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ABSTRACT Immediate monitoring of the conditions of the grinding wheel during the grinding process
is important because it directly affects the surface accuracy of the workpiece. Because the variation in
machining sound during the grinding process is very important for the field operator to judge whether the
grinding wheel is worn or not, this study applies artificial intelligence technology to attempt to learn the
experiences of auditory recognition of experienced operators. Therefore, we propose an intelligent system
based on machining sound and deep learning to recognize the grinding wheel condition. This study uses
a microphone embedded in the grinding machine to collect audio signals during the grinding process, and
extracts themost discriminated feature from spectrum analysis. The features will be input the designed CNNs
architecture to create a training model based on deep learning for distinguishing different conditions of the
grinding wheel. Experimental results show that the proposed system can achieve an accuracy of 97.44%,
a precision of 98.26% and a recall of 96.59% from 820 testing samples.

INDEX TERMS Grinding wheel wear, intelligent system, machining sound, audio signals, deep learning.

I. INTRODUCTION
Since maintenance costs of manufacturing plants account for
the majority of total operating costs, how to reduce mainte-
nance costs has become a topic of concern in the manufactur-
ing industry. Depending on the specific industry, maintenance
costsmay be not. In the case of steel, pulp and paper, and other
heavy industries, maintenance costs account for 60% of total
production costs [1]. Recently, tool condition monitoring and
fault diagnosis as part of machine maintenance management
has gradually received attention, because wear tools will
directly affect the surface finish and geometrical accuracy of
the finished workpiece [2], [3].

Numerous studies have been developed tool wear monitor-
ing systems using available and suitable sensors [4]. Related
sensors used to the monitoring of machining operations can
be divided into direct methods, such as an optical device
of scanning electron microscope (SEM) and indirect meth-
ods, such as cutting force, acoustic emission, spindle motor,
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vibration, temperature, and machining sound [5]. Although
direct methods have a high spatial resolution and good accu-
racy, they often require interrupting machining processes and
have a strict demand on the environment [6], and most can
only be used as laboratory techniques [7]. Because of the
limitations of practical applications, indirect methods more
suit for applying to wear monitoring systems.

In indirect methods, some researchers start to collect the
maximum amount of information from multiple sensors for
monitoring states of tools or machines due to different kinds
of sensors can reveal specific features of interest [5], [8]–[12].
Although the use of multiple sensing systems could compen-
sate for the limitations of a single sensor when collecting
signals [5], the results of the mixed feature analysis cannot
effectively reflect the current states of the detected objects due
to interference between the signals. Furthermore, the number
of sensors used may be directly related to on-site opera-
tion efficiency and cost, because the fewer the number of
used sensors in the factory area, the lower the maintenance
cost, and the less complexity of signal analysis too, which
will promote operational efficiency [13]. Unlike other single
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sensors that only detect single-point problems of machines,
machining sound represents the full picture of the machine’s
operating state.Machining sound usually reflects the working
condition of the machine. Because when there is a problem
with the machine, the machining sound will be different,
many experienced operators can initially diagnose a machine
just by listening to its machining sound [14]. To this end,
this study applies the artificial intelligence (AI) technique to
attempt to learn the experienced operators’ experienceswhich
used variations in sound to judge the attrited condition of
tools.

Grinding is known to be most complicated among major
machine operations including milling, drilling, and turn-
ing [15]. Grinding is a metal removal process, which used
to fabricate workpiece material to specific dimensions and
surface precision. Currently, the decision of dressing interval
for grinding wheel wear is typically roughly determined by a
skilled operator. However, grindingwheel wearmight already
happen before dressing process, which usually causes grind-
ing quality problems. On the contrary, if dressing process
is carried out ahead of wheel wear, the grinding efficiency
is definitely reduced and the abrasive materials are wasted
at the same time [6]. Furthermore, wheel wear may lead to
grinding burn and bad surface quality, even serious accidents.
Therefore, a grinding wheel wear monitor system is desired
in intelligent manufacturing to increase machining efficiency.

