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ABSTRACT Dissolved gas analysis (DGA) is an important method of predicting transformer faults, and the
accuracy of DGAmeasurements is of great significance to the evaluation of the transformer state in grid edge
systems. In actual situations, it is difficult to regularly calibrate online DGAmonitoring devices in a uniform
way. Therefore, this paper proposes a method based on B-EMD and DBN to evaluate the validity of online
DGA monitoring data and optimize the corresponding calibration plan. An analysis of actual DGA signals
shows that the method proposed in this paper can effectively diagnose faults and improve the reliability of
DGA online monitoring devices.

INDEX TERMS Dissolved gas analysis, power transformer, validity evaluation, empirical mode decompo-
sition, deep belief network.

I. INTRODUCTION
Power transformers are one of the most important pieces of
equipment in a power system, and their operation reliability is
directly related to the safety of the power system. At present,
dissolved gas analysis (DGA) for transformer oil is an effec-
tivemethod of diagnosing transformer defects [1]–[3] and has
been widely used to monitor the state of power transformers.
However, the service life of a DGA online monitoring device
is far lower than that of the power transformer itself, and
most DGA online monitoring devices are installed outdoors,
where the operating environment is harsh. The accuracy of
DGA is greatly reduced because of the dead oil that results
from unreasonable oil circuit design, the aging of degassing
devices, spectrometer deviations and other factors that lead
to invalid data, thus reducing the reliability and confidence
of DGA monitoring data.

Currently, it is difficult to regularly calibrate online DGA
monitoring devices in a uniform way in actual scenarios
due to the complexity of on-site calibration and extensive
professional requirements. Therefore, it can be determined
whether there are aging or other problems with DGA online
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monitoring devices by evaluating the validity of oil chro-
matography data. In this approach, the calibration and main-
tenance of high-risk DGA online monitoring devices can be
prioritized, which is of important significance for improv-
ing the accuracy of DGA state monitoring devices and the
operating safety of the power transformer. In the actual oper-
ation of a power transformer, the ambient temperature and
relative humidity, load, oil temperature and other factors
will influence the DGA results both directly and indirectly.
Reference [4] found that the DGA signal itself is complex
and chaotic and can be obtained by calculating the Lyapunov
Index of the signal.

In the literature, there have been a large number of
studies on dissolved gas signal analysis, mostly focus-
ing on the diagnosis and analysis of power transformer
defects [2], [5]–[8]. Few studies have focused on the accu-
racy of online devices. Currently, support vector machines
are manly used to improve the accuracy of online DGA
signals. Because the corresponding model is too simple and
requires offline data for support, this approach is not fea-
sible in practical applications. Reference [9]–[14] uses the
fast-MCD robust analysis method to detect outliers in DGA
signals based on the Mahalanobis distance. However, the
calibration of the Mahalanobis distance is easily affected by
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DGA changes in monitoring devices, and such changes in the
effectiveness of the DGA online monitoring devices tend to
be reflected in the signal of the DGA changes.

Reference [15] decomposes the defects in DGA online
devices into five types (i.e., fixed deviation, drift deviation,
transformation ratio deviation, precision distortion fault and
complete failure defects) to evaluate the effectiveness of DGA
data using threshold, variation, and slope criteria, among
others. Because of the complexity of DGA signals, however,
the methods above tend to cause a large number of false
statements and misstatements due to the improper selection
of parameters [16]–[20].

Therefore, it is extremely difficult to determine how to
reduce the impact of monitoring in the analysis of DGA
signals. Therefore, this paper proposes a method based
on B-EMD and DBN to evaluate the validity of online
DGA monitoring data and optimize the calibration scheme.
An analysis of actual DGA signals shows that themethod pro-
posed in this paper can effectively diagnose the faults of DGA
online monitoring devices and improve device reliability.

II. INTRINSIC MODEL ANALYSIS OF DGA SIGNAL
BASED ON B-EMD
In analyses of DGA signals, most traditional signal process-
ing methods need to predefine the primary functions (such as
by Fourier analysis and wavelet analysis). However, the DGA
signals collected by online devices are mostly non-stationary
signals, and the power spectrum and correlation function are
time varying, so it is difficult to select a unified primary
function for decomposition.

