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ABSTRACT Cyber-Physical-Social Systems (CPSS) integrates cyber, physical and social spaces together,
which makes our lives more convenient and intelligent by providing personalized service. In this paper,
we will provide CPSS service for fine-grained recognition. Fine-grained visual recognition is a hot but
challenging research in computer vision that aims to recognize object subcategories. The reason why it
is challenging is that it extremely depends on the subtle discriminative features of local parts. Recently,
some bilinear feature based methods were proposed, and the experimental results show state-of-the-art
performance. However, most of them neglect the spatial relationships of part-region feature among multiple
layers. In this paper, a novel approach of Self-layer and Cross-layer Bilinear Aggregation(SCBA) is proposed
for fine-grained recognition. Firstly, a self-layer bilinear feature fusion module is proposed to model the
spatial relationship of feature at the same layer. Secondly, we propose a cross-layer bilinear feature fusion
module to capture the inter-layer interreaction of information to boost the ability of feature representation.
In summary, the method we proposed not only can learn the correlations among different layers but the same
layer, which makes it efficient and the experimental results show that it achieves state-of-the-art accuracy on
three common fine-grained image datasets.

INDEX TERMS Cross-layer bilinear, fine-grained recognition, self-layer bilinear.

I. INTRODUCTION
With the deepening of application of network, especially,
the internet plus, big data, cloud computing, internet of
things, information and physical systems are further inte-
grated, the network and human society are seamlessly
integrated, forming a more complex system that inte-
grates Human, machine and information. We called it
Cyber-Physical-Social Systems (CPSS). Until now, CPSS has
been applied to many fields [1]–[6]. In this paper, we real-
ize fine-grained image classification in CPSS. Fine-grained
image recognition is also called subcategory classification,
which is a classical research topic in computer vision.

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiaokang Wang.

However, because of those uncertainties, including occlu-
sion, illumination, pose, complex background, and etc, lead-
ing to large variance of the same subcategory and high
similarity of different subcategory in fine-grained images
(see Figure 1). Thus, fine-grained image recognition is a
more challenging task than ordinary classification. To over-
come difficulties mentioned above, some part-based meth-
ods were proposed [7]–[9]. These methods depend upon
manually labeled information, such as bounding boxes and
part localization. Although they can improve the classi-
fication accuracy, it is time consuming and labor exten-
sive. With the mature and development of technology, some
weakly-supervised [10]–[13] based methods were proposed,
which only rely on the class labels. They can localize the key
regions and extract discriminative features automatically via
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FIGURE 1. Comparison of inter- and intra-class on CUB-200-2011 dataset.
The images in first row belong to different class, and the images
in second row are the same class.

convolution neural network(CNN). In a CNN, the shallow
layer extracts low-level features, such as texture and detailed
features, the deep layer extracts high-level features, such
as contour, shape and key features. Consequently, the layer
goes deeper, the features are more representative. Thus, some
methods [14] fuse the output of the last convolution layer with
concatenation, sum pooling, etc. for better feature represen-
tation. But there are some limitations that these methods:

• neglect the activations of intermediate layer, which may
be useful for classification.

• overlook the relationships among different layers that
can strengthen the ability of feature representation.

Considering these limitations mentioned above, some
methods [15]–[17] propose bilinear pooling to obtain more
powerful feature representations. Some of them capture the
correlations among different layers by multiplying the fea-
tures from two different layers, some obtain correlationship
of every location on the feature map from the same layer
by self-channel multiplication. However, these methods con-
sider the relationships among different layers and the same
layer separately. To address this issue, we come up with
a novel approach named Self-layer and Cross-layer Bilin-
ear Aggregation(SCBA) to extract the self-channel bilinear
features and cross-channel bilinear features among multiple
layers. Firstly, we design a module named self-layer bilinear
feature fusion to model the spatial relationships at the single
layer. Secondly, we propose a cross-layer bilinear feature
fusion module to mine the inter-layer interaction information.
Finally, we can construct a powerful representation by fusing
self-layer and cross-layer bilinear features. In summary, our
contributions are briefed as follows:
• We exploit a plain but valid self-layer and cross-layer
bilinear feature representation method that simulta-
neously obtains the self-channel relationships in sin-
gle layer and inter-layer interaction of features among
multiple layers.

• We propose Self-layer and Cross-layer Bilinear
Aggregation (SCBA) model to strengthen the
representation ability of bilinear features.