Two common acoustic-based sensors for monitoring grind-
ing wheel wear are acoustic emission (AE) [16] and micro-
phone [17], respectively. To distinguish different states of
grinding wheel condition, Liao et al. [18] extracted features
from AE signals collected at 1 MHz in grinding alumina
with a resin-bonded diamond wheel and applied an adaptive
genetic clustering algorithm. Then, Warren Liao et al. [15]
presented a wavelet-based unsupervised grinding wheel con-
dition monitoring methodology. The features is extracted
from AE signals based on discrete wavelet decomposition
by following a moving window approach, and then applied
a clustering algorithm to obtain clustering result. The test
results indicated that the proposed methodology can achieve
on average 97% clustering accuracy for the high material
removal rate condition (12.7 µm depth of cut), 86.7% for the
low material removal rate condition (10.2 µm depth of cut),
and 76.7% for combined grinding conditions. The size of the
dataset for all the above experiments is 30 records, respec-
tively. Yang and Yu [6] proposed awavelet and support vector
machine based grinding wheel wear monitoring system to
classify sharp andwornwheels byAE sensor. The experimen-
tal results showed that classification accuracy could reach up
to 99.39% with a cut depth of 10 µm for 40 records of sharp
condition and 70 records of worn condition and 100% at the
cut depth of 20 µm for 80 records of sharp conditions and
20 records of worn condition by SVM classification. In their
experiment, half records of each data set for different cut
depth were taken out for training and the other half for testing.

Although laboratory and industrial test-rig experiments
have shown that an AE sensor is possible to detect the change

in wear rate, if an AE sensor is used in an actual operat-
ing environment, more factors may need to be considered.
In general, AE sensors are not suitable for machining process
monitoring because the capacitive type displacement sensors
of AE are very sensitive to sensor position and surface mount-
ing [19]. AE sensors have high sensitivity to small changes
in wear rate, but sometimes this is part of normal operation
during machine operation and is not necessarily related to
impending failures [20]. This will make the analysis process
of tool wear more complicated. Furthermore, AE sensors
are primarily used in detecting tool breakage and not wear,
because the breakage phenomenon causes an imminent peak
in the AE signal [21]. In addition to the limitations of inher-
ent physical characteristics of AE sensors for detecting the
tool wear condition was mentioned above, in cost consider-
ation, AE sensors belong to more expensive sensing devices
compared with another acoustic-based sensor, a microphone.
Based on the above reasons, this study replaces the AE sensor
with a microphone to collect machining sound during the
grinding process.

Recently, deep learning (DL) architecture is becoming
an efficient pattern recognition network structure with the
potential to overcome current obstacles in intelligent fault
diagnosis [22]. This technique also has attracted the atten-
tion of researchers in the field of tool wear monitoring [23]
because it made great achievements in the classification and
recognition of large dataset images [24]. Because deep convo-
lutional neural networks (CNNs) are widely used in solving
high dimensional and intricate nonlinear problems [12], and
specifically designed for variable and complex signals and
have shown remarkable success in various applications in the
past few years [25], we developed an intelligent system based
on CNNs to recognize different conditions of grinding wheel
during grinding process.

The remainder of this paper is organized as follows.
Section 2 provides the experimental setup and procedure in
this study. Section 3 presents an intelligent system to automat-
ically monitoring the conditions of the grinding wheel dur-
ing the grinding process from continuous machining sound.
Section 4 describes the classification method used in this
study, and experimental results and analysis and conclusions
are presented in Section 5 and in Section 6, respectively.

II. EXPERIMENTAL SETUP AND PROCEDURE
The grinding tests were performed on G50150 model auto-
matic surface grinder machine using the wheel (32A46J12V)
to grind carbon steel materials (S45C). The workpiece has
a dimension of 700 mm in length and 500 mm in width.
The grinding parameters were as follows: grinding velocity:
20 m/s, wheel speed: 1800 rpm, feed velocity: 5 mm/min,
depth of cut: 10 µm. The acoustic signals during grind-
ing process were collected at 44,100 samples per second
(sampling rate: 44.1 kHz) by a microphone mounted on
the side face of the wheel guard. After that, the collected
acoustic signals were real-time analyzed and estimated by
Raspberry Pi 3 for the following preprocessing, feature
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FIGURE 1. The experimental equipment layout of the grinding machine in
this study.

extraction, and classification operations. A schematic dia-
gram of the experimental setup is shown in Figure 1.

Prior to data acquisition, the carbon steel materials were
ground several times to stabilize the grinding wheel. Then the
recording equipment was turned on to collect signals in the
steady state. All new grinding wheels are used in our experi-
ment. Themachining sound collection in the grinding process
starts from the new grinding wheel until the grinding wheel
wears. According to the operator’s experience to determine
whether the grinding wheel is worn based on the grinding
sound and sparks.

