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ABSTRACT Analyzing radar signals is a critical task in modern Electronic Warfare (EW) environments.
However, the pulse streams emitted by radars have flexible features and complex patterns which are difficult
to be identified from a statistical perspective. To solve this problem, pulse repetition interval (PRI) is used as
a distinguishing parameter of emitters to be identified. However, traditional PRI modulation recognition
methods can only deal with simple PRI modulations and their performance will further degrade with
the increasing number of emitters or noisy environments. In this paper, we introduce an attention-based
recognition framework based on recurrent neural network (RNN) to categorize pulse streams with complex
PRI modulations and in environments with high ratios of missing and spurious pulses. Simulation results
show that our model is robust to noisy environments and has a better performance than conventional methods.

INDEX TERMS Attention mechanism, electronic warfare, PRI modulation, recurrent neural
network (RNN).

I. INTRODUCTION
With the rapid development and usage of advanced communi-
cations [1], [2], navigation [3]–[5] and radar systems [6], [7],
the Electronic Warfare (EW) environment is more crowded
nowadays. When there are signals transmitted by multiple
radars simultaneously, an interleaved stream of pulses is
received by an electronic support system. The following task
is to separate these signals [8], [9] and thus to identify the
source emissions [10].

In most previous literature, these signals are described by
Pulse Description Words (PDWs), which can be processed
statistically [11]–[14]. The PDWs contain several statistical
features including pulse width (PW), carrier frequency (CF),
pulse amplitude (PA), time of arrival (TOA), direction of
arrival (DOA) [13]. However, not all of those features can
be easily measured and used directly for signal analysis due
to the crowded electromagnetic environment and changing
PDW patterns. By observing a large amount of measurement
data, it was found that TOA is a reliable feature of PDWs,
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which is stable and easy to detect [12]. In this case, the TOA
is the first choice for analyzing signals.

Pulse Repetition Interval (PRI), which is the first-order dif-
ference of the TOA, presents the intrinsic patterns of the TOA
sequences. PRI can be obtained by calculating the difference
between two adjacent TOA values. PRI is a distinguishing
feature since it indicates the periodicity of pulse streams emit-
ted by the radars. The intentionally or unintentionally change
of this parameter indicates a specific mission requirement.
Therefore, recogonizing PRI modulation is crutial for the
identification of the emitter and its working pattern. How-
ever, with the diversification of radar functions and the need
for anti-reconnaissance and anti-jamming, PRI modulations
have become quite complex, so they are more difficult to be
identified by common statistical methods [13].

Conventional PRI modulation recognition is typically per-
formed by using a histogram of the pulse intervals of the radar
signals [13]. Those methods can recognize PRI modulation
as long as the amount of data is large enough and the PRI
patterns are simple. Several intelligent recognition methods
have been proposed in recent years. The first fully automatic
method proposed in [15] uses multilayer perceptron (MLP)
to recognize PRI modulation, which has good performance
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but needs to extract high dimensional features as input to
the MLP. Some other methods in [16]–[18] attempt to seek
for features of PRI sequences and identify PRI modulation
through these features. These methods can achieve better
error recognition rates than the Noone’s method [15] in the
case of lost and spurious pulses, but they have a large per-
formance degradation as the noise ratio increases because
the features will lose their regularity. Kauppi et al. [19]
utilized a two-stage hierarchical classification scheme and
extracted subpatterns to identify the PRI modulation mode.
This method seeks for features of PRI sequences to distin-
guish different types of PRI, but it cannot work when there
are high ratios of noise which breaks the regularity of the
subpatterns. In [20], an algorithm based on auto-correlation
and normalization is proposed, which is robust to noise
pulses but susceptible to pulse loss. A classification method
based on convolutional neural network (CNN) is proposed
in [21]. Although it can achieve better performance in a
complex environment, it can only be realized after collecting
all the pulses, which greatly hinders online applications due
to CNN limitations. The latest research is [22], which uses
several neural networks to recognize PRI modulation modes
including MLP, CNN, Long-Short Term Memory (LSTM),
etc. This thesis finds that LSTM can be more accurate than
other models. However, the lost pulse ratio considered in
this thesis is not large enough for many situations in modern
electromagnetic environment (the loss rate is 25% in this
thesis). In this case, a new approach capable of classifying
complex PRI modulation modes in a real EW environment
with high ratios of lost and spurious pulses is required.

