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ABSTRACT Due to the harsh natural environment on the Tibetan Plateau (TP), its vegetation is sensitive
to climate change. Therefore, it is essential to characterize long-term vegetation shifts for understanding
of land surface processes across the TP. Gradual greening or browning growth in vegetation greenness is
detectable while the alternating process between greening and browning, its timing, and type remain unclear.
In this paper, breakpoint in time series of a satellite-derived vegetation index was detected at pixel-level
during 1982-2012. The long-term growth procedure of vegetation was then characterized by combining
the greening/browning trend for the two sub-periods, on each side of the breakpoint. The combinations of
greening/browning status were classified into three categories (monotonic, interrupted and growth reversal).
Possible causes for abrupt vegetation changes are discussed in the content of climate change and grassland
management. Results show that breakpoints are temporally widely distributed and have significant spatial
heterogeneity. About 21% (11%) of the vegetated area showed significant greening (browning) trends.
Vegetation in central and eastern TP has tended to be greening. Browning trends were particularly evident
in the southern and northeastern TP and were scarce in the west. About 32% of the vegetation was found to
change significantly in this analysis. Greening trends occurredmore often than browning trends and exhibited
both a monotonic and an interrupted growing process. Trend reversal in vegetation was dominated by declin-
ing trends. Breakpoints in monotonic and interrupted trends were concentrated in some time points, but those
with reversal trends were discretely distributed over time span. Among different ecosystem types, desert
ecosystems presented the most significant greening trends, accounting for 53% of plant-covered desert.
Conspicuous degraded trends were identified on alpine sparse vegetated area. Statistically, breakpoints in
precipitation and air temperature are not consistent with those in vegetation greenness index. And grazing
projects have not posed a significant effect on abrupt shifts in vegetation greenness.

INDEX TERMS Tibetan Plateau (TP), greening and browning, breakpoints, seasonal-trend model, GIMMS
NDVI3g.

I. INTRODUCTION
Vegetation plays an essential role in the exchange of
carbon, water, and energy between land surface and
atmosphere [1]–[3], and it is essential to examine long-term
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changes and interannual variability from regional to global
scales, particularly in fragile ecosystems. These trends and
variability have been used extensively for terrestrial ecosys-
temmonitoring, especially for assessing ecological responses
to carbon cycle dynamics [4], land cover changes [5],
and various ecosystem shifts. In addition to these trends,
commonly analyzed linearly, abrupt changes in long-term
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vegetation data occur. These changes have not been fully
identified even though they can reveal interactions between
plants and environmental changes [1], [6].

The Tibetan Plateau (TP) is sensitive to global climate
change, as a result of its elevation (approximately 4000 m
above sea level) [7], [8]. For instance, temperature on the
TP has been increasing at a much faster rate than in all of
China and other parts of eastern Asia [9]. In fact, the TP
has become an ideal place for assessing vegetation dynamics
and vegetation’s relationship with pedospheric, atmospheric,
and hydrospheric systems [10], [11]. Due to its capability
to measure chlorophyll and energy absorption, the Normal-
ized Difference Vegetation Index (NDVI) has been applied
extensively as a proxy for a number of vegetative biophysical
parameters, including biomass and productivity [12], [13].
Recently, the release of the longest NDVI time series to date -
GIMMS NDVI3g - enables us to perform long-term analyses
for interannual variation in NDVI and its relationship to tem-
perature and precipitation throughout the TP [14]. Vegetation
across the TP has demonstrated an obvious greening trend
due to both substantially increased growth and a prolonged
growing season length [15]. This is consistent with similar
findings at the global scale that most of the northern ecosys-
tems are becoming greener, with some browning regions
at high latitudes in North America and central Eurasia[1],
[4], [16]–[20]. Since the beginning of the 1980s, vegetation
on the TP has been greening in general, although there are
significant regional and seasonal differences in vegetation
status [21], [22]. Guo et al., examined the greenness trend
of grasslands on the plateau using MODIS images and found
a significant increase in NDVI, primarily in the northeastern
TP. Significant decreases in NDVI were mostly found in cen-
tral and southwest TP [21]. They further found that increasing
rates of vegetation greenness varied by land cover type [23].
In addition, there were large differences between results of
the different datasets used to monitor the vegetation dynam-
ics [24]. The influences of temperature and precipitation on
vegetation growth vary substantially across the TP, especially
in the arid and semi-arid regions [25]. In addition, since the
2000, a set of projects consisting of grazing exclusion and
construction of national conservation areas, were carried out
to protect and recover ecosystems degraded by high intensity
grazing [26], [27]. Thus, it is necessary to examine vegetation
development under the combined impacts of various natural
factors and human activity.

