
Received February 7, 2020, accepted February 25, 2020, date of publication March 23, 2020, date of current version April 7, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2982859

P4-MACsec: Dynamic Topology Monitoring
and Data Layer Protection With
MACsec in P4-Based SDN
FREDERIK HAUSER , (Student Member, IEEE), MARK SCHMIDT, (Member, IEEE),
MARCO HÄBERLE, (Student Member, IEEE), AND MICHAEL MENTH , (Senior Member, IEEE)
Chair of Communication Networks, University of Tuebingen, 72076 Tübingen, Germany

Corresponding author: Frederik Hauser (frederik.hauser@uni-tuebingen.de)

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under grant ME2727/1-2 and the bwNET100G+ project which
is funded by the Ministry of Science, Research and the Arts Baden-Württemberg (MWK). The authors alone are responsible for the content
of this paper.

ABSTRACT We propose P4-MACsec to protect network links between P4-based SDN switches through
automated deployment of MACsec, a widespread IEEE standard for securing Layer 2 infrastructures.
MACsec is supported by switches and routers from many manufacturers. On these devices, it has only
little performance limitations compared to VPN technologies such as IPsec. P4-MACsec suggests a data
plane implementation of MACsec including AES-GCM encryption and decryption directly on P4 targets.
P4-MACsec features a two-tier control plane structure where local controllers running on the P4 targets
interact with a central controller. We propose a novel secure link discovery mechanism that leverages
protected LLDP frames and a two-tier control plane structure for secure and efficient management of a
global link map. Automated deployment of MACsec creates secure channels, generates keying material,
and configures the P4 targets for each detected link between two P4 targets. It detects link changes and
performs rekeying to provide a secure, configuration-free operation of MACsec. In this paper, we review
the technological background of P4-MACsec and explain its architecture. To demonstrate the feasibility of
P4-MACsec, we implement it on the BMv2 P4 software target, validate the prototype through experiments,
and evaluate its performance through experiments considering TCP goodput and round-trip time.We publish
the prototype and experiment setup under the Apache v2 license on GitHub [7].

INDEX TERMS MACsec, P4, software-defined networking, VPN.

I. INTRODUCTION
MACsec [41] is a widespread IEEE standard that protects
the Layer 2 with cryptographic integrity checks or symmetric
encryption. MACsec prevents man-in-the-middle attackers
from inspecting, inserting, or even modifying network pack-
ets that are transmitted between two network peers. In con-
trast to VPN technologies such as IPsec, MACsec processing
is implemented on forwarding chips of many devices without
notable overhead in line rate performance [30]. Packets are
protected in a point-to-point manner between MACsec peers
so that control plane functions targeting higher layers, e.g.,
access-control lists (ACLs), can be still applied. Although
mechanisms for distributed key exchange exist, MACsec
deployment still requires time-consuming and complex initial

The associate editor coordinating the review of this manuscript and

approving it for publication was Chi-Tsun Cheng .

setup procedures on all devices. It requires knowledge about
the network topology, large efforts in switch configuration,
and typically maintenance of a key server. Currently, auto-
mated deployment using a network management system with
legacy switches is not feasible. Legacy network switches
only support the Link Layer Discovery Protocol (LLDP) [45]
that lacks timely detection of topology changes. In addi-
tion, it is vulnerable to several attacks that may result in an
incorrect view of the topology. Moreover, current legacy net-
work switches do not support an automated configuration of
MACsec through a southbound protocol. Although aMIB for
manipulating MACsec configuration with SNMP exists [10],
only basic MACsec parameters can be modified. Additional
per-switch configuration and a key exchange server are still
required.