In this paper, we propose to use the recurrent neural net-
works [23] and the attention mechanism [24] to solve the
PRImodulation recognition problem. There have been a large
number of studies on RNN, andmuch progress has beenmade
since the proposal of LSTM in 1997 [25]. LSTM introduces a
forgetting mechanism in the original RNN framework. In this
case, the network architecture is modified so that the van-
ishing gradient problem is explicitly avoided. This progress
has contributed greatly to the widespread applications of
RNN [26]. Recently, gated recurrent units (GRU) [27] has
been proposed as an alternative to LSTM. The GRU has
no controlled exposure of the memory content that LSTM
has. Bahdanau et al. [28] report that the two units performed
comparably to each other according to their preliminary
experiments on machine translation, but GRU is more com-
putationally efficient with less complex structure. In this
case, the GRU structure is used in this paper to solve the
problem of PRI modulation recognition. In addition, consid-
ering the characteristics of the PRI sequence, the attention
mechanism is also applied to the proposed model in order to
better adapt to the complex environment of EW. The atten-
tion mechanism helps the network focus on specific areas
and ignore other unwanted parts. It has been a long time
since the attention mechanism was applied to neural net-
works, especially in image recognition [24]. Until recently,
attention mechanisms have made their way into recurrent

neural network architectures for Natural Language Process-
ing (NLP). [24] uses soft and hard attention mechanism to
solve image caption generation problems. In [29], attention
model is utilized for text automatic summarization. In [30],
a hierarchical attention network for document classification
was established. In [31], the pooling network based on the
attention mechanism is employed in a question answering
system. A more widely used application is described in [32],
where RNN and attention mechanisms are used to solve a
translation task. Later, [33] proposes a structure of GRU and
attention mechanism applied in translation.

With the above motivations, we introduce an attention-
based recognition framework based on recurrent neural net-
work (RNN) to categorize pulse streams with complex PRI
modulations and in environments with high ratios of miss-
ing and spurious pulses. The RNN is used to process TOA
sequences and learn the intrinsic regularity of the time series,
and attention mechanism is used because it can help the RNN
model focus on the correct pulses and ignore the noise. Dur-
ing the training phase, all network parameters are automati-
cally tuned based on the input PRI sequence and the output
ground truth, and the trained network will output the corre-
sponding PRI modulation mode when the test sequence is
imported. No expert knowledge is required during the process
of training and validation phases. In this way, the proposed
model is capable of dealing with complex PRI modulations
in noisy environments. Experiment results illustrate that the
proposed attention-based RNNmodel can recognize six com-
plex PRI modulation modes with high ratios of spurious and
lost pulses.

The rest of the paper is organized as follows. In section II,
we introduce PRI modulation modes and noise in the EW
environment; in Section III, the attention-based RNN model
is proposed in detail; Section IV shows the simulation results,
and conclusions are finally presented in Section V.

II. PROBLEM FORMULATION
A. REPRESENTATION OF PRI
The PRI sequence pn consists of some instant PRI values
which can be described as [34]:

pn = {p1, p2, . . . , pi, . . . , pN−1}, (1)

where N is the number of intercepted pulses.
Since the PRI sequence is the first difference of TOA

sequence, by observing the TOA sequence, pi can be cal-
culated by pi = ti+1 − ti, where ti is the ith intercepted
pulse.

Each digitized PRI value pi can be represented by a
one-hot vector gpri, whose unique non-zero element of 1
indicating the value of the digitized features. For example,
if the PRI is upper-bounded by 5000µs and digitized with
a unit of 5µs, then the one-hot representation of 6.7µs is
[0, 1, 0, 0, · · · , 0]T ∈ R1001×1. One-hot features can be
processed more easily by machine learning techniques than
their numerical counterparts [34].
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B. EMBEDDING OF THE PRI SEQUENCES
One-hot features can well represent the PRI values while
the elements are only zeros and ones, which are too sparse
and could make the learning process unstable. Therefore,
embedding ideas [35] are introduced to compress the one-hot
expression and stabilize the learning process.

An embedding turns positive integers into dense vectors of
fixed size. In the context of neural networks, embeddings are
low-dimensional, learned continuous vector representations
of discrete variables. Embeddings are useful because they can
reduce the dimension of categorical variables and meaning-
fully represent categories in the transformed space [35].

In recent years, embedding technique has proven to
perform well in a variety of areas especially in NLP
tasks [35]–[37].

According to the embedding technique, the one-hot PRI
features can be converted as follows,

epri = E(pri)gpri, (2)

where gpri ∈ R1×l is one-hot PRI vector, E(pri)
∈ RL×1 is

embedding matrix for the feature with l � L, epri ∈ RL×l is
embedded vector.