III. INTELLIGENT GRINDING WHEEL CONDITION
MONITORING SYSTEM
The framework of the proposed intelligent system for grind-
ing wheel condition monitoring is shown in Figure 2,
where the dotted area is a training process. After collecting

machining sound during the grinding process by a micro-
phone device, a mechanism that audio normalization and
automatic detection of target signals frommachining sound is
described in Section 3.1. In Section 3.2, a feature extraction
method is proposed to find themost discriminating feature for
improving classification accuracy. Finally, to effetely detect
the worn condition of the grinding wheel, the deep learning
technique adopted in this study is discussed in Section 4.

A. PREPROCESSING
The machining sound in the grinding operation is mainly
composed of two parts, one is the target signals that the
grinding wheel and workpiece actually contact and another is
the idle signals that grinding wheel away from the workpiece,
respectively. The purpose of the preprocessing method is
to automatically segment the target signals from continuous
machining sound during the grinding process. According to
the parameters setup of the grinding machine, the length of
the target signal is nearly one second, as shown in Figure 3.

Figure 3 shows the machining sound for 16 seconds. It can
be clearly seen that the idle signal between the two target
signals has a lower amplitude due to the idling of the grinding
wheel. In the following experiments, the target signal that
nearly one minute represents one sample data. The critical
steps in preprocessing are described as follows.
Step 1 Audio Normalization: First of all, the raw audio

signals in grinding operation is processed by the procedure
of audio normalization for adjusting audio recordings col-
lected from different days to bring the amplitude to a tar-
get level. Figure 4(a) shows the audio signals of machining
sound after audio normalization with one minute. Note that a

FIGURE 2. The framework of the proposed intelligent system for grinding wheel condition monitoring.
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FIGURE 3. Machining sound during the grinding operation in the time domain.

one-minute audio record will be produced 2,646,000 data
points (60s 44.1kHz = 2646000).
Step 2 Absolute Value Processing: Figure 4(b) shows the

result that absolute value processing of raw audio signals after
audio normalization. We use the symbol |SM | to represent it,
where |·| is absolute value operation and SM represents the
signals of machining sound after processing by Step 1.
Step 3 Threshold Value Decision: To separate target signals

from continuous machining sound, we design an adaptive
threshold value. Before analyzing signals, a one-minute audio
signal in the grinding operation is collected and the average
amplitude value is calculated every tenth of a second. In other
words, a one-minute audio file will produce 600 averages
(2646000 / 4410 = 600), as shown in Figure 4(c). Finally,
the average result for 600 values obtained from the above step
will be as the adaptive threshold value, T , which is defined as
follows:

T =

∑n
i=1 avg

∣∣SMi

∣∣
n

, (1)

where avg |SMi| represents the average amplitude value of the
i-th specific tenth of a second in a one-minute audio file and
n is 600.
Step 4 Target Signal Detection: In the final step, if the

amplitude value of the audio signal for a particular period
during the grinding process is greater than the threshold
value (T ), the signal will be marked target signal (1),
otherwise, it will be marked the idle signal (0), as shown
in Figure 5. To effectively analyze the machining sound in
the grinding operation, target signals that nearly one second
period will be preserved. The determination of the target
signal length is related to the grinding parameters and the
size of the workpiece. According to our experimental settings
and the confirmation of the field operator, the target signal
is about one second. For consistency of experimental data,
the target signal will be discarded, if it’s length below 0.8s.

B. FEATURE EXTRACTION AND ANALYSIS
In this section, we attempt to find the most discriminating
feature for effective monitoring of the grinding wheel states.

A signal in time domain can be transformed to frequency
domain by Fourier transform. The details of derivation of
Fourier transform can be found in [26]. By spectrum anal-
ysis, we can observe the variations of magnitude at differ-
ent frequencies during the grinding process. Figure 6 shows
two different spectrums, which are processed by fast Fourier
transform (FFT) for the one-second target signal from the
sharp and worn grinding wheels, respectively.

From the comparison of two spectrums, we can find that
there is a higher magnitude for the worn grinding wheel in
the range between 300 Hz to 500 Hz. The reason is that
the worn grinding wheel has a large frictional force when it
contacts the workpiece, there will cause a resonance sound
of low frequency. The focused frequency band is determined
by convergence tests from multiple testing sets in this study.
In addition, data acquisition for tool wear monitoring during
the grinding process is inevitably disturbed by the noise of
the operating environment. To emphasize the critical feature
and reduce moderately the interference of ambient sound
in the factory field, this study preserves the critical feature
that 300 Hz to 500 Hz frequency segment and then sets the
magnitudes of other frequency segments to 0. Subsequently,
inverse FFT (iFFT) will be applied to transform the frequency
segment which processed by the above step to the time
domain. Finally, the audio signals in the time domain which
only preserves the critical frequency segment will be used
as the most discriminating feature to discriminate different
conditions of the grinding wheel.