Linear regression has beenwidely used to detect vegetation
changes, focused primarily on changes in monotonic trends.
Linear regression needs to be used with caution since any
auto-correlation within the time series conflicts with model
assumptions [28], and trends may be less significant than they
appear [29]. Information regarding both positive and negative
changes, for instance, are crucial for monitoring the effects
of changes in land management or the influence of meteo-
rological conditions on vegetation status. These positive and
negative changes through time can be referred to as green-
ing and browning, respectively. Monotonic changes may be

caused by gradual beneficial (positive) or adverse (negative)
changes in external forces, while abrupt changes in a trend
can be induced by a wide range of underlying processes that
occur more quickly, These abrupt changes, or breakpoints,
may be a result of sudden disturbances, such as wildfire or
flood. In a water-limited environment (e.g., desert), vegeta-
tion grows quickly in response to heavy rainfall in a short
period of time [30]. Abrupt changes may also be related
to human disturbance activities [31]. In practice, there are
promising methods focused on identifying abrupt changes in
time series of remote sensing data [28], [32], [33]. Among
these methods, the BFAST (Breaks For Additive Seasonal
and Trend)method is extensively used because of its accuracy
and its applicability in monitoring vegetation changes, urban
extension, water body changes, etc [15].

A considerable number of studies have focused on explor-
ing vegetation dynamics in this area, using long-term NDVI
time series data from a number of remote sensing sensors,
such as AVHRR or SPOT. Researchers explored specific
components of time series such as the long-term trend,
interannual cycle or seasonal behavior, whereas fewer studies
focused on irregularities in the data. Most previous studies
of long-term changes applied linear regression of annual
NDVI to detect developing trends in vegetation growth [34].
However, the linear regression model is usually accompa-
nied by the uncertainty that the fitted slope is not always
significantly distinct from zero. We combined the Global
Inventory Monitoring and Modeling Systems (GIMMS)
NDVI3gV0 [12] dataset with an abrupt change point detec-
tion method to delineate the spatiotemporal dynamics of
vegetation growth across the Tibetan Plateau (TP). A data-
driven breakpoints detection approach capable of quantifying
trend changes without prior knowledge of location or timing
was utilized to explore vegetation changes on TP during
1982-2012.

II. MATERIALS AND METHODS
A. STUDY AREA
The Tibetan Plateau, known as the third pole on the Earth,
has an average elevation of 4,500 meters and an area of
about 2.5 million km2, about one quarter of China territory
(Figure 1) [35]. The plateau is located in a semi-arid/arid
alpine climate zone with an annual precipitation of approx-
imately 250 mm. Its precipitation varies with elevation, from
50-150mm in the southeast to 300-450 mm in the north-
west. The plateau contains 11 types of vegetation cover,
mainly consisting of shrub, steppe, meadow, and desert,
which accounts for around three quarters of the total area.

B. DATASETS
1) GIMMS NDVI3G IMAGES
The primary dataset used in this analysis is the third-
generation normalized difference vegetation index dataset
(NDVI3g), released by NASA Global Inventory Monitoring
and Modeling Systems (GIMMS). This dataset spans the
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FIGURE 1. Map of vegetation cover types on the TP.