Embedding matrix acts like look-up table. When a one-hot
feature is given, a column of the matrix is selected according
to the position of the non-zero vector element to represent
the feature. The embedded features are then fed to the neural
network as a series of inputs. Well designed neural networks
are required to extract inner patterns within successive pulses,
so as to identify different emitters, and be aware of pulse
contexts to distinguish pulses from outliers.

The parameter matrix E(pri)
∈ RL×1 of the embeddings are

initialized properly and trained together with other param-
eters during the training phase of the neural network via
supervised learning, and the detailed training progress will
be discussed in Section III.

C. PRI MODULATION MODES
There are commonly six basic types of PRI modulation,
i.e., constant PRI, staggered PRI, sliding PRI, jittered PRI,
Dwell and Switch (D&S) PRI and wobulated PRI. These six
types of PRI sequences can be described as follows [11], [15].

Constant PRI: A constant PRI sequence always has a
fixed value of k . pn = k,∀n ∈ Z+ for some real number
k > 0.

Staggered PRI: There are M fixed values appear cycli-
cally in order in a stagger PRI sequence. pn = yi where each
yi > 0 is a pre-defined value and i = (n mod M ).
Sliding PRI: The values of sliding PRI sequences always

monotonously increase (or decrease) to the maximum (or the
minimum) value, and then suddenly go down (or up) to
the minimum (or the maximum) value. pn = PRI0 + δ ∗
(n mod M ) where PRI0 > 0 is the initial PRI value of a slide
period, δ ∈ R is some value indicating the rate of change in
PRI during a slide period and M is the number of pulses in
each slide window.

Jittered PRI: The values of jittered PRI sequences jittered
around a certain constant value, and the range of jitter is
typically between 1% and 30%,which is random but typically
follows a Gaussian distribution.

Wobulated PRI: The values of wobulated PRI sequence
always have a shape similar to the sinusoidal function, and
also appear periodically. pn = PRI0 + A sin (ω ∗ xn + ϕ)
where PRI0 > 0 is the value that PRI will oscillate around.
A is the amplitude of the modulation, ω is the frequency of
the sine function, ϕ is the phase of the sine function, and
xn is some value proportional to n defining the sampling
resolution.

Dwell and Switch (D&S) PRI: Like the staggered PRI,
there are several stable values in the D&S PRI sequence, but
the difference is that the values may remain at the same value
yi > 0,∀i for several pulses xi − xi−1 before switching to
another value yi+1 > 0 in the D&S PRI.

D. LOST AND SPURIOUS PULSES
The lost and spurious pulses of the pulse streams make it
difficult to recognize PRI modulation. Lost pulses are hap-
pens because the ESM system does not detect every pulse
emitted by a radar [38], [39], especially when the antenna
is facing away from the radiation sources. Besides missing
pulses, there are alsomany spurious pulses in received signals
because other emitters are transmitting signals simultane-
ously. Advanced signal transmitters and crowded electromag-
netic environments are the main causes of lost and spurious
pulses, which always occur during the reception of radar
pulses. In addition, errors made in the deinterleaving step will
result in lost and spurious pulses.

Let pn = {p1, p2, . . . , pN−1} denote the original PRI
sequence, the received TOA sequence can be described as
Tn = {t1, t1 + p1, . . . , t1 + p1 + . . . + pN−1}, where N is
the total number of received pulses.

When there are j pulses are lost from the ith pulse to
(i+ j− 1)th pulse in the received TOA sequence Tn, then the
new PRI sequence p′n can be represent as:

p′n =


pn, n = 1, 2, . . . , i− 1
pi + . . .+ pi+j−1, n = i
pn+j, n = i+ 1, . . . ,N − j− 1.

(3)

Besides, if there are j pulses added to the sequence fol-
lowing the ith pulse, which have the first-order difference as
gk = {g0, g1, . . . , gj}, then the new PRI sequence p′′n can be
described as:

p′′n =


pn, n = 1, 2, . . . , i− 1
gn−i, n = i, . . . , i+ j
pn−j, n = i+ j+ 1, . . . ,N + j− 1,

(4)

where j is the number of inserted pulses. g0 and gj are the
differences between the original pulse and the spurious pulse.
g1 to gj−1 is the difference between the spurious pulses
themselves.
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FIGURE 1. Six curves of PRI modulation modes in (a) ideal environment;
(b) real EW environment.

In addition, measurement error happenswhen receiving the
signals, which typically follows a Gaussian distribution with
the mean value is the value of PRI sequence.

In an ideal EW environment without lost or spurious
pulses, the PRImodulationmode seems to be easily identified
by distinguishing regular patterns. However, when noise is
added to the curves, it is difficult to tell which modulation
mode the PRI sequence belongs to.

