This observation remains valid
for different computation capacity and the number of user
devices.

In Fig. 9 and Fig. 10, we compare the simulation outcomes
of the heuristic solution with the ILP solution. Fig. 9(a) and
Fig. 9(b) present that, similar to the ILP solution, the energy
consumption declines and the probable-security breach cost
upraises with increasing computation capacity. However, the
heuristic solution is marginally high compared to the ILP
solution and the difference varies within 3% to 6%.

From Fig. 10(a) and Fig. 10(b), we observe that an increase
in the number of user devices escalates the energy consump-
tion and drops the probable security-breach cost. This remark
upholds for both the ILP and the heuristic solution. The
heuristic solution attains 2% to 5% higher value compared
to the ILP solution. This difference is within an acceptable
range, and the heuristic can be utilized to solve the optimiza-
tion problem in polynomial time.

We have generated results utilizing ILP solver and vali-
dated our proposed heuristic comparing with these results.
This validation is crucial because ILP solvers can not generate

FIGURE 8. Probable security-breach costs for different trade-off
coefficients with changing (a) computation capacity of the MEC servers
and (b) number of user devices.

FIGURE 9. Comparison between the ILP solution and the heuristic
solution for the changing computation capacity of the MEC sever.

FIGURE 10. Comparison between the ILP solution and the heuristic
solution for the changing number of user devices.

polynomial-time solutions for a larger scenario. On the other
hand, ultra dense wireless networks are expected to have
up to 1 million users per km2. In this study, we consider
0.04km2 coverage area for every BS. Hence, 40,000 mobile
devices under the coverage area of a BS is equivalent to
1 million users per km2. To show the effectiveness of our
proposed strategy in ultra dense scenario, we present energy
consumption and probable security breach cost with respect
to the number of user devices per BS in Fig. 11. The energy
consumption cost increases exponentially with increasing
user devices. The security breach cost decreases because the
MEC servers have more options to choose less vulnerable
tasks. These results are consistent with our previous results
in Fig. 3 and Fig. 4.

In Table 4, we present the summary of the numerical results
and compare our proposed technique with the existing meth-
ods [4], [5], [13], [28]. Among the existing MEC techniques,
the TCO technique is the best in terms of energy-efficiency
and the STO technique performs best according to security
aspects. For the default simulation parameters, our proposed
technique reduces energy consumption by 8% and probable

VOLUME 8, 2020 63853

M. I. A. Zahed et al.: Green and Secure Computation Offloading for Cache-Enabled IoT Networks

FIGURE 11. The impact of the ultra dense scenario on the proposed
technique.

TABLE 4. Summary of the results.

security-breach cost by 60% compared to the TCO technique.
On the other hand, in comparison with the STO technique,
our proposed model achieves 15% energy savings and 18%
savings in probable security-breach cost.

In this study, our proposed model and other comparing
methods consider static-geographical positions of the user
devices. If user mobility is taken into account, the associated
overheads will be higher because of caching and computing
redundancy. Therefore, the integration of the mobility man-
agement into these studies will improve the performance gain
further. Compared to other methods, the proposed model is
more suitable to incorporate mobility management. This is
because our model considers the cooperation between the
edge nodes, which is ignored in most of the existing studies.
Hence, the inclusion of mobility management into our model
is expected to achieve further improvement in terms of energy
savings and probable security-breach cost. We look forward
to address this in our future work.

VII. CONCLUSION
In this article, we designed an MEC technique for IoT appli-
cations based on the security and energy related issues. The
proposed model combines caching, cooperative task offload-
ing, and security services assignment to achieve not only
stringent security protection, but also energy savings. We
developed a constrained optimization model, which reduced
the overall cost combining probable security-breach cost and
energy consumption. Furthermore, a heuristic solution is
designed to solve the optimization problem in polynomial
time. Numerical results present that our proposed model
can reduce the probable security-breach cost up to 60% and
energy consumption up to 15% compared to the current
MEC techniques. In the future, we will explore the mobility

management and incentive mechanisms for security services
in MEC with caching facilities.

REFERENCES
[1] Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao, ‘‘A survey on security and

privacy issues in Internet-of-Things,’’ IEEE Internet Things J., vol. 4, no. 5,
pp. 1250–1258, Oct. 2017.