Software-Defined Networking (SDN) splits the strong
binding between data and control plane. OpenFlow (OF) [48]

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 58845

https://orcid.org/0000-0002-0959-5704
https://orcid.org/0000-0002-3216-1015
https://orcid.org/0000-0003-3306-6148


F. Hauser et al.: P4-MACsec: Dynamic Topology Monitoring and Data Layer Protection With MACsec in P4-Based SDN

is the most widespread standard architecture and south-
bound protocol for SDN. It consists of SDN switches with
a fixed-function data plane that are steered by a central
SDN controller. To resolve inflexibilities of fixed-function
data planes, P4 [37] emerged as novel domain-specific lan-
guage that introduces programmability to the data plane
of P4-capable packet forwarding devices such as ASICs,
CPU-based targets, or field programmable gate arrays
(FPGAs). Data plane behavior can be described in P4 pro-
grams that run on P4 targets so that network operators can
continuously program the behavior of deployed packet pro-
cessing devices. The P4Runtime [23] extends P4 targets by an
API to an SDN controller. It serves roughly the same purpose
as the OF southbound protocol.

In this paper, we consider MACsec to dynamically protect
links between switches in SDN. We propose to use an SDN
controller to continuously monitor the network topology and
set upMACsec on all detected links between switches. As OF
does not provide support for integrating the requiredMACsec
functions on the data plane, we propose a concept based on
P4 and call it P4-MACsec. We implement a P4 data plane
with packet switching based onMAC addresses andMACsec,
i.e., MACsec encryption, decryption, and integrity checks of
packets. In P4-MACsec, P4 targets implement typical switch-
ing functionality. Therefore, we call them P4 switches instead
of P4 targets in the following. P4 switches are managed by
a two-tier control plane where each P4 switch runs a local
controller that connects to a central controller. Functions of
the control plane may be solely part of the local controller
or part of both tiers. The control plane implements MAC
address learning for packet switching, a novel mechanism
for secure link discovery with encrypted LLDP packets, and
automated deployment of MACsec. To demonstrate the fea-
sibility of P4-MACsec, we provide a prototype based on
the Behavioral Model version 2 (BMv2) P4 software tar-
get [6]. We perform a functional validation of P4-MACsec
in a Mininet testbed through experiments and investigate
on TCP goodput and round-trip time (RTT) by conduct-
ing a performance evaluation. We publish the source code
of the prototype and testbed setup instructions under the
Apache v2 license on GitHub [7]. In addition, we report on
implementation experiences for the NetFPGA SUME [14]
platform.

The rest of the paper is structured as follows. In Section II,
we review technical background and related work for
MACsec. Section III discusses technical background and
related work on link discovery in SDN. In Section IV,
we give an overview on the P4 programming model and lan-
guage. Section V describes the architecture of P4-MACsec.
In Section VI, we describe the prototypical implementation
of P4-MACsec with Mininet that is validated in Section VII.
In Section VIII, we present a performance evaluation of the
Mininet prototype. In Section IX, we report on experiences in
implementing P4-MACsec on the NetFPGASUMEplatform.
Section X concludes this work. The appendices include a list
of acronyms that are used in the paper.

FIGURE 1. Secure communication between three stations in MACsec that
are part of a CA. The unidirectional SC between the SecYs holds multiple
SAs each with an SAK for encryption and decryption.

II. MACsec: FOUNDATIONS AND RELATED WORK
We give an overview of MACsec and explain how it protects
the Ethernet layer.We describe mechanisms for configuration
and key management and review related work on the applica-
tion of MACsec in SDN.

A. OVERVIEW OF MACsec
IEEE 802.1AE [41] introduces the Media Access Con-
trol Security (MACsec) protocol. It provides point-to-point
security between MACsec peers that are connected to the
same LAN. Examples are links between two switches or
routers, links between switches or routers and hosts, and links
between hosts. MACsec ensures the integrity, confidentiality,
and authenticity of Ethernet (IEEE 802) frames by apply-
ing symmetric encryption and cryptographic hash functions.
In addition, it provides replay protection and a key exchange
protocol to ensure perfect forward secrecy so that session
keys are not affected by a compromised private key.