Six kinds of PRI modulation curves in an ideal environ-
ment without noise are shown in Fig. 1a. The same modu-
lation modes in the real EW environment with 70% of lost
pulses and 50% of spurious pulses are shown in Fig. 1b. The
figure shows that it is no longer easy to recognize these PRI
modulation modes using traditional statistical methods.

Considering the characteristics of the above PRI
sequences, we introduce an attention-based RNN structure
to solve the PRI modulation recognition problem. This is
because i) RNN is suitable for processing time-series data;
ii) RNN can take sequential input which can perform on-time
processing; iii) The attention mechanism can well solve the
problem of high ratios of lost and spurious pulses.

III. RNN BASED MODULATION RECOGNITION MODEL
In this section, we present the idea of classifying PRI
sequences using an attention-based RNN model. A sketch
of the proposed attention-based RNN structure is shown
in Fig. 2. PRI sequence pn = {p1, p2, . . . , pN−1} is first

FIGURE 2. The framework of the PRI modulation recognition process.

FIGURE 3. Detailed procedures of GRU.

represented by a one-hot vector, and then embedded into the
lower-dimensional features according to Eq. (2). The embed-
ded features are then fed into the attention-based GRUmodel.
This model extracts sequential patterns contained in the PRI
sequence, and stores them in the state of the GRU, which
is denoted by hn, and is also considered the output of the
model. The parameters of this process need to be tuned during
the training phase [27]. Finally, a fully-connected layer is
appended to the model to map its state vectors to a probability
distribution along with different classes, with softmax acting
as the activation function.

Detailed discussions of the structure and the stages of train-
ing and validation of the proposed model will be provided in
the following sections.

A. RNN FOR MODULATION RECOGNITION
In order to take long PRI series into consideration, we use
GRU [27] to promote the performance of RNN. Detailed
procedures of GRU are shown in Fig. 3 and Eqs. (5)-(8).

zn = σ (W(u)xn + U(u)hn−1 + b(u)), (5)
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rn = σ (W(r)xn + U(r)hn−1 + b(r)), (6)

fn = tanh(Wxn + rn � Uhn−1 + b), (7)

hn = zn � hn−1 + (1− zn)� fn. (8)

There are four main vectors in the GRU structure, they are
the update gate zn, the reset gate rn, the new memory fn and
the hidden state vector hn at time instant n. Other parameters
include the input xn, the bias vector b and the weight matrices
W and U. In Eq.(5), the update gate zn decides how much of
hn−1 will pass to the next state. The reset gate identifies how
important hn−1 is to the new memory fn in Eq.(6). These two
vectors are obtained via a logistic sigmoid function σ (·) by the
input xn and the hidden state hn−1 transformed linearly with
respect to the matrices W and U, and then added with a bias
vector b. In Eq.(7), the memory vectors fn are also obtained
by W, U and b but via a hyperbolic tangent function tanh(·).
The hidden states of GRU hn are finally updated by the other
three vectors mentioned above in Eq.(8). 1 is an all-one vector
in the equation, and� stands for element-wisemultiplication.

There is a fully connected layer following the GRU struc-
ture to obtain the probability distribution over the PRI class.
Assuming that the K PRI modulation modes is to be recog-
nized, the probability p̂ of the input PRI sequences can be
described as follows:

p̂ = s(W(o)hn + b(o)), (9)

where W(o) are weight matrices, b(o) are bias vectors, and s(·)
is the softmax function.

Each element of the output vector p̂ represents the proba-
bility that the PRI sequence belongs to a certain class. The
class with the greatest probability is then selected as the
classification result.

B. ATTENTION MECHANISM
Intuitively, the periodicity of the PRI sequence makes the PRI
values repeatedly appear, so the PRI values within the com-
plete period can be used to determine its type. In addition, due
to the spurious and lost pulses in the PRI sequence, only part
of the PRI values belong to the original PRI sequence, which
can be used for the recoginition. Other wrong PRI values
cannot contribute to the calculation of class labels. However,
GRU lacks the ability to adaptively focus on certain areas or
locations, so it may result in redundancy or lost information
during learning. Therefore, an attention mechanism has been
introduced to help the RNN focus on the pulses that contribute
to the recognition.

The attention mechanism in neural networks is based on
the human attentional visual mechanism [40]. Human visual
attention has been well studied. Although there are different
models, they all come down to being able to focus on a certain
area of an image with ‘‘high resolution’’ while perceiving
the surrounding with ‘‘low resolution’’. Then they adjust the
focal point over time. As with PRI modulation, it provides a
larger weight value for certain pulses of the entire sequence
and ignores those pulses with incorrect values.