• We have performed extensive experiments on three
fine-grained image datasets and the experimental results
show the superiority of our approach.

• We provide CPSS service for fine-grained recogni-
tion, which can solve the task more conveniently and
intelligently.

The rest of this paper is arranged as follows. Section II
introduces the related work. Section III presents the proposed
method. Section IV shows the experiments on three datasets
and the result analysis, followed by conclusion in Section V.

II. RELATED WORK
In this section, we will introduce the recent methods from
two interesting perspectives that related to our work, contain-
ing weakly-supervised fine-grained image recognition and
feature fusion.

A. WEAKLY-SUPERVISED FINE-GRAINED IMAGE
RECOGNITION
Fine-grained classification is an active research topic in the
field of computer vision. The called weakly-supervised based
methods is the mainstream in the future, which only use
class labels without any bounding boxes or part annotations.
This reduces some money, time and labor at some extent.
Generally speaking, the aims of fine-grained classification
methods are high accuracy and small computational cost.
In order to get better performance, Chen et al. [18] exploited
semantic guided attention mechanism to learn more dis-
criminative regions at each level by incorporating the pre-
dicted score vector of the higher level as prior knowledge.
Wang et al. [19] proposed to add supervision information to
filters for optimizing discriminative part detectors and further
localizing the key regions. Pang et al. [20] firstly proposed
a hybird part localization method to generate accurate part
proposals, and then, updated the segmentation outputs and the
part proposals iteratively for better foreground segmentation.
Yang et al. [21] exploited self-supervision learning mech-
anism to locate the informative regions without any anno-
tations in a end-to-end fashion. However, these methods
mentioned above always rely on discriminative features, and
neglect other part features, which may be harmful for classifi-
cation results. Thus, Ge et al. [22] put forward a novel method
to learn complementary features, not only the discriminative
features. Actually, feature extraction and feature represen-
tation both have contributions to final classification results.
Therefore, some methods perform bilinear pooling operation
to get more powerful representation, which calculates the
second-order statistics of local features that can obtain better
feature representation. For example, Li et al. [23] proposed
fine-brunch and coarse-brunch to obtain different level bilin-
ear features respectively, followed by softmax loss layers
with semantic information from hierarchical labels. Although
these methods can enhance the feature representation ability,
and further improve the classification accuracy, while neglect
the size of parameters. Consequently, some methods were
proposed to reduce dimension and parameters. Gou et al.
[24] proposed sub-matrix square-root layer to normalize the
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output of the convolution layer before bilinear pooling to
depress the feature dimension. Lebedev et al. [25] proposed a
light-weight Network that consists of a convolution network
and a non-parameter classifier, leading to less computational
cost.

B. FEATURE FUSION
Feature fusion can be defined as aggregating all extracted
local features into one compact feature. In practice, construct-
ing a powerful feature representation plays an important role
in computer vision tasks. Some methods combine with the
other modal information to learn better features. For example,
Zheng et.al. [26] proposed a novel method that combines
the contextual information with multiviewpoint depth images
to construct multiviewpoint context-aware representation for
scene classification. Kim et al. [27] exploited tri-modal infor-
mation to produce confidence of the disparity for stereo
confidence estimation. However, these methods neglect the
spatial relationship among features. Thus, some recent works
attempt to excavate spatial information among channels and
different convolution layer. For example, Chen and Li [28]
exploited CA-Fusemodule and level-wise supervision to cap-
ture complement among different modal and level respec-
tively for RGB-D Salient Object Detection. Huang et al.
[29] came up with a framework that combines saliency maps
corresponding to different channels generated independently
via an adaptive uncertainty weighting approach for saliency
detection. The methods above are only pay attention on
spatial information, while the methods below consider the
problem of multiscale features fusion. Chen et al. [30] pro-
posed a new method named MGMR to refine the initial
segmentation mask provided by pre-processing for RGB-D
perception. Hu et al. [31] came up with a new network
to learn discriminative features from different scale images
and then aggregated them to obtain multiscale feature repre-
sentation for Plant Leaf Recognition. However, the methods
mentioned above focus on feature representation ability and
neglect the number of model parameters and dimension of
feature representation. Li et al. [32] introduced a new struc-
ture to aggregate multiscale deep features to enhance feature
representation ability and speed up experiment process for
real-time semantic segmentation. To address these problem,
Yu and Salzmann [33] proposed a parametric compression
strategy to produce more compact representations than pre-
vious compression tactics. Gao et al. [34] proposed NDDR
layer to fuse single-task features by layerwise feature fusion
for multitask feature learning. Sindagi and Patel et al. [35]
proposed a new method to combine multiscale information at
multiple levels and employed a principled way to increase
the effectiveness of this fusion method. These methods
were widely applied to computer visual tasks and achieves
state-of-the-art performance. For further works, we may
exploit these methods to optimize model for better result.