[2] P. Liu, G. Xu, K. Yang, K.Wang, and X.Meng, ‘‘Jointly optimized energy-
minimal resource allocation in cache-enhanced mobile edge computing
systems,’’ IEEE Access, vol. 7, pp. 3336–3347, 2019.

[3] J. Zhang, X. Hu, Z. Ning, E. C.-H. Ngai, L. Zhou, J. Wei, J. Cheng, B. Hu,
and V. C. M. Leung, ‘‘Joint resource allocation for latency-sensitive ser-
vices over mobile edge computing networks with caching,’’ IEEE Internet
Things J., vol. 6, no. 3, pp. 4283–4294, Jun. 2019.

[4] Y. Hao,M. Chen, L. Hu,M. S. Hossain, andA. Ghoneim, ‘‘Energy efficient
task caching and offloading for mobile edge computing,’’ IEEE Access,
vol. 6, pp. 11365–11373, 2018.

[5] S. Misra and N. Saha, ‘‘Detour: Dynamic task offloading in software-
defined fog for IoT applications,’’ IEEE J. Sel. Areas Commun., vol. 37,
no. 5, pp. 1159–1166, May 2019.

[6] IoT Analytics. (2014). Why the Internet of Things is Called Inter-
net of Things: Definition, History, Disambiguation. [Online]. Available:
https://iot-analytics.com/internet-of-things-definition/

[7] J. Ni, X. Lin, and X. S. Shen, ‘‘Efficient and secure service-oriented
authentication supporting network slicing for 5G-enabled IoT,’’ IEEE J.
Sel. Areas Commun., vol. 36, no. 3, pp. 644–657, Mar. 2018.

[8] H. Guo, J. Zhang, J. Liu, and H. Zhang, ‘‘Energy-aware computation
offloading and transmit power allocation in ultradense IoT networks,’’
IEEE Internet Things J., vol. 6, no. 3, pp. 4317–4329, Jun. 2019.

[9] P. Brown. (2018). Is Battery Life Hindering Growth Internet Things
Devices. [Online]. Available: https://electronics360.globalspec.com/
article/13112/is-battery-life-hin dering-the-growth-of-internet-of-things-
devices

[10] S. Deng, Z. Xiang, J. Yin, J. Taheri, and A. Y. Zomaya, ‘‘Composition-
driven IoT service provisioning in distributed edges,’’ IEEE Access, vol. 6,
pp. 54258–54269, 2018.

[11] X. Cheng, F. Lyu, W. Quan, C. Zhou, H. He, W. Shi, and X. Shen,
‘‘Space/Aerial-assisted computing offloading for IoT applications: A
learning-based approach,’’ IEEE J. Sel. Areas Commun., vol. 37, no. 5,
pp. 1117–1129, May 2019.

[12] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan, S. Maharjan,
and Y. Zhang, ‘‘Energy-efficient offloading for mobile edge computing in
5G heterogeneous networks,’’ IEEE Access, vol. 4, pp. 5896–5907, 2016.

[13] I. A. Elgendy, W. Zhang, Y.-C. Tian, and K. Li, ‘‘Resource allocation and
computation offloading with data security for mobile edge computing,’’
Future Gener. Comput. Syst., vol. 100, pp. 531–541, Nov. 2019.

[14] K. Li, M. Tao, and Z. Chen, ‘‘Exploiting computation replication for
mobile edge computing: A fundamental computation-communication
tradeoff study,’’ 2019, arXiv:1903.10837. [Online]. Available:
http://arxiv.org/abs/1903.10837

[15] O. Munoz, A. Pascual-Iserte, and J. Vidal, ‘‘Optimization of radio and
computational resources for energy efficiency in latency-constrained
application offloading,’’ IEEE Trans. Veh. Technol., vol. 64, no. 10,
pp. 4738–4755, Oct. 2015.

[16] Statista. Internet Things (IoT) Connected Devices Installed Base
Worldwide From 2015 to 2025 (in Billions). [Online]. Available:
https://www.statista.com/statistics/471264/iot-number-of-connected-devi
ces-worldwide/

[17] J. Xie, Y. Jia, Z. Chen, Z. Nan, and L. Liang, ‘‘D2D computation offloading
optimization for precedence-constrained tasks in information-centric IoT,’’
IEEE Access, vol. 7, pp. 94888–94898, 2019.