In 1998, Huang proposed a new signal processing method
called empirical mode decomposition (EMD). The core idea
of the EMDmethod is to decompose non-stationary complex
signals into series of intrinsic mode functions (IMFs). Each
IMF is decomposed based on its own characteristics for the
given signals and contains the local characteristics of the
signals at different scales. Because it is not necessary to
predefine the primary function, the EMD method has high
adaptability for non-stationary signals. EMD has been used
in signal detection analysis for power equipment [21]–[26].

The calculation process of the standard EMD method is as
follows. For input signal x(t), search the all the maximum/
minimum sequences of x(t), that is, x+(t) and x−(t).
Then, perform three spline interpolations for the maximum/
minimum sequences x+(t) and x−(t) separately before
obtaining the upper/lower envelope curves of the original
input signal x(t), which are expressed as e+(t) and e−(t).
Next, calculate the mean signal m(t) through the following
formula.

m(t) =
e+(t)+ e−(t)

2
(1)

The quasi-signal h(t) = m(t) − x(t) must satisfy the
following criteria.

1) The difference between the number of zero crossing
points and the number of extreme points should be no greater

than one.

|count(e+(t))− count(e−(t))| ≤ 1 (2)

2) At any point in the signals studied, the mean value of
the upper and lower envelope curves determined by the local
maximum and local minimum points should be less than the
set threshold SD.

SD =
T∑
t=0

[hk−1(t)− hk (t)]2

h2k−1(t)
(3)

3) If the quasi-modal signal h(t) has the above two condi-
tions, h(t) is the first IMF component IMF1 of the original
signal. Otherwise, x(t) = h(t), and the above steps are
repeated.

The key step in this method is obtaining the upper and
lower envelope curves of the original signal. The acquisition
of the envelope curves is highly dependent on the locations
of the extreme points of the input signal and the accuracy of
the value information. Therefore, the sampling rate should
be much higher than the Nyquist frequency of the signal
to obtain stable and accurate EMD results for a group of
signals [24]. However, the sampling rate of DGA signals is
low, and because of the acquisition error of the devices, DGA
signals are chaotic [4], [5], [27]. The extreme points of the
signal are often inaccurate. The sampling error will affect
the accuracy of the decomposition results, thus reducing the
accuracy of the state analysis of the DGA sensors. To address
the problem of performing accurate EMD for low-frequency
signals, the existing methods mainly consider the interpola-
tion of signals before relocating the extreme points to reduce
errors. References [24], [25], [28] reconstructed the original
signal based on interpolation, and reference [29] used ascend-
ing cosine interpolation to extract the envelope curves of the
signals. However, sinc interpolation and ascending cosine
interpolation have drawbacks such as a slow convergence
speed and boundary distortion, making them difficult to apply
in practice [30]–[36].

Therefore, this paper proposes a pretreatment method for
DGA signals based on B-spline fitting. Unlike the traditional
interpolation algorithm, the B-spline fitting algorithm is char-
acterized by the same performance as a low pass filter and can
effectively reduce the effect of chaos and improve the stability
of EMD for small sets of DGA data.

Assuming that the original DGA data curve is y(t), the fit-
ted curve g(t) of the B-spline of order p can be expressed as

g(t) =
n∑
j=0

cjBj,p(t) (4)

where cj refers to the B-spline parameter to be deter-
mined and Bj,p refers to the B-spline function of order p.
Assuming that the original DGA monitoring sequence is
u = {u0, u1, u2, · · · , un+p}, the B-spline function Bj,p of
order p can be calculated using the Cox-deBoor recursive
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formula [18].

Bj,1(t) =
{
1 uj ≤ t ≤ uj+1
0 other

(5)

Bj,p(t) =
t − uj

uj+p−1 − uj
Bj,p−1(t)

+
uj+p − t

uj+p − uj+1
Bj+1,p+1(t), (p > 1) (6)

The difference between the fitted curve g(t) of the B-spline
method and the original DGA signals is ε(t).

ε(t) = y(t)− g(t) (7)

Therefore, the parameters to be determined in B-spline
fitting can be obtained by the least squares of ε(t).

min |ε(t)| = min
(
ε2(t)

)
= min(

∑
t

(y(t)− g(t))2)

= min(
∑
t

(y(t)−
n∑
j=0

cjBj,p(t))
2

) (8)

Ideally, assuming themeasured signal is a constant valueµ,
the signals measured by the DGA monitoring device should
satisfy a normal distribution with µ as the mean and σ as
the variance (related to the measurement accuracy and aging
degree of the DGA device).