FIGURE 4. The PRI values and corresponding attention weights.

In our proposed RNN structure, the attention mechanism
can well learn the alignment between the input PRI sequence
and the output PRI modulation mode. The attention mecha-
nism links to the related parts of the input PRI sequence and
then assigns a higher weight to the corresponding pulses of
the input xn [41], [42].
The attention gate receives the sequence information

xn and hidden state at the last moment hn−1 to learn a
weight matrix An that can express the importance of these
information.

αn = tanh(hn−1, xn). (10)

An =
exp(αn)∑
n exp(αn)

, (11)

ĥn = tanh (An [xn,hn−1]) , (12)

where xt is the input vector at time n, and hn−1 is the hidden
state at last moment. In the above formula, the attention
mechanism can be considered to construct a fixed length of
the embedded value ĥn of the input sequence by calculating
an adaptive weighted average of the state sequences hn−1 and
input xn.
In order to know the meaning of the attention mechanism,

a constant PRI is taken as an example. PRI sequences with
constant PRI and other PRI modulation modes are imported
into the proposed RNN structure for training. After the RNN
converges, a constant PRI sequence with several spurious
pulses and their respective attention weights αi are drawn
in Fig. 4. Since the value of the attention weight is between
[−1, 1], we take the absolute value of attention weight, and
multiply it by a proper positive number to make the regularity
more obvious. Here, the closer the absolute value is to 1,
the more important the corresponding part is. Vice versa,
if the absolute value is to 0, the corresponding value of PRI
is not important.

The blue line is the curve of the constant PRI sequence.
If there were no spurious or missing pulses, the line would
remain constant at the value of 500, which means that the
falling parts of the curve are where the spurious pulses are
located (the lost pulses are not considered here). The orange
line represents the corresponding attention weights for the
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PRI values. The greater the attention weight is, the greater the
contribution of the corresponding PRI value to the recogni-
tion results. Since spurious pulses are not conducive to recog-
nition results, the corresponding attention weights should be
small. Vice versa, the attention weights of the normal value of
PRI at 500 should be large. The results are shown in Fig. 4,
where the falling parts of the orange line exactly match the
blue line.

C. TRAINING OF PROPOSED RNN MODEL
Since several weight matrices and bias vectors are introduced
into the attention-based RNN model, they should be calcu-
lated by supervised learning. To achieve this, the tagged PRI
sequences are fed into the RNN structure. The predicted class
of the PRI sequence is calculatd through the RNN model,
and then compared to the previously given labels to obtain
a loss through the loss function. The loss indicates the dif-
ference between the estimated and target class labels. Then,
the weight matrices are calculated by minimizing the loss
through the back-propagation process. After multiple back-
propagations, the trained GRU can converge to perform a
satisfactory classification.

The parameters should be initialized before the training
phase. In our proposed RNN model, the hidden state h0 is
initialized to 0, while all the weight matrices and bias vectors
are initialized randomly. After that, PRI sequence samples are
imported to the proposed model. The PRI sequences are first
digitized and converted to one-hot vectors to accommodate
the machine learning algorithm. The one-hot vectors are then
embedded to form the lower-dimensional input vectors xn of
the RNN model. The RNN model processes the input vectors
according to Eq.(5)-(8) and finally outputs the state vector hn.
When processing the last sample of the PRI sequence, putting
the final state vector into the fully-connected layer to obtain
a probability distribution estimate p̂ = [p̂1, . . . , p̂K ]T on the
K classes.

The target label of the PRI sequence is p = [0, . . . ,
0, 1, 0, . . . , 0]T ∈ RK×1, and the only non-zero element in
p represents the class number. The loss function used in our
RNNmodel follows the binary cross entropy criterion [43] to
calculate the differences between the expected values and the
true labels:

loss = −
K∑
k=1

[pk log(p̂k )+ (1− pk )log(1− p̂k )]. (13)

From Eq. (13) we can inform that, the greater the loss,
the more p̂ deviates from p. Our goal is to make the loss as
small as possible. When the average loss of a batch of data
remains stable and the recognition accuracy in the test dataset
is satisfying, the model is considered as well-trained.

The back-propagation process [43] is always used in neural
networks to minimize the loss value. It calculates the deriva-
tions between the estimated values and the target values, and
then modifies the weight matrices to converge the neural
network parameters. The back-propagation process can be

described as follows:

αnew = αold − η
∂loss
∂α

, (14)

where α represents any one of the tunable parameters, η is
a self-defined positive learning rate which is smaller than 1.
Many literature have studied the details of back-propagation
of RNN [44], [45]. The most widely used machine learning
platforms, such as Pytorch [46] and Tensorflow [47], provide
callable functions to perform the back-propagation process
automatically.