Figure 1 visualizes the principle and core components of
MACsec. The network hosts A, B, and C are part of a LAN.
Each network host has a MAC security entity (SecY) and
a MAC security key agreement entity (KaY). The SecY
provides secure MAC services over an insecure MAC ser-
vice, i.e., it performs packet encryption, decryption, and
authentication. The KaY discovers other KaYs in the LAN
that participate in the same connectivity association (CA).
It ensures that all network hosts are mutually authenticated
and authorized. Afterwards, it creates and maintains secure
channels (SCs) between the MACsec peers that are used
by the SecYs to transmit and receive network packets. SCs
are sender-specific, unidirectional, point-to-multi-point chan-
nels. Each SC holds multiple secure associations (SAs) that
have a secure association key (SAK) used for encrypting,
decrypting, and authenticating packets.

MACsec leverages cipher suites for packet encryption,
decryption, and authentication. The standard defines the
Advanced Encryption Standard in Galois/Counter mode
(AES-GCM) with a block length of 128 bit (AES-GCM-128)
as required cipher suite. If only packet authentication but
no encryption is configured, MACsec applies the Galois
Message Authentication Code (GMAC). Further specifica-
tions [43], [44] add GCM-AES-256, GCM-AES-XPN-128,
and GCM-AES-XPN-256. Other cipher suites that meet
requirements from the standard may also be applied.

58846 VOLUME 8, 2020



F. Hauser et al.: P4-MACsec: Dynamic Topology Monitoring and Data Layer Protection With MACsec in P4-Based SDN

FIGURE 2. Packet structure of MACsec applied to an Ethernet packet. The
MAC source and destination addresses of the MACsec packet are adopted
from the original packet. The user data is transformed into a secure data
block that is followed by the ICV calculated over the whole packet (1). The
SecTAG includes among other things parameters to identify the SC and SA.

Figure 2 depicts the packet structure of MACsec. The Eth-
ernet source and destination addresses of the MACsec packet
are adopted from the original Ethernet packet. The secure data
field either contains the encrypted user data of the original
Ethernet packet or the user data in plain text if only MACsec
packet authentication is configured. The integrity check value
(ICV) field holds the result of a cryptographic hash function
that is applied on the whole Ethernet packet including all
header fields. The secure data and ICV are calculated by
the chosen cipher suite. The security tag (SecTAG) contains
MACsec information, e.g., the SC or SA identifier to indicate
the corresponding SAK for packet encryption, decryption,
and authentication. SecYs store multiple SAs with SAKs
for each SC. When SAKs should be changed in rekeying,
one SecY selects and uses a new SA for packet encryption
and authentication. The SA field in the SecTAG reflects this
transition so that the receiving SecY can switch to the new
SA for decryption and authentication.
MACsec is supported by most access, distribution, and

core switches from major manufacturers. Proprietary imple-
mentations such as the MACsec Toolkit [26] from Rambus
provide control and data plane implementations that can be
integrated in switches, routers, or network hosts. In addition,
MACsec is part of the Linux kernel since version 4.6 [27] so
that switch-to-host or host-to-host links can be protected with
MACsec as well.

B. MACsec KEY EXCHANGE PROTOCOL
The 802.1AE standard does not define processes for key
management or establishment of CAs and SAs betweenKaYs
on MACsec peers. Therefore, network administrators are
required to configure the CA affiliation and SAs with SAKs
on every MACsec peer. IEEE 802.1X-2010 [42] introduces
the MACsec Key Agreement (MKA) for automated peer
discovery and exchange of SA data. With MKA, the initial
CA affiliation and SA with SAK is derived from a connec-
tivity association key (CAK). CAKs are either defined as
pre-shared secret, derived from a master session key of an
EAP process, or distributed by a MKA key server. Switches
are required to implement additional functionalities to either
exchange keying information via EAP with an AAA server

or with an MKA key server. Independent of key exchange
mechanisms, MACsec still needs to be initially set up on all
peer devices via manual configuration.