IV. CLASSIFICATION
In recent years, AI has attracted great attention from many
researchers and has shown promising results in machinery
fault identification applications. DL has become a very pop-
ular research topic in the field of AI [27], and it provides
an effective way to learn features automatically at multi-
ple levels of abstraction, allowing to learn complex input-
to-output functions directly from data, without depending
on feature extraction methods, which can be of great ben-
efit for industrial rotating machinery fault diagnosis [28].
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FIGURE 4. The illustration shows the output result of each phase of the critical steps in preprocessing.

Zhao et al. [29] also shown that DL has accelerated its appli-
cation and shown its superiorities in monitor machine health.

DL solves the central problem in representation learning
by expressing simpler representations to enable the computer
to build complex concepts out of simpler concepts [30]. The
CNNs are one of the many popular models in deep learning,
which can serve as an efficient feature extractor for the clas-
sification tasks [31], [32]. CNNs are a specialized kind of
neural network for processing data that has a known grid-
like topology. Take time series data as an example, it can
be regarded as a one-dimensional (1D) grid sampled at fixed

time intervals, and for image data, which can be thought of as
a 2D grid of pixels [33]. Currently, CNNs are becoming more
widely used in audio-related tasks, including environmental
sound classification [34], speech recognition [35] and sound
event detection [36]. To the best of our knowledge, no former
works addressing the use of CNNs to recognition audio fea-
tures, which in turn can detect grinding wheel wear, for the
occasion of which this study was realized.

Three architectural ideals of CNNs are combined to ensure
some degree of shift, scale, and distortion invariance: local
filters, shared weights and spatial or temporal subsampling
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FIGURE 5. The automated detections of target signals from continuous machining sound in grinding operation. The
red-dotted line is the auxiliary line, which corresponds to the detected target signals from raw audio signals in grinding
operation (Figure 4(a)).

FIGURE 6. The two FFT spectrums of machining sound during the grinding process with the sharp and worn grinding wheels. The red dotted line
represents the range between 300 Hz to 500 Hz.

(pooling) [33]. The details of the CNNs method can be found
in [33], [34], [37]. Since the features adopted in this study are
sequences of audio signals, the 1D CNN is briefly introduced
as follows.

An input sequential acoustic-based feature with a duration
of one second is assumed to be x = [x1, x2, . . . , xn], where n
denoted the length of the sequence. Here, n is 44100 because
the sampling rate used in this experiment is 44.1 kHz. In con-
volutional layers, the convolutional operation can be defined
as multiply operation between a 1D filter kernel w, and a
concatenation vector xi:i+ks−1, which can be expressed as [38]

xi:i+ks−1 = xi ⊕ xi+1 ⊕ · · · ⊕ xi+ks−1, (2)

where ks is the size of filter kernel, xi:i+ks−1 represents a 1D
window of ks length sequential data points starting from the

ith point, and ⊕ is the concatenate symbol used to connect
sequential data points of specific range into a longer embed-
ding. The general formulation of the 1D forward propagation
from convolution layer l− 1 to determine the input of a point
(neuron) k at layer l, xlk, which is defined as

x lk = f
(
wT xl−1i:i+ks−1 + b

l
k

)
, (3)

where blk is the scalar bias of the kth neuron at layer l,
f (·) is the non-linear activation function, and ∗T denotes
the transpose of a vector ∗. Note that the output xlk can
be considered as the local learned feature by convolution
operation between the filter kernel w and the correspond-
ing subsequence xi:i+ks−1 at layer l − 1. Since, in CNNs,
the convolutional layer is to extract different features from
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FIGURE 7. The proposed CNNs model architecture.

the input local samples through multiple filter kernels with
specific filter length ks, the feature vectorXlj can be obtained
as follows by sliding the jth filter kernel from the first neuron
to the last neuron at layer l.

Xlj
=

[
x lj1 , x

lj
2 , . . . , x

lj
N−ks+1

]
, (4)

where N is the total number of neurons at layer l. In the
CNNs architecture used in this study, the ranges of l and j
are from 1 to 10, because the audio signals were fed into the
ten consecutive 1D convolution operations with 10 different
filter kernels for obtaining discriminative features.