[18] J. A. Khan, C. Westphal, and Y. Ghamri-Doudane, ‘‘Information-centric
fog network for incentivized collaborative caching in the Internet of every-
thing,’’ IEEE Commun. Mag., vol. 57, no. 7, pp. 27–33, Jul. 2019.

[19] Y. Lan, X. Wang, D. Wang, Z. Liu, and Y. Zhang, ‘‘Task caching, offload-
ing, and resource allocation in D2D-aided fog computing networks,’’ IEEE
Access, vol. 7, pp. 104876–104891, 2019.

[20] J. Yao and N. Ansari, ‘‘Caching in energy harvesting aided Internet of
Things: A game-theoretic approach,’’ IEEE Internet Things J., vol. 6, no. 2,
pp. 3194–3201, Apr. 2019.

[21] Z. Zhao, Y. Shi, B. Diao, and B.Wu, ‘‘Optimal data caching and forwarding
in industrial IoT with diverse connectivity,’’ IEEE Trans. Ind. Informat.,
vol. 15, no. 4, pp. 2288–2296, Apr. 2019.

63854 VOLUME 8, 2020

M. I. A. Zahed et al.: Green and Secure Computation Offloading for Cache-Enabled IoT Networks

[22] M. I. A. Zahed, I. Ahmad, D. Habibi, Q. V. Phung, and M. M. Mowla,
‘‘Proactive content caching using surplus renewable energy: A win–win
solution for both network service and energy providers,’’ Future Gener.
Comput. Syst., vol. 105, pp. 210–221, Apr. 2020.

[23] L. Xiao, X. Wan, C. Dai, X. Du, X. Chen, and M. Guizani, ‘‘Security in
mobile edge caching with reinforcement learning,’’ IEEE Wireless Com-
mun., vol. 25, no. 3, pp. 116–122, Jun. 2018.

[24] B. Huang, Z. Li, P. Tang, S. Wang, J. Zhao, H. Hu, W. Li, and V. Chang,
‘‘Security modeling and efficient computation offloading for service work-
flow in mobile edge computing,’’ Future Gener. Comput. Syst., vol. 97,
pp. 755–774, Aug. 2019.

[25] M. I. Aziz Zahed, I. Ahmad, D. Habibi, and Q. V. Phung, ‘‘Content caching
in industrial IoT: Security and energy considerations,’’ IEEE Internet
Things J., vol. 7, no. 1, pp. 491–504, Jan. 2020.

[26] W. Jiang, K. Jiang, X. Zhang, and Y.Ma, ‘‘Energy optimization of security-
critical real-time applications with guaranteed security protection,’’ J. Syst.
Archit., vol. 61, no. 7, pp. 282–292, Aug. 2015.

[27] D. He, S. Chan, and M. Guizani, ‘‘Security in the Internet of Things
supported by mobile edge computing,’’ IEEE Commun. Mag., vol. 56,
no. 8, pp. 56–61, Aug. 2018.

[28] Y. Dong, S. Guo, J. Liu, and Y. Yang, ‘‘Energy-efficient fair cooperation
fog computing in mobile edge networks for smart city,’’ IEEE Internet
Things J., vol. 6, no. 5, pp. 7543–7554, Oct. 2019.

[29] P. Mach and Z. Becvar, ‘‘Mobile edge computing: A survey on architecture
and computation offloading,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 3,
pp. 1628–1656, 3rd Quart., 2017.

[30] Z. Ning, P. Dong, X. Kong, and F. Xia, ‘‘A cooperative partial computation
offloading scheme for mobile edge computing enabled Internet of Things,’’
IEEE Internet Things J., vol. 6, no. 3, pp. 4804–4814, Jun. 2019.

[31] N. Kherraf, H. A. Alameddine, S. Sharafeddine, C. M. Assi, and
A. Ghrayeb, ‘‘Optimized provisioning of edge computing resources with
heterogeneous workload in IoT networks,’’ IEEE Trans. Netw. Service
Manage., vol. 16, no. 2, pp. 459–474, Jun. 2019.

[32] V. Balasubramanian, F. Zaman, M. Aloqaily, S. Alrabaee, M. Gorlatova,
and M. Reisslein, ‘‘Reinforcing the edge: Autonomous energy manage-
ment for mobile device clouds,’’ in Proc. IEEE Conf. Comput. Commun.
Workshops (INFOCOM WKSHPS), Apr. 2019, pp. 44–49.