C. COMPARISON TO VPNs
VPN technologies such as IPsec, OpenVPN, or WireGuard
operate on Layer 3 or above.MACsec operates on Layer 2 and
therefore provides link security for any higher-layer protocol.
It applies point-to-point protection while VPNs aim at end-
to-end protection. On every switch, router, or host in the
network, MACsec packets are decrypted at the ingress port
so that control plane functions targeting Layer 2 to 7 can be
still applied. Access control lists that provide filtering based
on IP addresses are an example. Then, packets are encrypted
again at the egress port. MACsec is configured per Ethernet
link so that administrators do not need to define additional
policies for specific traffic to be encrypted. On routers and
switches, MACsec is implemented on the packet forwarding
chips, i.e., packet encryption and decryption is performed in
line rate. In contrast, VPN technologies mostly encrypt and
decrypt packets on ASICs that have limited bandwidth capac-
ity. According to [30], IPsec traffic typically cannot exceed
40 Gb/s of bidirectional traffic while MACsec encryption and
decryption scales with line rate.

D. APPLICATION OF MACsec IN SDN
Choi et al. [38] adopt MACsec to secure communication
in vehicular networks between Linux-based electronic con-
trol units (ECUs). An SDN controller is responsible for
automated setup of MACsec between ECUs to provide an
end-to-end protection for network traffic. However, MACsec
deployment is limited to the ECUs, i.e., MACsec deploy-
ment on SDN switches that connect the ECUs is not consid-
ered. Szyrkowiec et al. [55] develop an intent-based multi-
layer orchestrator as application that interfaces an SDN con-
troller. It automatically deploys protection technologies such
as IPsec or MACsec on legacy switches through different
southbound protocols, e.g., OpenFlow, NETCONF, or REST-
CONF. However, MACsec deployment on SDN switches is
not considered. Bentstuen and Flathagen [36] propose to
implement MACsec for SDN but do not formulate any con-
crete approach. Vajaranta et al. [56] discuss implementation
experiences and design challenges for WAN overlays using
SDN and proposeMACsec as viable option to implement link
layer encryption. However, the presented implementation is
limited to OpenVPN. Automated configuration of MACsec
on SDN switches is proposed, but not part of the presented
implementation. Mohamed et al. [49] describe a mechanism
for MACsec key distribution of particular MACsec flows
to switches. MACsec flows are end-to-end SCs that break
up the point-to-point concept of the original standard. They
are realized by configuring MACsec keys only on both end
peers, but not on the peers in between. As prerequisite, all
MACsec peers are expected to forward MACsec packets if
no key for the received packet is found. OpenCORD [17]
describes another example of MACsec deployment in SDN.

VOLUME 8, 2020 58847



F. Hauser et al.: P4-MACsec: Dynamic Topology Monitoring and Data Layer Protection With MACsec in P4-Based SDN

The SecY remains on the SDN switch while the KaY is trans-
posed into a northbound application running on the ONOS
SDN controller. SecYs on SDN switches are then configured
via a NETCONF interface by the SDN controller. However,
the authors state that MACsec support on SDN switches is
still under developed so that only key agreement and config-
uration were implemented and tested in aMininet simulation.
Layer 2 packet encryption has not been examined.

III. LINK DISCOVERY IN SDN: FOUNDATIONS
AND RELATED WORK
Automated deployment of MACsec by a SDN controller
requires a topology view that is maintained through topol-
ogy monitoring with link discovery between SDN switches.
We give an overview of link discovery in SDN and describe
the OpenFlow Discovery Protocol (OFDP). We review
related work on variants of the OFDP that are optimized
regarding security, efficiency, and applicability in hybrid
SDN networks.