To better understand the proposed CNNs model architec-
ture, it is possible to refer to Figure 7. In this architecture,
the target signal after preprocessing and feature extraction
methods will be processed by 10 consecutive 1D convolution
operations (from CON-1 to CON-10) with 10 different filter
kernels of 1 × 3 size and the stride size is set to 2. Then,
a pooling layer is applied to the feature vectors generated by
the convolution layer. In general, the pooling stage is able
to extract the most significant local information from each
feature vector. In this study, the average-pooling function will
be applied to each filtered feature filtered by 10 different filter
kernels to descript representative characteristics ofmachining
sound in grinding operation because of average-pooling and
max-pooling are widely used [38]. After average-pooling
stage, the feature vector of 1×10 size will be fully connected
16 and 4 neurons in sequence in fully connected layers. The
fully connected layer is a traditional multilayer perceptron,
and the neurons in it are all connected to the neurons in the
previous layer.

Finally, a sigmoid function will be applied to compute
the final classification probabilities as the output result in
the last layer. In this study, the rectified linear units (ReLU)
function [24] is applied as the activation functions of the
convolutional, pooling and fully connected layers, because
the ReLU can effectively overcome deficiencies of gra-
dient disappearance and slow convergence in the train-
ing process [12]. To further improve the performance of

classification, the training process uses the back-propagation
algorithm to minimize the loss function, which can be
expressed as

L =
1
2N

N∑
i=1

∥∥ŷi − yi∥∥2 , (5)

where N is the total number of training samples, and ŷi and
yi represent the predicted grinding wheel wear value and the
actual grinding wheel wear value for the training sample i,
respectively.

V. EXPERIMENTAL RESULTS AND ANALYSIS
In this paper, there were 1803 target signals are detected
and segmented automatically from the machining sounds
collected during the grinding process with cutting depth
of 10 µm by the proposed preprocessing method. Each target
signal segmented by the preprocessing method is nearly a
one-minute duration, which regards as one sample in the fol-
lowing experiment. Those acquired target signals after feature
extraction are divided into training, validating, and testing
datasets. The purposes of training and validating datasets is
that learning and finding the relationship between the pro-
posed acoustic-based features and real-time the conditions
of grinding wheels. There were 820 testing samples (sharp
cases: 410, worn cases: 410) in the testing dataset used to
test the classification performance of the proposed intelligent
grinding wheel condition monitoring system. Table 1 shows
the number of samples for different grindingwheel conditions
used in three datasets.

TABLE 1. Description of experimental datasets.
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TABLE 2. Cross-relations between test and actual results.

To quantitatively evaluate the overall performance of the
proposed intelligent system for recognizing grinding wheel
conditions in grinding operation in this study, the following
four measurements are adopted, including accuracy, preci-
sion, recall, and the area under receiver operating charac-
teristic (ROC) curve. Let TS, TW, FS, and FW represent
‘‘true sharp’’, ‘‘true worn’’, ‘‘false sharp’’, and ‘‘false worn’’,
respectively, in the confusion matrix as shown in Table 2.

The definitions for the above measurements are listed
below [39].

Recall = TS/(TS+ FW), (6)

Precision = TS/(TS+ FS), (7)

Accuracy = (TS+ TW)/(TS+ TW+ FS+ FW). (8)

The test result of a sharp condition is either sharp (TS) orworn
(FS). On the other hand, the test result of a worn condition
is either sharp (FW) or worn (TW). In this study, we regard
the sharp grinding wheel as the sharp condition and the worn
grinding wheel as the worn condition.

Recall, also known as a true sharp rate (TSR), represents
the probability of classifying the grinding wheel as sharp
state given it is truly sharp in this study. Precision, also

known as precision rate, is the proportion of all sharp test
results which are truly sharp grinding wheel. The accuracy
is the proportion of both true sharps and true wear in all test
results. It is the overall correct classification rate of all test
results. In addition, we also calculate the area under the ROC
curve (abbreviated as AUC) [40] to reflect the classification
performance.

In our experimental results, the TS, TW, FS, and FW are
396, 403, 7, and 14, respectively. The accuracy is 97.44%
((396+403)/820), and the results of precision and recall are
98.26% (396/(396+7)) and 96.59% (396/(396+14)), respec-
tively. In the cases of misjudgment, there were 7 worn sam-
ples misclassified as the sharp state, and there were 14 sharp
samples misclassified as the worn state. It is worth noting
that in the actual situations, we are more concerned about the
misjudgment of the wear grinding wheel because compared
to the misjudgment of the sharp grinding wheel, the loss
caused by the manufacturing site is greater. The AUC is 0.99,
as shown in Figure 8, which false sharp rate is FS/(FS+TW).