Parameter settings and dataset descriptions used to train
and test the RNN classifier are introduced in Section IV. Lost
and spurious pulses are considered in the dataset to better
simulate the actual EW environment.

IV. SIMULATIONS
In this section, we perform simulations to demonstrate the
performance of attention-based RNN recognition for six PRI
modulation modes. The PRI sequences considered in this
paper have a high noise ratio, so it is difficult to distin-
guish them using statistical features. Therefore, other neural
networks including deep neural network and convolutional
neural networks are considered to be base-line methods for
performance comparison.

A. SIMULATION SETTINGS
1) PARAMETERS OF PRI SEQUENCES
Six kinds of PRI sequences are simulated in this section. All
parameters are simulated based on conditions that may be
encountered in a real EW environment.

The parameters for each PRI modulation are chosen such
that the PRI values will always at a particular range that is
most likely to be seen in the real environment. For each PRI
sequence, the pulse lengthN is set to 300. 40, 000 samples are
simulated separately for each PRI modulation mode, which
means that a total of 240, 000 PRI sequences are simulated.
Specifically, 80% of 240, 000 streams are generated to train
the proposed RNN structure, 10% for test set and the other
10% of the streams are used as the validation set. The test
set are simulated with different levels of lost pulse ratio or
spurious pulse ratio, and each level has 1, 000 sequences.
Detailed parameter settings for each PRI modulation mode
are described below.

Constant PRI: Constant PRI is defined by PRI =
random(min_val,max_val), which means ideal constant PRI
sequence will always maintain the same value between the
maximum valuemax_val andminimum valuemin_val. In the
simulation,min_val is set to 100 andmax_val is set to 3, 000.
Jittered PRI: The values of jittered PRI sequence jittered

around a certain constant value PRI0 = random(min_val,
max_val), and the range of jitter is deviation =

random (min_dev,max_dev). So the values for jittered PRI
sequence are generated by sampling PRI = PRI0 ∗ (1−
deviation),PRI0 ∗ (1 + deviation). Table 1 shows the values
of those parameters.
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TABLE 1. Parameters of simulated jittered PRI.

TABLE 2. Parameters of simulated stagger PRI.

TABLE 3. Parameters of simulated sliding PRI.

TABLE 4. Parameters of simulated wobulated PRI.

Stagger PRI: There are M = random(min_len, max_len)
fixed values appear cyclically in order in a stagger PRI
sequence. For each element of one stagger period, the value is
PRI = random(min_val,max_val). Table 2 shows the values
of those parameters.

Sliding PRI: Sliding PRI uses a start value PRI0 =
random(min_start,max_start) and a gradient k =

random(min_k,max_k) to simulate the sequence. The
PRI values of one sliding period can be calculated by
PRI = PRI0 + k ∗ n, n = 1, 2, · · · ,N where N =

random(min_len,max_len) is the number of PRI value.
Table 3 shows the values of those parameters.

Wobulated PRI:Wobulated PRI is defined by a sinusoidal
function PRI = PRI0 + A sin(ω ∗ n + ϕ), n = 1, 2, · · · .
PRI0 = random(min_val,max_val) is the mean value of
wobulated PRI. A = random(min_A,max_A) is the devi-
ation from mean PRI value. ω = random(min_ω,max_ω)
and ϕ = random(min_ϕ,max_ϕ) the frequency and phase
of sinusoidal function respectively. The detailed parameter
settings are list in table 4.

TABLE 5. Parameters of simulated D&S PRI.

D& S PRI: Dwell and switch PRI sequence consists of
several PRI values PRI = random(min_val,max_val). For
one D&S PRI window, there are D = random(min_D,
max_D) different PRI values, and each of them will remain
for S = random(min_S,max_S) times. This will define a
window, this window is then repeated until the total number
of PRI values reach N = 300. Table 5 shows the values of
those parameters.

2) ERRORS IN EW ENVIRONMENT
There are three kinds of noise that are considered dur-
ing the training and the validation phases, namely the lost
pulses, the spurious pulses and the measurement error [48].
Each sequence is assumed to drop a certain probabil-

ity ρm =

∑
i
ai∑

i
ai+bi

of pulses, where ai is the number of lost

pulses in the ith period, and bi represents the remaining pulses
in the ith period. Spurious pulses are added between two
adjacent pulses with their number subjecting to a Poisson
distribution with a mean of ρn(1−ρm). In addition, measure-
ment errors are added to the sequences following a Gaussian
distribution. In this way, the ratio of noise number to pulse
number is guaranteed to be ρn in average in the streams.
During the training of RNN, ρm is set from 0 to 0.7, and ρn is
set from 0 to 0.5. The standard deviation of the measurement
error is set from 0 to 0.1. Different values of ρm and ρn
are selected for test to show the robustness of the trained
networks.