[33] V. Balasubramanian, N. Kouvelas, K. Chandra, R. V. Prasad,
A. G. Voyiatzis, and W. Liu, ‘‘A unified architecture for integrating
energy harvesting IoT devices with the mobile edge cloud,’’ in Proc. IEEE
4th World Forum Internet Things (WF-IoT), Feb. 2018, pp. 13–18.

[34] S. K. Mishra, D. Puthal, B. Sahoo, S. Sharma, Z. Xue, and A. Y. Zomaya,
‘‘Energy-efficient deployment of edge dataenters for mobile clouds in
sustainable IoT,’’ IEEE Access, vol. 6, pp. 56587–56597, 2018.

[35] V. Balasubramanian, F. Zaman, M. Aloqaily, I. A. Ridhawi, Y. Jararweh,
and H. B. Salameh, ‘‘A mobility management architecture for seamless
delivery of 5G-IoT services,’’ in Proc. IEEE Int. Conf. Commun. (ICC),
May 2019, pp. 1–7.

[36] Y. Sun, S. Zhou, and J. Xu, ‘‘EMM: Energy-aware mobility management
for mobile edge computing in ultra dense networks,’’ IEEE J. Sel. Areas
Commun., vol. 35, no. 11, pp. 2637–2646, Nov. 2017.

[37] Q. Fan and N. Ansari, ‘‘Application aware workload allocation for
edge computing-based IoT,’’ IEEE Internet Things J., vol. 5, no. 3,
pp. 2146–2153, Jun. 2018.

[38] Q. Chen, F. R. Yu, T. Huang, R. Xie, J. Liu, and Y. Liu, ‘‘Joint resource
allocation for software-defined networking, caching, and computing,’’
IEEE/ACM Trans. Netw., vol. 26, no. 1, pp. 274–287, Feb. 2018.

[39] X. Liu, J. Zhang, X. Zhang, and W. Wang, ‘‘Mobility-aware coded prob-
abilistic caching scheme for MEC-enabled small cell networks,’’ IEEE
Access, vol. 5, pp. 17824–17833, 2017.

[40] L. T. Tan and R. Q. Hu, ‘‘Mobility-aware edge caching and computing
in vehicle networks: A deep reinforcement learning,’’ IEEE Trans. Veh.
Technol., vol. 67, no. 11, pp. 10190–10203, Nov. 2018.

[41] H. M. Al-Kadhim and H. S. Al-Raweshidy, ‘‘Energy efficient and
reliable transport of data in cloud-based IoT,’’ IEEE Access, vol. 7,
pp. 64641–64650, 2019.

[42] Y. Wu, J. Shi, K. Ni, L. Qian, W. Zhu, Z. Shi, and L. Meng, ‘‘Secrecy-
based delay-aware computation offloading via mobile edge computing for
Internet of Things,’’ IEEE Internet Things J., vol. 6, no. 3, pp. 4201–4213,
Jun. 2019.

[43] T.-D. Nguyen, E.-N. Huh, and M. Jo, ‘‘Decentralized and revised content-
centric networking-based service deployment and discovery platform in
mobile edge computing for IoT devices,’’ IEEE Internet Things J., vol. 6,
no. 3, pp. 4162–4175, Jun. 2019.

[44] X. Sun and N. Ansari, ‘‘Latency aware workload offloading in the cloudlet
network,’’ IEEE Commun. Lett., vol. 21, no. 7, pp. 1481–1484, Jul. 2017.

[45] R. Huo, F. R. Yu, T. Huang, R. Xie, J. Liu, V. C. M. Leung, and Y. Liu,
‘‘Software defined networking, caching, and computing for green wireless
networks,’’ IEEE Commun. Mag., vol. 54, no. 11, pp. 185–193, Nov. 2016.

[46] A. Khreishah, H. Bany Salameh, I. Khalil, and A. Gharaibeh, ‘‘Renew-
able energy-aware joint caching and routing for green communication
networks,’’ IEEE Syst. J., vol. 12, no. 1, pp. 768–777, Mar. 2018.