Table 3 summarizes the previous studies for grinding
wheel condition monitoring. For an acoustic-based sensor,
Liao et al. [18] can achieve 76.7% accuracy with cutting
depth of 10 µm. Next year, Liao et al. [15] proposed another
method and reported their method had an accuracy of 86.7%
with cutting depth of 10.2 µm. To improve the effectiveness
of grinding wheel monitoring, Liao [41] analyzed different
feature extraction methods and combined feature selection
methods. Their method using AR coefficients as the features
can achieve 93.14% accuracy for 320 testing samples. The
proposed method by Yang and Yu [6] indicated that their

TABLE 3. Summary of previous studies on grinding wheel monitoring with acoustic-based sensor.
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FIGURE 8. The ROC curve of classification result using the proposed
acoustic-based features.

method can reach up to 99.39% accuracy for 110 testing
records (sharp: 40, worn: 70) as a depth of cut is 10 µm.
Furthermore, Devendiran and Manivannan [42] showed that
the classification accuracy could reach up to 96.70% with
cutting depth of 10 µm, 98.95% with cutting depth of 20
µm and 99.15% with cutting depth of 30 µm. In general,
if the depth of cut is increased, the area of the chip-tool
contact will increase approximately [43], which will cause
changes in the grinding sound will be more significant.
However, they did not further explain how many training and
testing samples used in the experimental results. For multiple
sensors, Lezanski indicated that the method achieved 83.3%
accuracy from 18 testing samples for different parameters of
cutting depth. Subrahmanya and Shin reported their method
can achieve 97.42% accuracy. From a summary of Table 3,
it appears that our proposed method is competitive compared
to the previous studies on the same grinding condition of the
depth of cut, whether used multiple sensors or not.

It is worth noting that our used the number of testing
samples is up to 820 (sharp: 410, worn: 410). In addition,
we attempt to select affordable an acoustic-based sensor,
microphone to collect machining sound during grinding oper-
ation for two grinding wheel conditions (sharp vs. worn).
It can be known from the preliminary experimental results
that this study successfully developed an intelligent system
for grinding wheel condition monitoring based on machining
sound and deep learning. Complete experimental analysis of
real-time monitoring of grinding wheel wear is not in the
scope of this paper.

VI. CONCLUSION
This study has developed an intelligent system based on
machining sound and deep learning for grinding wheel condi-
tion monitoring. From experience, the variation in machining
sound is very important for the field operator to judgewhether
the grinding wheel is worn or not. To this end, an acoustic-
based sensor, microphone, embedded in the grindingmachine
to collect audio signals during the grinding process. In feature
extraction, we attempt to find the most discriminated feature

from spectrum analysis to distinguish different conditions of
the grinding wheel, and then the features will be input the
designed CNNs architecture to create a DL-based training
model. To test the performance of classification for the pro-
posed intelligent system, we use 820 audio records with a
length of one second as testing samples. Experimental results
show that the proposed method can achieve an accuracy
of 97.44%, a precision of 98.26%, a recall of 96.59%, and
AUC is 0.99. In the future, we will continue to collect more
data for different grinding parameters, and consider on-site
environment factors to strengthen the stability and robustness
of the system.

We would like to emphasize the following points to high-
light the main contributions of this paper.

1) We successfully propose an intelligent system based on
machining sound and deep learning to recognize the
grinding wheel condition effectively.

2) Compared with previous studies related grinding wheel
wear monitoring, we use a large number of testing
samples, which is sufficient to show that the proposed
method is represented in the effectiveness of classifi-
cation results and can be competitive compared with
previous studies.

3) In the previous studies based on the acoustic-based
sensors, most of them used more sensitive and expen-
sive sensors, AE. In this study, we successfully used a
microphone as a collection device to collect machining
sound during the grinding process on site.

4) The results of this research are indirectly confirmed
that AI technique can lean auditory experiences of field
operators to judge the attrited condition of tools by
variations in sound during the machining process. It is
hoped that this study can provide another indicative
reference to tool wear monitoring.

5) One of the key issues in the monitoring of grinding
wheel conditions is the online industrial application.
For example, as mentioned in the pre-processing stage
of this research, how to separate the target signals and
the idle signals from the continuous machining sound.
Unfortunately, such kind of efforts has been rare in
previous related studies.
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