A. TOPOLOGY MONITORING AND LINK DISCOVERY
IN SDN
Topology monitoring in SDN maintains a network map on
the SDN controller that consists of SDN switches and links in
between. In contrast to legacy networks, topology monitoring
in SDN can be limited to link discovery. This is because of the
mandatory connection setup routine between SDN switches
and the SDN control plane whenever a SDN switch is started.
Thereby, the control plane knows about the presence of all
SDN switches in the network so that only links need to be
detected. In OpenFlow, SDN switches establish a connection
to a pre-configured SDN controller right after start. The SDN
controller receives information about the SDN switch, e.g.,
a list of all physical ports, within the OF handshake at con-
nection setup. With the P4Runtime API, the SDN controller
may connect to P4 switches right after start.

B. OpenFlow DISCOVERY PROTOCOL (OFDP)
The OpenFlow Discovery Protocol (OFDP) was the first
de-facto standard for link discovery in SDN. It is based on the
Link Layer Discovery Protocol (LLDP) [45], the most widely
used protocol for link detection in legacy networks. The Cisco
Discovery Protocol (CDP) [2] is a proprietary alternative but
less widely used. LLDP advertisements include information
about the identity of a host, its capabilities, and its current sta-
tus. LLDP protocol data units (PDUs) are periodically sent as
payload of Ethernet frames with a multicast receiver address
and the EtherType 0 × 88cc. Figure 3 depicts their struc-
ture. The PDUs may contain various type-length value (TLV)
blocks, the standard defines three required TLV blocks. First,
the Chassis ID TLV identifies the sending host, e.g., by its
MAC address. Second, the Port IDTLV identifies the sender’s
port, e.g., its physical port number. Last, the Time-to-Live
TLV defines the time validity of the information. Optional
TLV blocks, e.g., the system’s name defined by the adminis-
trator, and custom TLVs may be used as well. Network hosts

FIGURE 3. Format of LLDP packet and LLDP PDU.

FIGURE 4. Link discovery in SDN with OFDP. The SDN controller learns
about the SDN switch within the OF handshake (1). Afterwards, it sends
out an LLDP packet on a particular port of an SDN switch via a packet-out
message (2). Another SDN switch that receives the LLDP packet forwards
it back to the SDN controller using a packet-in message (3).

that implement LLDP can receive, but not request LLDP
information. Legacy switches periodically send out LLDP
packets on each active port as described before. The packets
are received, processed, and dropped by neighbouring LLDP
agents on switches. They store the received information in the
management information bases (MIBs) that can be queried
via SNMP.

The OFDP leverages LLDP as introduced before but
delegates all functionalities to the SDN controller. It uses
packet-out messages to send out created network packets
over particular ports of an SDN switch and packet-in mes-
sages to receive packets from the SDN switch that match
specific criteria, e.g., an LLDP EtherType. Figure 4 depicts
the process of link discovery with OFDP. First, the SDN
controller learns about the switch identity and its ports within
the OpenFlow handshake (1). Afterwards, it creates dedicated
LLDP packets for all ports of a switch that are sent out
via packet-out messages (2). For incoming LLDP packets,
the OpenFlow switches are configured to forward any LLDP
packet as packet-in message to the SDN controller (3). The
packet-inmessage includes the LLDP packet with the Chassis
and Port ID of the sender along the identity and the ingress
port of the receiving SDN switch. By repeating this process
for each port on each switch, the SDN controller performs
link discovery.

C. OPTIMIZED VARIANTS OF OFDP
We review related work on optimized variants of OFDP that
can be subdivided into publications investigating the security
of OFDP, efficiency of OFDP, and applicability of OFDP in
hybrid networks.

1) SECURITY OF OFDP
Alharbi et al. [31], [32], Azzouni et al. [33], and Nguyen
and Yoo [50] show that OFDP is vulnerable to spoof-
ing attacks. Injected LLDP control messages may create