Due to the overlap values and high ratio of lost and spurious
pulses, these PRI modulations are difficult to be categorized
directly by conventional statistical methods.

3) PARAMETERS OF PROPOSED RNN STRUCTURE
The attention-based RNN model is trained to recognize PRI
sequences in the six categories mentioned previously. The
entire structure consists of four basic parts, namely embed-
ding, attention, GRU and fully connected layers. For each
training or validation sample, the detailed parameter settings
for each component are described as follows.

Embedding: The length of the input PRI sequence is 300,
and it is then transformed into a one-hot vector with shape
of 300 × 10000. So the input size of the embedding layer is
300× 10000 Embedding size is set to 128. After embedding,
the input size becomes 300× 128.
Attention mechanism: The attention weight is 300, so the

input size of the RNN after attention is still 300× 128.
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TABLE 6. Different proportions of lost and spurious pulses for the test
set.

FIGURE 5. Recognition accuracy with different ratios of lost and spurious
pulses.

GRU: There are three layers of the GRUwe proposed. The
hidden size of the GRU is set to 256, so the output size of the
GRU is 300× 256.

Fully connected layer: Six PRI modulation modes are to
be classified, and the final output of the entire structure is
1× 6.

The attention-based RNN structure is trained on the
Pytorch platform with a batch size of 64 and a learning rate of
η = 0.001. Each of the batch is selected randomly from the
corresponding dataset, and 3, 750 batches in total are used to
train the network.

B. RESULTS
During the training phase, all possible scenarios with a wide
range of parameters of the noise-contaminated PRI modu-
lation modes are fed into the proposed RNN model. The
model is trained till converged. In the test, four different
ratios of lost pulses and six ratios of spurious pulses for each
PRI modulation mode are put into the well-trained model
separately to understand how the proposed RNN model is
performed in different environments. The selected values for
lost and spurious pulse ratios are listed in Table 6. The clas-
sification performance is evaluated in terms of the detection
probabilities, that is, the ratio of correct classification number
to the total number of samples.

Fig. 5 shows the detection probabilities for all six classes
with different noise environments. Each line indicates how
the recognition accuracy varies with increasing spurious
pulse ratio at the same lost pulse ratio. It can be concluded
from Fig. 5 that the recognition accuracy is higher than 92%
even in the worst case with 70% lost pulses and 50% spurious
pulses (the pulse curves can be seen in Fig. 1b). The reason
for the performance degradation is that the lost and spurious
pulses cause huge damages to the original regularized PRI
patterns, and make them indistinguishable from streams in
other classes.

FIGURE 6. Six curves of PRI modulation modes in simulated EW
environment.

In addition, to understand the recognition performance of
different PRI modulation modes, several separate tests are
performed under different conditions for different PRImodes.
First of all, the lost pulse ratio is set to 0 and the spurious pulse
ratio ranges from 0 to 50%. Only when the spurious pulse
ratio is 50%, the recognition accuracy of the stagger PRI is
93.75%, and the accuracy of all other cases is 100%. Then
the lost pulse ratio is set to 70% and the spurious pulse ratio
is still ranging from 0 to 50%. The results are shown in Fig. 6.
The results indicate that different modulation modes have
different responses to lost and spurious pulse ratios. Stagger
PRI modulation is easily identified as D&S PRI when there
is a high ratio of spurious pulses. Constant and D&S PRI
sequences are minimally affected by lost and spurious pulses.
Even in the worst case, the accuracy of these two PRImodula-
tionmodes is still over 95%.However, wobulated, stagger and
jittered PRI sequences are most affected by spurious pulses.
It can achieve an accuracy of nearly 100% when the spurious
pulses ratio is 0, while the accuracy is greatly reduced to
around 86% with 50% spurious pulses ratio. This is because
these three kinds of PRI sequences have a faster change in one
cycle than the other three PRI modulation modes, so the lost
and spurious pulses will make the PRI modes more difficult
to be identified.