The sampling frequency of DGA is generally 1-3 times
a day. Because each IMF decomposed by B-EMD can be
regarded as a narrow-band signal, and when combined with
the actual decomposition effect of B-EMD, the error signals
caused by the DGA measuring device are mainly distributed
in IMF1_IMF3, as shown in Fig.1.

III. VALIDITY EVALUATION OF DGA SIGNAL
EFFECTIVENESS BASED ON A DBN NETWORK
A. CONSTRUCTION OF A VALIDITY EVALUATION
NETWORK FOR DGA SIGNALS
A deep belief network (DBN) is a probability-generating
model with multiple hidden layers and is used to evalu-
ate the conditional probability of events [37]–[39], such as
(P(Observation | Label) and P(Label | Observation), by estab-
lishing a joint probability distribution between Observation
and Label. Such networks have already been applied in trans-
former fault analysis [1], [40], [41], insulator fault analy-
sis [42] and fan fault analysis [43]–[47].

A DBN can pretrain unsupervised labeled samples with a
layer-by-layer unsupervised learning algorithm before train-
ing labeled samples to obtain a near-optimal solution for the
network parameter distribution before fine tuning the data
according to the labeled samples to speed up the network
training process.

Structurally, the DBN can be viewed as a stack of multiple
RBMs as shown in Fig.2.

FIGURE 1. Diagram of B-EMD for a DGA Signal.

FIGURE 2. DBN network schematic diagram.
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FIGURE 3. RBM structural diagram.

Each RBM unit consists of a visual layer (v ∈ {0, 1}D) and
a hidden layer (h ∈ {0, 1}M ), where D and M refer to the
dimensions of time variables with an energy function defined
as follows:

E(v, h; θ ) = −
D∑
i=1

M∑
j=1

Wijvihj −
D∑
i=1

bivi −
M∑
j=1

ajhj (9)

where the model parameter θ = {W , b, a}, Wij refers to the
weight between node vi in the visual layer and node hj in the
hidden layer, aj and bi are the bias coefficients of the model.

p(v; θ) =
p ∗ (v; θ )
Z (θ )

=
1

Z (θ )

∑
h

e−E(v,h;θ) (10)

Z =
∑
v

∑
h

e−E(v,h;θ) (11)

where p∗ is the unnormalized probability function and Z (θ )
is the partitioning function or normalized constant.

Therefore, a single-layer RBM network can be represented
as Fig.3.

Based on EMD and a DBN, the network is divided into
three parts: the EMD module, the DBN recognition module
and the weighted average module.

Based on B-spline interpolation and the EMD of input
information, the first three IMFs IMF1_IMF3 can be
obtained. Then, each IMFn(n = 1, 2, 3) of five characteristic
gases is separately connected to the three independent DBNs.
Finally, the output results of the DBNs are entered into the
BP network for weighting factor sorting to obtain the final
results.

The overall structure diagram of the validity analysis of
DGA monitoring data based on B-EMD and DBN DGA is
shown in Fig. 4.

B. TRAINING OF THE VALIDITY EVALUATION NETWORK
OF DGA SIGNALS
1) SELECTION OF TRAINING SAMPLES
The training sample data from the validity evaluation network
of DGA signals can be divided into unlabeled sample data and
labeled sample data.

The unlabeled sample data are mainly derived from the
actual DGA online monitoring data after eliminating the
intermittent values, zero values, infinite values and other
abnormal data.

FIGURE 4. Structure diagram of validity analysis of DGA monitoring data
based on B-EMD and DBN.

The labeled samples are mainly derived from the online
DGAmonitoring devices with calibration records and includ-
ing the following data types:

- The monitoring data from normal transformer DGA
and qualified monitoring device calibration (positive
samples);

- The abnormal offline testing data from transformer
DGA but for the normal calibration of typical devices
(positive samples);

- The data for monitoring devices that are not qualified for
calibration (negative samples).