According to the brief introduction of previous methods
above, we can find that though these methods take vari-
ous measures to extract finer-grained features and improve

the ability of feature representation, they neglect some not
discriminative but useful features and computational cost,
leading to the decrease of generalization ability of the method
and dimension explosion. In this paper, we are not just focus-
ing on discriminative features, and project high dimension
feature to lower dimension for less computational cost.

III. PROPOSED APPROACH
In this section, we develop a self-layer and cross-layer bilin-
ear aggregation(SCBA) model to overcome those limitations
mentioned above. Firstly, we introduce the architecture of the
SCBA model in Sect. A. Then, based on bilinear pooling,
we describe the general formulation of self-layer bilinear
feature fusion to jointly represent features from the same
convolution layer in Sect. B. Next, we design a cross-layer
bilinear feature fusion method to jointly represent features
from different convolution layers in Sect. C. Finally, we can
obtain complementary and fine-grained features by fusing
these features, which are conducive to boost the ability of
feature representaion.

A. SCBA MODEL ARCHITECTURE
In this subsection, we introduce our SCBA model architec-
ture, which is able to represent features with their spatial rela-
tionships by self-layer and cross-layer bilinear feature fusion.
SCBAmodel contains three modules, i.e., a resnet module for
extracting feature maps, a self-layer bilinear feature fusion
module for obtaining the spatial relationships from the same
convolution layer, and a cross-layer bilinear feature fusion
module for building inter-layer interactions from the different
convolution layers.

B. SELF-LAYER BILINEAR FEATURE
As we all know, subcategory recognition tasks often have
alike feature and can only be recognized by subtle differ-
ences in local-region features. Bilinear pooling is an effec-
tive method on fine-grained recognition task to capture pairs
of characteristic relationships. However, most models based
on bilinear pooling only concentrate on obtaining the fea-
tures representation from individual convolution layer while
entirely neglecting other layers of information. The fea-
tures of single convolution layer are incomplete because
each object part has multiple attributes which are keys to
discriminate subcategories.

Practically in most cases, we should completely expect
multiple factors of part feature to recognize the category for
an input image. Thus, to extract the detailed information of
fine-grained image, we propose a multilayer self-layer bilin-
ear feature fusion approach that can obtain self-channel rela-
tionship of features, and fuse features of multiple convolution
layers to get rich and representative feature.

Accordingly, assuming that the output of the convolution
layers is a high-dimensional feature map with a dimension of
c× h× w, where c, h and w indicate the number of channel,
height, and width respectively. We reshape this feature into
a matrix with a shape of c × hw, which is denoted as X ∈
Rc×hw. Then, we further integrate spatial relationship into
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FIGURE 2. Illustration of our SCBA model for fine-grained recognition. The picture on the
top left corner is the input image, followed by the features of different convolution layers
in the CNN. First, the features from different layers are expended into a high-dimensional
space by independent linear mapping to capture attributes of different object parts and
then integrated by dot production to model the inter-layer and intra-layer interaction of
part attributes. After that the high-dimensional features are compressed into compact
ones by performing sum pooling.

feature maps by conducting dot production over X and XT ,
the formulation of self-layer bilinear feature is defined by:

B = XXT (1)

where the B ∈ Rc×c. Actually, We can transform the equation
to B =

∑hw
i=1 XiXi

T , the Xi ∈ Rc×1 means the feature at
location i, so XiXiT indicates the correlation matrix of feature
Xi and B is the sum of those correlation matrices.

Based on this, to further learn rich representation
feature, we fuse multilayer self-layer bilinear features,
the formulation can be defined as:

FB = fb(Bl,Bm,Bn) (2)

where FB ∈ Rc×c, and fb is a function contains a reshape
operation and a concatenation operation. Bl , Bm, Bn present
lth, mth, nth self-layer bilinear features in self-layer bilinear
layer respectively.

It is worth noting that the features from different convo-
lution layers are expanded into high-dimensional space by
independent linear mapping to capture attributes of different
object parts. It is expected that the convolution activations and
project activations encode global and local feature of object
respectively. It is highly in accordancewith the human coarse-
to-fine mechanism: human always see the global ‘‘evil’’ of
object before making out the detailed features.