period from 1982 to 2012 with a spatial resolution of 0.083◦

and a temporal interval of 15 days [12], [36]. The GIMMS
NDVI3g dataset, has been widely used in monitoring veg-
etation growth and dynamics from regional to continental
scales [18]. It is the longest NDVI time series to date and
has been proven to effectively monitor vegetation long-term
dynamics [37]. In addition, the dataset has been normal-
ized to account for issues such as sensor calibration loss,
orbital drift, and atmospheric effects including those result-
ing from volcanic eruptions, so it can provide high quality
data for regions from mid- to high-latitudes. Although the
spatial resolution the NDVI3g dataset is relatively coarse,
it is sufficiently detailed to explore vegetation change trend
in this study area (2.5 million km2). We extracted a temporal
sequence of data for each pixel based on time series stacks of
multi-temporal images. The Savitzky-Golay (S-G) smooth-
ing filtering algorithm [38] was applied to further improve
data consistency through time. Based on an analysis of the
vegetation on the TP, an NDVI threshold value of 0.05 was
set to exclude non-vegetated areas; pixels having a multi-year
averaged NDVI less than the threshold value was set to null.

2) METEOROLOGICAL DATA
Temperature and precipitation raster data were obtained from
the China meteorological forcing dataset created by merging
data from a number of sources [9], [39]. These data sources
include CMA (China Meteorological Administration) station
records, TRMM (Tropical RainfallMeasuringMission) satel-
lite precipitation analysis data, Princeton forcing data, and
GLDAS (Global Land Data Assimilation System) data. This
dataset has a spatial and temporal resolution of 0.1 degree and
3-hours, respectively. It was then resampled to 8 km using the
nearest neighbor method and aggregated monthly to match
the GIMMS NDVI3g data. Figure 2 shows the spatial distri-
bution of long-term trends for temperature and precipitation
on the TP. The cooling trend in the northwestern part, and
warming trend in southwestern part are both notable. In other
areas, geographic distribution of cooling and warming trend
is intermixed, as a result of the complex topography. There
is a pronounced decrease in precipitation in the eastern TP,
while evident increase in a large part of the western TP.

FIGURE 2. Long-term trends of monthly temperature (a) and precipitation
(b) on the TP.

C. METHODS
A flowchart for the breakpoint analysis used in this paper is
outlined in Figure 3. First, the GIMMS NDVI3g dataset was
prepared for further analysis once outliers and noise were
removed. Second, a seasonal-trend model was constructed
using the R package ‘BFAST’ [29], [40] to determine the
position of the breakpoint in each pixel. Third, vegetation
was classified into one of eight trend types based on the

FIGURE 3. The flowchart for analyzing vegetation dynamics based on
breakpoints.
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vegetation growth trends on either side of the breakpoint.
Finally, the spatiotemporal pattern of breakpoints and the
trend types were further analyzed.

1) SEASONAL TREND ANALYSIS
To explain when and where the shift occurred in biological
activity indicators after seasonal changes were accounted for,
a seasonal-trend model was created based on the linear trend
function and harmonic seasonal function (HSF) [40], [41].
Specifically, for an observations yt at time t, the season-trend
model is as follows.

yt = y′t + y
∗
t + εt (1)

where

y′t = α + βt (2)

and

y∗t =
k∑
j=1

γj sin
(
2π jt
f
+ δj

)
where y′t is the linear trend component and y∗t simultane-
ously denotes a harmonic seasonal component; εt represents
the residual error. In Equation 2, the intercept α, slope β
(β >0 indicates vegetative greening, while the converse
indicates vegetative browning), amplitudes γj and phases δj
are all unknown parameters, while f is the defined frequency
(i.e., 24). This model takes complete account of both potential
trends and seasonal variations in long-term data [42]. On this
basis, the trend model shifts in each pixel as shown in the
example in Figure 4).

FIGURE 4. Major trend shift on the NDVI time series (gray curve) for a
sample pixel. The season-trend model fitted curve is represented in black
line. Red line indicates the growing trend, and downward red segment
represents the confidence interval of change point timing.

2) BREAKPOINT DETECTION
Determining the existence of breakpoints, as well as their
location, is a crucial step in the seasonal-trend model.
The Moving Sums of Ordinary Least Square Residuals
(OLS-MOSUM) method was applied to this dataset to detect
breakpoints [42], [43]. If MOSUM detected a significant
trend shift at any position, that position is considered to have
a breakpoint in the data. The position of the breakpoints
can also be solved by OLS techniques. The optimal number

of breakpoints was determined using Bayesian Information
Criterion (BIC) [26], [44] as follows.