[47] M. Liu, F. R. Yu, Y. Teng, V. C. M. Leung, and M. Song, ‘‘Computa-
tion offloading and content caching in wireless blockchain networks with
mobile edge computing,’’ IEEE Trans. Veh. Technol., vol. 67, no. 11,
pp. 11008–11021, Nov. 2018.

[48] X. Cao, F. Wang, J. Xu, R. Zhang, and S. Cui, ‘‘Joint computation and
communication cooperation for energy-efficient mobile edge computing,’’
IEEE Internet Things J., vol. 6, no. 3, pp. 4188–4200, Jun. 2019.

[49] A. Pal, H. K. Rath, S. Shailendra, and A. Bhattacharyya, ‘‘IoT standard-
ization: The road ahead,’’ in Internet of Things-Technology, Applications
and Standardization. London, U.K.: IntechOpen, 2018, pp. 53–74, doi:
10.5772/intechopen.75137.

[50] Z. Li, J. Ge, C. Li, H. Yang, H. Hu, B. Luo, and V. Chang, ‘‘Energy cost
minimization with job security guarantee in Internet data center,’’ Future
Gener. Comput. Syst., vol. 73, pp. 63–78, Aug. 2017.

M. ISHTIAQUE A. ZAHED received the B.Sc.
and M.Sc. degrees in electrical and electronic
engineering from the Bangladesh University of
Engineering and Technology (BUET), in 2011
and 2015, respectively. He is currently pursuing
the Ph.D. degree with the School of Engineering,
Edith Cowan University, Australia. He served as a
Faculty Member with the School of Engineering,
East Delta University, Bangladesh, from 2012 to
2016. His research interests include green commu-

nications, the IoT, wireless communications, and network security.

IFTEKHAR AHMAD (Member, IEEE) received
the Ph.D. degree in communication networks from
Monash University, Australia, in 2007. He is cur-
rently an Associate Professor with the School of
Engineering, Edith Cowan University, Australia.
His research interests include 5G technologies,
green communications, QoS in communication
networks, software-defined radio, wireless sensor
networks, and computational intelligence.

DARYOUSH HABIBI (Senior Member, IEEE)
received the B.E. degree (Hons.) in electrical engi-
neering and the Ph.D. degree from the Univer-
sity of Tasmania, Australia, in 1989 and 1994,
respectively. His employment history includes Tel-
stra Research Laboratories, Flinders University,
Intelligent Pixels Inc., and Edith Cowan Uni-
versity, where he is currently a Professor, the
Pro Vice-Chancellor, and the Executive Dean of
engineering. His current research interests include

engineering design for sustainable development, smart energy systems, envi-
ronmental monitoring technologies, and reliability and quality of service in
communication systems and networks. He is a Fellow of Engineers Australia
and the Institute of Marine Engineering, Science, and Technology.

QUOC VIET PHUNG (Member, IEEEE) received
the Ph.D. degree in communication networks from
Edith Cowan University, Australia, in 2010. He is
currently a Postdoctoral Research Fellow with the
School of Engineering, Edith Cowan University.
His current research interests include 5G tech-
nologies, green communications, wireless sensor
networks, and computational intelligence.

VOLUME 8, 2020 63855

http://dx.doi.org/10.5772/intechopen.75137

	INTRODUCTION
	RELATED WORK
	ENERGY-EFFICIENT AND LATENCY-CRITICAL MEC
	COOPERATION AMONG THE EDGE SERVERS IN MEC
	COLLABORATION OF MEC AND CACHING
	SECURITY ASPECTS IN MEC
	NOVELTY OF THIS WORK

	SYSTEM MODEL
	SYSTEM OVERVIEW
	COMMUNICATION MODEL
	COMPUTATION
	CACHING
	SECURITY

	PROBLEM FORMULATION AND TRANSFORMATION
	A TWO-STAGE HEURISTIC SOLUTION
	CACHING AND COMPUTING PROBLEM
	SECURITY SERVICE ASSIGNMENT PROBLEM
	POLYNOMIAL TIME COMPLEXITY

	SIMULATION RESULTS AND DISCUSSION
	CONCLUSION
	REFERENCES
	Biographies
	M. ISHTIAQUE A. ZAHED
	IFTEKHAR AHMAD
	DARYOUSH HABIBI
	QUOC VIET PHUNG