C. CROSS-LAYER BILINEAR FEATURE
Multilayer self-layer bilinear feature fusion introduced in
Sect. B is presentative and valid, as it obtains better represen-
tation ability than general bilinear feature while maintaining
the same training parameters. This inspires us to exploit
multilayer bilinear feature interactions to capture the discrim-
inative information in local region. Based on this, we enlarge

the cross-layer bilinear feature fusion among multiple layers
to integrate more other convolution layers, moreover improv-
ing the ability of features representation. In this subsection,
we design a cross-layer bilinear feature fusion approach to
involve more features from different convolution layer by
conducting dot production over X and Y T . The formulation
of cross-layer bilinear feature is defined by:

C = XY T (3)

where C ∈ Rc×c is the cross-layer bilinear feature, which
contains inter-layer interaction of features. Specifically, X
and Y are the feature maps from different convolution layers.

Based on this, to further learn complementary features
from the intermediate convolution layers for better per-
formance, we fuse multiple cross-layer bilinear features,
the formulation can be defined as:

FC = fc(Cl,Cm,Cn) (4)

where FC ∈ Rc×c, and fc is the same as fb. Cl , Cm, Cn present
lth,mth, nth cross-layer bilinear features in cross-layer bilinear
layer respectively. The overall flow chart of the SCBA model
is shown in Figure 2.

IV. EXPERIMENT AND ANALYSIS
In this section, We conduct experiments on the SCBA model
and evaluated the fine-grained recognition performance of the
model. Firstly, three experimental datasets and implementa-
tion details of SCBA model are introduced in Sect. A. Then,
in Sect. B, the effectiveness of each module was verified
by the SCBA model configuration experiments. Finally, The
comparison results with state-of-the-art models are presented
in Sect. C.

VOLUME 8, 2020 55829



Y. Peng et al.: SCBA for Fine-Grained Recognition in CPSS

FIGURE 3. Some images of three datasets.

TABLE 1. Summary statistics of datasets.

A. DATASET AND IMPLEMENTATION DETAIL
1) DATASET
We have carried out experiments on three usual datasets and
summarize the specific statistics that contain the number
of category and data segmentation of training and testing
in Table 1. Note that we do not use annotation information
other than the category labels in our experiments.

What’s more, we show some images of three datasets
in Figure 3, including CUB-200-2011, Stanford Cars and
FGVC-aircraft dataset.

2) IMPLEMENTATION DETAIL
We evaluate our SCBA model using ResNet-50 [39] baseline
model which pretrained on ImageNet [40] dataset. It is worth
noting that our SCBAmodel can also be implemented to other
models, such as VGG-16 [41] and GoogleNet [42]. The input
image size is 448×448. We finetune the entire network using
SGD optimizer with momentum of 0.9 and weight decay of
5 × 10−4, and the number of batch size is 16, and initial
learning rate is 10−3. All experiments are implemented using
open-source toolbox Pytorch [43] and executed on a server
using Tesla V100 GPUs. The source code will provide at
https://github.com/seabearlmx/SCBA.

B. CONFIGURATION OF SCBA MODEL
We focus on three layers in ResNet-50, including relu5_1,
relu5_2 and relu5_3, since they contain more subtle informa-
tion of part compared with shallower layers. Then, we project
d varies from 2048 to 512 as decreasing d leads to lesser
computational expense for our server and SCBA is suitable
for d = 512. Thus, d = 512 is used for SCBA in our
following experiments considering thememory size of GPUs.

TABLE 2. Classification accuracy of different feature fusion on
CUB-200-2011 dataset.

Then, quantitative experiments are conducted on
CUB-200-2011 [36] dataset to explore the influential factors
of feature fusion. We respectively consider for self-layer
(SL) and cross-layer (CL) bilinear feature and fusing them
(SCBA). The results show in Table 2 that demonstrate that
the performance improvement of the model is basically due
to the combination of self-layer and cross-layer. As the SCBA
already show the best performance, thus we apply SCBA
model in all the experiments in Sect. C.

C. COMPARISON WITH STATE-OF-THE-ART METHODS
The recognition accuracy is shown in Table 3. The table is
divided into three parts: the first part lists the name of some
weakly supervised methods; the second part lists the name
of datasets; the third part lists accuracy of those methods in
datasets respectively.