1) If OLS-MOSUM represents breakpoints in y′t, the num-
ber and position of the breakpoints in the linear trend model
are estimated from the data using y′t+εt. Unknown parameters
α and β were assessed using Robust Regression Analysis
based on M-estimation. Each linear trend model can be esti-
mated as Equation 2.

2) If the method of OLS-MOSUM represents the break-
points in y∗t , the number and position at the breakpoints
in the harmonic seasonal model are estimated from the
data y∗t + εt. At this point, unknown parameters γ and δ
were assessed using Robust Regression Analysis based on
M-estimation. Each harmonic seasonal model can be esti-
mated as Equation 3.

Repeat steps 1 and 2 until the number and position of
breakpoints no longer change. At this point, final breakpoints
are determined. In this study we focus on major trend shifts
for each pixel that reflect the most important disturbances
from natural or artificial influences.

3) TREND CLASSIFICATION BASED ON BREAKPOINTS
An abrupt change implies an obvious difference between the
growth status before and after that change. To better interpret
and understand the driving forces and ecological implica-
tions for these changes, we classified them in eight typical
categories, which were defined as follows: two classes for
monotonic trends, two categories for interrupted trends, and
four classes representing trends with reversals on both sides
of the breakpoint (Figure 5). Monotonic trends show that the
vegetation has experienced greening or browning over time.
Interrupted trends represent a plant greening or browning
process that has been disturbed for some reason, resulting in

FIGURE 5. Vegetation changing types classified according the trends
before and after breakpoints. To intuitively express the trend shifts
information, the time series in these examples were limited to 10 years
around the breakpoint dates.
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a significant change. With trend reversals, growing processes
are different on either side of the breakpoint.

The eight trend types are visualized in Figure 5. The first
column shows that vegetation is greening (increasing NDVI)
in recent years, whereas the second column represents vegeta-
tion browning (decreasing NDVI). The ecological characteri-
zation of trend shifts involves multiple change types, namely,
continuous greening, continuous browning, browning to
greening, and greening to browning. The abrupt changes
between these types are identified by breakpoints. Pixels
with a consistent trend (i.e., without substantial changes or
identifiable breakpoints) were not considered in this study.

III. RESULTS
A. SPATIALPATTERNS OF BREAKPOINTS
All eight trend types are characterized by a break in the
long-term time series as noted by a change in the trend; the
NDVI at the breakpoints may increase or decrease. By eval-
uating the temporal distribution, we found that the timing of
breakpoints occurs most often during specific time periods.
In other words, interannual variability in breakpoints is appar-
ent (Table 1, Figure 6). Vegetation breakpoints span a broad
time interval, which is concentrated in the mid-1990s but
increases sharply in the period 2007-2010. The discrepancy
in breakpoints distribution is pronounced; the maximum
count of breakpoints (6709 in 2009-2010) is approximately
12 times higher than that of the minimum breakpoint count
(559 in 1991-1992).

TABLE 1. Statistics of breakpoints number for every two years.

Vegetation change points vary not only in time, but also in
space. As shown in Figure 6, the spatial distribution of break-
points is regional in nature, revealing the spatial heterogeneity
of vegetation dynamic on the TP. The earliest trend shifts
in the 1980s were mostly concentrated in the southeastern
part of the TP, while trend shifts in the central TP occurred
primarily during the 1990s (green). Trend shifts occurring
after 2000 are widespread in the western and eastern parts
of the TP. Compared with the 1980s, changing trends were
identified for a larger region in the 1990s and 2000s. This
reflects that relatively stable vegetation regimes have changed
towards higher turnover rates, implying an increase in the
complexity of environmental shifts and corresponding plant
responses.

FIGURE 6. Spatial distribution of breakpoints in NDVI (a), temperature
(b) and precipitation (c) on the TP, from 1982 to 2012.