2) PRETRAINING PROCESS OF THE DBN
According to Formulas (6) - (8), the conditional probability
distribution between the node vi in the visual layer and the
node hj in the hidden layer can be expressed as follows.

p(h|v) =
∏
j
p(hj|v)

p(v|h) =
∏
i
p(vi|h)

(12)


p(hj = 1|v) = σ (

∑
i
Wijvi + aj)

p(vj = 1|h) = σ (
∑
i
Wijhi + bj)

, σ (x) =
1

1+ e−x

(13)

According to Formulas (7) - (10), the parameter θ in the
RBM can be obtained by the maximum likelihood function
of the edge distribution of θ through p(c, h; θ ).

p(v; θ ) =
1
Z

∑
h

exp(−E(v, h; θ )) (14)
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The training algorithm of the RBM parameters can be
described as follows:

1wij = ε (〈vihi〉data − 〈vihi〉k)
1bi = ε (〈vi〉data − 〈vi〉k)
1ai = ε

(〈
hj
〉
data −

〈
hj
〉
k

) (15)

where ε() is the learning efficiency function; 〈〉data is the
mathematical expectation function of training samples; 〈〉k ,
1wij,1bi and1ai are themathematical expectation function,
the updating weight and the updating offset after sub-Gibbs
sampling k times for the training samples, respectively [48].

The entire pretraining process of the DBN can be described
as follows:

- Train the RBM in the first layer;
- Use the parameters of the hidden layer in the RBM in
the second layer as inputs for the Level 2 RBM;

- Train the RBM in the second layer.
The pretraining of the entire DBN can be completed in the

same manner.

3) FINE-TUNING PROCESS OF THE DBN
After pretraining, the DBN is fine tuned by marking samples.
The fine-tuning process is described as follows: the output of
the RBM in the last layer of the DBN is taken as the input
of the back-propagation network and supervised by the back-
propagation algorithm from back to front [31], [49]–[53].

4) ENTIRE NETWORK TRAINING PROCESS FOR DGA
EFFECTIVENESS EVALUATION
The entire training process can be described in four stages,
as shown in Fig. 5.

In stage 1, B-spline interpolation and EMD are conducted
on all samples to obtain samples IMF1_IMF3. In stage 2,
unlabeled decomposition samples IMF1_IMF3 are used to
pretrain DBNs 1-3 according to Formulas (12) - (15).
In stage 3, the labeled decomposition samples IMF1_IMF3
are used to train DBNs 1-3 through the BP algorithm.
In stage 4, the labeled samples are diagnosed by the trained
DBN, and the output results are used as inputs to train the
weighted factor sorting network through the BP algorithm.

IV. CASE STUDY
To verify the reasonability and validity of the method pro-
posed in this paper, the recognition accuracy of the deep
learningmodel under different feature extractionmechanisms
is comparatively analyzed. Moreover, the model structures
and training parameters are changed for comparative verifi-
cation and to obtain the optimal validity evaluation model.
Additionally, this paper compares the proposed method with
other methods, such as black box testing and multicriteria
fusion, to further validate the proposed method.

A. CASE DESCRIPTION
The current DGA online monitoring devices are expected to
detect seven characteristic gases, including H2, CH4, C2H4,

FIGURE 5. Flowchart of DGA signal validity evaluation network training.

FIGURE 6. Samples of DGA monitoring data using the sliding window
method.

C2H6, C2H2, CO and CO2. However, the majority of such
devices can monitor only five gases. Hence, monitoring data
for H2, CH4, C2H4, C2H6 and C2H2are adopted as inputs.
A total of 540,000 valid entries recorded by 354 DGA online
monitoring devices from 2007 to 2017 were collected (dis-
continuous data, zero values, infinite values and other obvious
abnormal data were removed). The sliding window method
was employed to build a sample base. The sliding window
length was 30 days, and the step length was 5 days. As shown
in Fig. 6, 102,774 valid training samples were obtained.

The computer adopted for this research is equipped with
an 8-core Xeon CPU, a GTX1080 GPU and 32 GB of RAM.
Notably, 441 sets of DGA online monitoring and calibration
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FIGURE 7. DGA signal training error Diagrams.

TABLE 1. Weight settings of source-load double-sided energy prediction tasks.

FIGURE 8. Accuracy diagram of network training for different levels of
DBN.

data were retrieved from the PMS database. According to
the calibration results, there were 4,541 marked samples,
of which 3,632 were positive samples and 909 were negative
samples. The data for various gases in the samples were
decomposed. The validity evaluation network was trained
using the method proposed in Chapters I and II. The signal
decomposition network training error is shown in Fig. 7.

B. COMPARISON OF DIFFERENT FEATURE
EXTRACTION MODELS
This paper adopts three network feature extraction mecha-
nisms to test the model based on the same samples, including
the DBN, RNN and FCN. The DGA data recognition preci-
sion of the evaluation models based on three types of feature
extraction mechanisms is compared. The results are shown
in Fig. 8.