1) RESULTS ON CUB-200-2011
The CUB [36] dataset provides a rich of annotations, but the
only annotation we use is category label. In Table 3, we can
see that SCBA achieves better result compared with others
weakly supervised approaches, even some supervised meth-
ods, e.g., Mask-CNN [44] and HSnet [45], which proves the
validity of our model. Compared with HSE [18] which used
hierarchical semantic embedding to learn stronger represen-
tation of fine-grained feature, we improve relative accuracy
with 0.16% by our SCBA. We even surpass TASN [46] and
DCL [47] which were the state-of-the-art weakly supervised
models recently proposed, with 0.36% and 0.46% relative
accuracy improves, respectively. Compared with baseline
model, containing B-CNN [15], Improved B-CNN [48] and
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TABLE 3. Comparison results on CUB-200-2011 dataset. The ‘‘X’’ means
the method used annotations during training or testing (the same below).

FIGURE 4. The training loss on CUB-200-2011 dataset.

Boost CNN [49], the advantage that we have achieved is pri-
marily the benefit from the channel relationship of feature and
the feature fusion of multiple layers.We also surpass GP [12],
PC [50], and MAMC [13] which respectively exploited a
novel pooling method to solve visual burstiness phenomenon
of bilinear pooling method, used a novel optimization pro-
cedure to reduce overfitting, and applied the multi-attention
multi-class constraint to regulate multiple object parts among
different input images. Although HBP [16] described sim-
ilar approach to obtain inter-layer feature interaction. Our
approach can get better accuracy since feature fusion of
multilayer self-layer and cross-layer bilinear feature. Note
that SCBA outperforms SL and CL, which means that our
approach can extract the rich information by fusing multiple
layers feature.

We carried out some experiments on CUB-200-2011
dataset. The line chart shows the fluctuation of loss during
training, the drift of loss during testing, and the fluctuation
of accuracy during testing in Figure 4, Figure 5, Figure 6
respectively.

Figure 4, 5 and 6 show that the model trained nearly
37 epoch (20 steps per epoch), and the training loss suddenly
increased to about 1.15, and then decreased to approach

FIGURE 5. The testing loss on CUB-200-2011 dataset.

FIGURE 6. The testing accuracy on CUB-200-2011 dataset.

TABLE 4. Comparison results on Stanford Cars dataset.

0 with small fluctuation. The loss of testing stage was
decreasing all the time before 25 epoch and fluctuated
between 0.4 and 0.5 after that and fell to 0.45 eventually.
Different from the training stage, the loss of testing stage was
unstable and fluctuated greatly. The accuracy of the model
on the testing set was increasing before 18 epoch and subse-
quently remained stable, ranging from 0.8776 to 0.8826.

2) RESULTS ON STANFORD CARS
We all know that different parts of car are different and
complementary, so the positioning of objects and parts
plays an important role in recognition task. In Table 4,
our SCBA achieves the best result among those supervised
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TABLE 5. Comparison results on FGVC-Aircraft dataset.

based methods, such as HSnet [45] (93.9%), FCAN
[53] (91.3%), Krause et.al [54] (92.6%), and those
weakly-supervised basedmodels that achieves the-state-of-art
performance, such as NTS [21] (93.9%), TASN [46] (93.2%),
HBP [16] (93.7%), PC [50] (93.43%) and etc, except DCL
[47] method. Although our SCBA is less than DCL [47] about
0.18%, our SCBA is better than DCL [47] on CUBBirds [36].

3) RESULTS ON FGVC-AIRCRAFT
Because of subtle differences, different aircraft models can be
difficult to recognize, for example, by computing the number
of windows may be able to discriminate them. The results are
similar to those in Table 5 that our SCBA only less than DCL
[47] about 1.53% but better than others.

V. CONCLUSION
In this paper, we propose SCBA model to fuse multilayer
features for fine-grained recognition, which combines mul-
tilayer self-layer and cross-layer bilinear features to learn
powerful feature representation. The proposed model can be
trained in an end-to-end fashion without the need for bound-
ing box/part annotations. Experimental results on birds,
cars and airplanes demonstrate the validity of our model.
What’s more, we achieve fine-grained recognition in CPSS.
However, the proposed method has some limitations, such as
expensive computation cost, not effective enough in feature
representing, etc. In the future, we will expand our research
in two directions, i.e., how to effectively integrate multiscale
features to learn rich fine-grained representation, and how
to effectively reduce feature dimensionality to decline heavy
computational cost.
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