B. SPATIAL DISTRIBUTION OF TREND MAGNITUDE
At the pixel level, the magnitude of the trends in vegetation
was obtained from the slope coefficient in linear regression
model (Figure 7). The spatial pattern suggests that statisti-
cally significant trends are positive for the vast majority of
pixels, indicating the TP is becoming greener. Studies at the
global scale have also confirmed that greening trends are
more prevalent [4], [6], [34]. Browning trends in vegetation
are rare on the TP with the exception of a small number of

FIGURE 7. Spatial distribution of linear trend slopes on the TP for the
period 1982-2012.
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pixels located in the southern and northeastern areas. The
magnitude of the trend is small, which may be the result of
sparse vegetation cover and short growing seasons.

To quantify the detailed extent of change trend across the
TP, we classified it into six categories according to the signif-
icant level of linear trend simulation (i.e., p value). Categories
are first defined as three types: very small yet significant
change, generally significant change and significant change.
Then, greening and browning were taken into account. Thus,
there are totally six categories to describe the degree of
vegetation change. As presented in Table 2, the proportion
of vegetation with a very small yet significant change toward
greening (browning) is 33.38% (25.55%), indicating that
most vegetation was stable during 1982-2012. The total pro-
portion of greening vegetation is 59.97%, whereas browning
vegetation accounts for 40.03%, again implying that the TP
is generally becoming greener. Geographical regions where
the vegetation changed significantly accounted for about one
third of the TP, in which the proportions of vegetation green-
ing and browning were 20.92% and 11.38%, respectively.

TABLE 2. Classification of vegetation linear trends according to trend
signs and statistical significance.

C. SPATIAL PATTERN OF TREND TYPE
After defining the eight trend types, their statistical and
spatiotemporal distributions were investigated. A statistically
significant level of 0.1 was chosen to identify pixels with a
distinct vegetation growth trend on both sides of the break
point (Table 3) to more thoroughly understand vegetation
dynamics. Similar to the linear regression above for the entire
NDVI time series, the statistically significant level of linear
trends for each segment was fitted using pixel classification
and piecewise regression. The type of greening or browning
was determined by combining the linear trends of each seg-
ment at the breakpoints. Only pixels with a second segment
showing an increasing (decreasing) trend was categorized as
greening (browning). Under these conditions, the proportion
of vegetationwith greening and browning trends, was 46.78%

TABLE 3. Statistics of the greening and browning types mentioning the
change points.

and 53.22%, respectively. From this perspective, greening
vegetation occurs slightly less often than browning vegetation
when pixels with barely significant changes are excluded.
The number of pixels with interrupted trends prevailed while
there were fewer pixels with monotonic trends, which indi-
cates that vegetation on the TP is frequently affected by
changes in the environment.

The spatial pattern of vegetation growing trends exhibits
a pronounced spatial heterogeneity, as shown in the map
of trend type class (Figure 8). The majority of the pixels
with significant change trend were discretely distributed
across the TP. Greening with setback, the most common
vegetation trend type, is primarily concentered in the central
TP, with some pixels discretely distributed across the entire
TP. Its spatial distribution in the central TP is consistent with
that of breakpoints occurring during the period 1995-1998
(Figure 6). The second most common trend type, browning
with burst, does not show a concentrated pattern. The other
six types are all sparsely distributed across the TP, and no
regular patterns are found. Monotonic trends, although show-
ing a significant change in trend, account for the smallest
percentage of the pixels and are not apparent on the map.

The statistical distribution also confirms that the trend
type of greening with setback not only substantially con-
tributes to the proportion of trend types, but also has change
points located in a small temporal range, with a median
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FIGURE 8. Spatial distribution of the greening and browning types on the
TP for the period 1982-2012.

FIGURE 9. Boxplots showing distribution of change years for each
vegetation trend type.

value around the year 2000 (Figure 9). In contrast, change
points for browning with burst are distributed across the
largest time interval with a median in 1995. The trend type
of browning to greening with burst has the smallest median
value of change point, occurring in 1985 and implying that
there were earlier greening trends of TP vegetation during
the past three decades. The medians for monotonic greening
and browning are close to the year 2010, as is the median
for browning to greening with setback. These late change
points can be confirmed by viewing the spatial distribution of
change points around 2010 in Figure 6. Thus, the statistical
and spatial distribution both suggest that the greening changes
are generally interrupted with setback, followed by gradual
browning with burst.