To develop the optimal DBN structure and training param-
eters, this paper compares the model evaluation effects of the
DGAdata for different DBM layers and training cycles. Then,
the optimal DBNmodel can be built according to the practical
characteristics of the input samples.

The above figure shows that after the number of DBN
model layers and number of training cycles reach 4 and
250, respectively, the model recognition precision tends to
converge. At that moment, if the number of model lay-
ers or training cycles increases, the training and testing times
will increase, thus decreasing the computational efficiency.
In addition, considering its use in practical situations and the
data analyzed in this paper, a four-layer DBN model with
250 training cycles is adopted.

The method proposed in this paper is also compared with
the phase-space reconstruction method discussed in [4], [54],
[55] and the black box testing and multicriteria fusion strat-
egy given in [15], [45] to verify the validity of the method
developed in this paper. The comparison results are shown
in Table 1.

As shown in Table 1, the model proposed in this paper
exhibits the highest precision in recognizing fault samples.
Considering the weak generalization of the black box testing
and multicriteria fusion strategy, the tagged value and the
variable coefficient judgment criteria should be artificially
selected. The validity evaluation model proposed in this
paper adopts the DBN model feature extraction mechanism,
which can automatically extract DGA monitoring data fea-
tures under different fault and normal operation situations
from mass samples. In this way, the influence caused by
improper artificial feature selection can be avoided. Addition-
ally, the generalization of the model is improved compared to
that of other models.

Currently, periodical overhauling is typically adopted for
the daily calibration and maintenance of DGA online moni-
toring devices. Due to the lack of ability to efficiently evaluate
the actual operation status of monitoring devices, the main-
tenance and repair objects are, to some extent, random.
In response to this problem, this paper proposes a strategy for
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FIGURE 9. Visual comparison of t-SNE for different layers of the DBN data.

DGA device predictive maintenance. In light of the validity
evaluation model, this method analyzes the health status of

the corresponding DGA devices and provides auxiliary deci-
sion making for device calibration planning.
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After model decomposition and the feature extraction of
DGA monitoring data via B-EMD and the DBN, this paper
uses the weighting factor network to classify monitoring
devices into different grades. According to the corresponding
fault type of training samples and the feature vectors extracted
by the model, the health status of a DGA online monitor-
ing device is defined as follows: (1) dangerous: when the
fault confidence coefficient is above 90%, repair and main-
tenance are necessary; (2) alarming: when the fault confi-
dence coefficient ranges from 80% to 90%, the device should
be included in the repair and maintenance plan; (3) hidden
danger: the fault confidence coefficient ranges from 70%
to 80%; (4) potential hidden danger: the fault confidence
coefficient ranges from 60% to 70%; and (5) safe: the fault
confidence coefficient is below 60%. The grade evaluation
results after sample dimension reduction and the mapping of
the weighting factor network are shown in Fig. 9.

V. PREDICTIVE MAINTENANCE OF TRANSIFORMER DGA
ONLINE MONITORING DEVICES
Based on the fault confidence coefficient evaluation per-
formed by the model, this paper proposes an optimized plan
for onlinemonitoring device calibration. Below are the details
of the optimization strategy.

(1) Choose the DGAmonitoring data for the corresponding
period according to the repair period.

Conduct data preprocessing. Remove discontinuous data,
zero values, infinite values, and other obvious abnormal data.
Directly include the transformer monitoring device for which
the abnormal data correspond to the calibration plan.

(2) Input data into the validity evaluation model of the
DGA online monitoring devices. Calculate the fault confi-
dence coefficient of the corresponding DGA transformer in
various periods of time and determine the health grade of the
DGA monitoring device.

(3) Report the DGA device fault analysis results to the
repair and calibration personnel to provide assistance in the
implementation of the calibration plan.

(4) The optimization strategy proposed in this paper for the
device calibration plan can improve the overhaul probability
of DGA monitoring devices with potential hidden dangers to
some extent and reduce the randomness and blindness of the
maintenance schedule, thus improving the reliability of DGA
online monitoring devices.

VI. CONCLUSION
In this paper, an EMD method for DGA signals based on
B-spline interpolation and a validity analysis network for
DGA data based on deep learning is proposed. This approach
can effectively improve the stability of EMD at low sampling
rates for DGA signals and classify the effectiveness of DGA
online monitoring devices. An optimization method for the
DGA calibration plan is proposed according to the validity
calculation results of DGA. The experimental results demon-
strate the effectiveness of the method proposed in this paper.
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