The other two neural network structures are compared
to illustrate the superiority of the proposed RNN structure,
namely the fully-connected (FC) neural network and the
convolutional neural network (CNN). Attention mechanism
is not used on FC or CNN. All three neural networks have
the same input and number of layers. The difference is that the
main layers are fully connected layers, convolutional layers or
recurrent layers. The results are shown in Fig. 7. Fig. 7a shows
the recognition accuracy with spurious pulse ratio of 50%,
and Fig. 7b is the performance of lost pulse ratio of 70%.
It can be seen from the results that with the increase of the lost
pulses ratio or the spurious pulses ratio, the proposed RNN
model can obtain higher recognition accuracy than the other
two models.

The attention mechanism used in GRU scans the entire
input PRI sequence and selects the most relevant region to
extract the corresponding features of the PRI sequences.

VOLUME 8, 2020 57433



X. Li et al.: Attention-Based Radar PRI Modulation Recognition With RNNs

FIGURE 7. Recognition accuracy of different neural network structures
with the increase of ratio of (a) lost pulses; (b) spurious pulses.

FIGURE 8. Recognition accuracy of PRI sequences in different
environment with different length of pulses.

The use of attention mechanism can improve recognition
performance, and the results of identifying all six PRI modu-
lation modes under different conditions are shown in Fig. 8.
Four different scenarios are simulated, an ideal environment
and a real environment with a pulse length of 100 and 300.
The results indicate that the attentionmechanism can improve
performance in different situations.

In an ideal environment, RNN is sufficient to identify
those PRI modulations, but still the attention mechanism can
promote the performance. This is because the attention mech-
anism adds a layer of neurons to the original RNN, which
enhances the computing power of the network. In the envi-
ronment with errors, the attention mechanism can increase
recognition accuracy when the RNN cannot accurately clas-
sify the PRI modulation mode. This is because the PRI

pattern is hard to extract due to the high ratio of lost and
spurious pulses. Meanwhile, when the number of pulses is
small, the number of repetition periods of the PRI sequence
is also small, which makes feature extraction more difficult.
Furthermore, it helps the RNN to focus on the correct pulses
and ignore the noise pulses. The attention probability denotes
the alignment between the target class of the PRI and a local
region of the input PRI sequence. It can also be considered
as a regularization parameter for the GRU, as the attention
helps to diminish the gradient of back-propagation from the
classification process. Therefore, the entire process can use
an attention mechanism to link to the relevant part of the
input PRI sequence, and then assign a higher weight to the
corresponding features.

Accordingly, our proposed attention-based RNN model
not only classifies those PRI modulation modes in an ideal
environment but is also robust to environments with high
ratios of lost and spurious pulses.

C. ANALYSIS AND DISCUSSION
1) PROCESSING SEQUENTIAL DATA
RNN is the state of the art algorithm for sequential data. This
is because it is the first algorithm that remembers its input,
due to an internal memory, whichmakes it perfectly suited for
machine learning problems involving sequential data. It is one
of the algorithms behind the scenes of the amazing achieve-
ments of deep learning over the past few years. Because of
their internal memory, RNNs are able to remember important
information about the inputs they received, which allows
them to process sequential data very accurately.

The PRI sequence is time-series data, which are just a
series of data points listed in time order. The PRI pattern is
learned from the regularity among pulses in a PRI sequence,
which is how we recognize the PRI modulation mode. In this
way, RNN is very suitable for PRI modulation recognition.

2) MEMORY-CENTERED
RNN intends to use the connections through a sequence of
nodes to perform machine learning tasks associated with
memory and clustering. GRU helps to adjust the neural net-
work input weights to solve the vanishing gradient problem,
which is a common issue with RNN. As a refinement of the
general RNN structure, GRU has an update gate and a reset
gate. Using these two vectors, the model optimizes the output
by controlling the flow of information through the model.
Like other types of recurrent network models, models with
GRUs can retain information over time – which is one of the
easiest ways to describe these types of techniques is that they
are a ‘‘memory-centered’’ neural network type. In contrast,
other types of neural networkswithout GRUs typically cannot
retain information.

Since the PRI sequence is a long time sequence data and
the pattern may require more than a few pulses to identify,
the ‘‘memory-centered’’ neural network type is well suited
for PRI modulation recognition.
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V. CONCLUSION
In this paper, an attention-based RNN model is proposed
for PRI modulation modes recognition. The model is trained
through supervised learning and tested in various environ-
ments. The simulation results show that the model is able to
mine and extract local patterns of streams of different feature
types, and the mined patterns can be easily used to recog-
nize the modulation mode of PRI sequences. Meanwhile,
the proposed method solves the classification problems in
complex environments with high ratio of lost and spurious
pulses by utilizing attention mechanism to ignore the noise
parts. Future work may include experiments on real data.
Parameter estimation of the PRI sequences is also a direction.
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