The proportion of every vegetation trend type that accounts
for the total area in each vegetation cover was calculated
and is shown in Figure 10. It is clear that in all vegetation
cover types, the two vegetation trend types) greening with
setback and browning with burst) occupy a substantial per-
centage of pixels. Approximately 80% of the vegetation in
grasslands exhibits a browning growth trend with setback
at the breakpoint. This browning with burst condition is
followed by coniferous-leaved and coniferous-broad leaved
mixed forest, with a percentage of∼30% each. Greening with
setback is particularly striking in swamp, desert, steppe, and
meadow regions, which account for about 40% of the land
cover. Monotonic development trends in vegetation are minor

FIGURE 10. Area proportion of various trend types in each vegetation
cover.

across all land covers, indicated by the small percentages of
monotonic browning and greening trends. A small proportion
of the land shows a trend for reversing changes between
greening and browning. Among these trend types, greening
to browning with burst takes a relatively strong position in
areas with steppe, coniferous-broad leaved mixed forest, and
alpine sparse vegetation. In contrast, browning to greening
with setback is scarce across all vegetation types. Greening
to browning with setback, on the other hand, accounts for
approximately 10%∼15% in most vegetation types, with the
exception of grass, coniferous- and broad-leaved forest, and
meadow.

IV. DISCUSSION
To understand the underlying factors influencing vegeta-
tion change on the Tibetan Plateau, both natural forces and
human activities must be mentioned. Slowly acting envi-
ronmental processes, including climate change, certain land
management practices, or land degradation may cause grad-
ual changes in a time series. The abrupt changes in veg-
etation may be attributed to extreme climatic events, such
as droughts, heat waves, floods, and wildfires. Natural and
anthropogenic effects are discussed next.

A. IMPACTS OF NATURAL FACTORS ON VEGETATION
Due to complex natural environments of the TP, vegetation
dynamics may be significantly affected by natural factors.
Temperature, precipitation, and solar radiation are the nat-
ural factors with the most control on vegetation growth
on the TP [36]. In this study, only the direct impacts of
temperature and precipitation on vegetation changes were
considered. Solar radiation is strongly correlated with air
temperature [45], so this discussion is still meaningful when it
is not included. The significant warming and non-significant
precipitation trends across the TP identified in this study
agreed with findings in previous studies [14], [46]. Break-
points in the time series of temperature and precipitation were
calculated for each pixel using the methodology described
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earlier (Figure 6b, 6c). According to the histogram (Figure 9a,
right panel), breakpoints in temperature occurred mainly
during the period 1997-2002. Change points in precipitation
time series (Figure 6c) are mainly distributed in the period
1997-2007 and overlap with the temporal distribution of tem-
perature breakpoints. Comparedwith temperature and precip-
itation breakpoints, vegetation breakpoints span a wider time
window, which is not only concentrated in the mid-1990s,
but is also distributed in the period 2007-2010. The relatively
discrete vegetation breakpoints may result from the time-lag
or memory effect of environmental factors on vegetation
growth [47], [48]. In addition, compound effects from pre-
cipitation and temperature could lead to an irregular response
in vegetation activity.

Spatially, precipitation breakpoints are more homoge-
neous than temperature breakpoints, which may be the result
of complex topography and sparse rainfall. Most parts of
TP show temperature breakpoints occurring in the 1990s,
especially during the late 1990s (1997-1999), with the excep-
tion of the northeastern part and scattered patches in east-
ern, southern, and western parts. Regions with temperature
change points in the 1980s cover a small patch in the south-
eastern part of the TP. Landscape heterogeneity in spatial
distribution for precipitation breakpoints is prominent across
the entire TP, demonstrated by a considerable number of
small patches. In comparison with temperature, more precip-
itation breakpoints occur after the year 2000 in the eastern
and southeastern regions.

The correlation of vegetation change points with those for
temperature and precipitation were assessed by using their
spatial distribution (Figure 6a vs. Figure 6b and 6c). For the
entire TP, the Pearson correlation coefficient between change
points in NDVI and temperature is 0.068, and that for NDVI
and precipitation is 0.061. These very low correlations indi-
cate that for the TP vegetation status shifts do not correspond
with changes in temperature and precipitation. It should be
noted that NDVI data has a temporal resolution of 15 days that
may be too coarse to capture a sudden response of vegetation
to abrupt changes in temperature or precipitation.

B. HUMAN INDUCED VEGETATION CHANGES
In addition to natural forces, human activity is a critical factor
that can drive vegetation changes through land use manage-
ment. Human disturbance on TP vegetation could primarily
be attributed to the grazing restriction strategies of grassland
designed by local and central policymakers. Since the 1990s,
the government has implemented a series of policies that
moved once-mobile herders into settlements and sharply lim-
ited livestock grazing. Local government, in particular, began
to fence in grasslands under the fencing program. Pastures
were planned at fixed locations within fixed areas to protect
the grasslands that were over-grazed in the past. Most of
the fenced grassland patches are distributed in the northern
TP [49]. Previous studies reported that the fencing program
has successfully improved the alpine grassland condition on
the most degraded steppes but has not done as well on either

meadows or desert-steppes [50]. Jane and Qiu also confirm
that the status of grasslands is far less healthy than reported,
so it is urgent to understand how and why the pastures are
changing [50]. In reality, the intensity of human interference
is quite low, and pasture has been a traditional landscape
for more than a thousand years [23], [49]. Thus, human
activities would not be a dominant factor controlling vege-
tation changes. In this study, areas with vegetation showing
greening trends, including persistent greening and greening
with burst, aremainly located on the northern TPwhere desert
grassland types are distributed. These areas were not affected
by the fencing program. If this strategy worked, it would lead
to improved vegetation condition, but our analyses indicates
that the regions where vegetation show browning to greening
trends are not found at northern fenced pastures.

In summary, it is difficult to attribute cause-and-effect
to vegetation trend changes because variations in vegeta-
tion productivity are driven by various factors as shown in
this study. Additionally, there may be errors in the NDVI3g
dataset including platform changes between AVHRR satel-
lites or orbital drift, which could induce trend shifts in NDVI
time series. These effects have been effectively corrected
as documented in previous studies [12]. The weak relation-
ship of vegetation breakpoints with climatic changes may
be induced by the complex response mechanism of plant to
environmental shifts, such as compound changes in tempera-
ture, rainfall and soil moisture. The impacts of human activity
may be primarily explained by gradual plant changes through
time.

V. SUMMARY AND CONCLUSION
This study demonstrates that breakpoint detection and trend
classification can effectively capture the spatiotemporal
dynamics of vegetation activity on the TP. Greening and
browning trends identified by the breakpoints are revealed
across various biomes. The main conclusion is drawn as
follows:

(1) The timing of change points are distributed across a
time span rather than being concentrated at a specific time
interval. Relatively, more breakpoints occur in themid-1990s,
the early 2000s and around 2010. Spatial distribution of
breakpoints is also conspicuously heterogeneous. Central TP
is dominated by the abrupt change points in vegetation trends
that occurred around the year 1995. For other parts of the TP,
the changes occurred mainly after the year 2000.

(2) Browning trends are barely noticeable in the western
TP, although they are particularly evident in the southern and
north-eastern parts. Vegetation in the central and eastern TP
have enhanced greening trends. Most of the vegetation (about
58.93%) is growing in a stable status. The proportion for
greening and browning vegetation is 59.97% and 40.03%,
respectively. The geographical region where the vegetation
changed significantly accounted for about 32.3% of TP total
area.

(3) In the areas where vegetation are generally or
significantly changed, vegetation greening is relatively
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more common than vegetation browning in monotonic-
and interrupted-trends, whereas browning trends was more
conspicuous for reversal trend types than greening trends.
Vegetation area with an interrupted trend (58.36%) is more
prevalent than that with a monotonic trend (3.14%).

(4) The cause-effect analysis shows that vegetation trend
changes on the TP cannot be attributed directly to climate
change or human activities. This point is validated by the
weak correlations between change points in NDVI, precip-
itation and temperature. This may be caused by long-term
effects (e.g., time-lag effect) of climate variables on vegeta-
tion activity, or by low vegetation productivity on the TP.
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