58848 VOLUME 8, 2020



F. Hauser et al.: P4-MACsec: Dynamic Topology Monitoring and Data Layer Protection With MACsec in P4-Based SDN

fake links that redirect traffic to the host of an attacker.
Azzouni et al. [33] demonstrate that OFDP is additionally
vulnerable to controller fingerprinting, switch fingerprinting,
and LLDP flooding attacks. Nguyen and Yoo [50] show
that OFDP is vulnerable to replay attacks. Faked LLDP
packets result in incorrect link information of the topology.
As improvement, Alharbi et al. [31], [32] propose to add a
message authentication code (MAC) and a message identifier
to each packet to provide authentication, packet integrity,
and that prevent replay attacks. sOFTDP [34] encrypts
LLDP packets to further prevent fingerprinting attacks.
Marin et al. [47] investigate the security of SDN topol-
ogy discovery mechanisms for OpenFlow. The authors
propose mandatory integrity checks of LLDP and coun-
termeasures against out-of-band channel and host location
hijacking attacks. However, the latter two are not relevant in
switch-to-switch link detection as required by MACsec.

2) EFFICIENCY OF OFDP
Azzouni et al. [33] and Rojas et al. [53] show that OFDP
results in too many packet-out messages as the SDN con-
troller has to create and send out one message for every active
port on each SDN switch. As an improvement, ONOS [16]
applies LLDP with Port IDs set to zero. The SDN controller
creates one LLDP packet for every SDN switch that is con-
figured to output the LLDP packet on all ports. This process
is repeated for all SDN switches. Adjacent SDN switches
are configured to forward received LLDP packets to the
SDN controller so that it learns about the unidirectional link.
Pakzad et al. [52] propose to reduce the number of packet-out
messages by rewriting LLDP packets on the SDN switch.
sOFTDP [34] introduces several mechanisms to shift large
parts of link discovery back to the SDN switch. It adds live-
liness detection mechanisms for switch ports and memorizes
topology information locally on the SDN switch that asyn-
chronously notifies the SDN controller about specific events.
Rojas et al. [53] propose the Tree Exploration Discovery
Protocol. SDN controllers create and send out specific frames
flooded in the network that explore its topology. However, all
concepts that shift functionality back to the SDN switches
require extensive functional changes on the fixed-function
data plane of typical SDN switches.

3) APPLICABILITY OF OFDP IN HYBRID NETWORKS
Hybrid networks consist of SDN and non-SDN switches.
OFDP can be only applied to detect links in networks that
consist of SDN switches. Legacy switches that may connect
SDN switches process and discard received LLDP packets.
The Broadcast Domain Discovery Protocol (BDDP) is a
non-standardized approach that is implemented by several
SDN controllers [3], [15], [19]. BDDP messages adapt the
LLDP packet structure but use a broadcast Ethernet address
instead of a multicast Ethernet address and the custom Ether-
Type 0 × 8999. SDN switches are programmed to forward
received BDDP packets to the SDN controller, just as with
LLDP. Legacy switches flood the packet via all ports because

FIGURE 5. Concept of P416: P4 pipline and interaction with the control
plane.

of the broadcast address. They relay BDDP packets so that
links will appear as single hops no matter how many legacy
devices are on the path between two SDN switches. Ochoa-
Aday et al. [51] show that the usage of broadcast packets
leads to inefficient and excessive use of network resources.
The authors propose a two-phase process for topology detec-
tion. First, the SDN controller performs link discovery using
OFDP as described before. Afterwards, it outputs BDDP
packets on any active port for which it does not detect a direct
link to another SDN switch via LLDP. This way, the SDN
controller detects direct links via LLDP and indirect links
via BDDP.

IV. P4: FOUNDATIONS
We give a brief overview of P4 with its core components
for programming a P4 switch, describe the P4Runtime,
and present examples for P4 software and hardware
targets.

A. OVERVIEW
P4 is a domain-specific language for programmable data
planes of packet forwarding devices. It offers high-level con-
structs that are optimized for specifying their forwarding
behavior. P4was first published in 2014 [37]. Today, the spec-
ification and development takes place in the non-profit
P4 Language Consortium [21] with over 110 members from
industry and academia. P416 [24] is the latest version of
the language specification, the source code of all related
components is available under an Apache license.

Figure 5 depicts P4’s core concept and components.
P4 programs describe the entire behavior of packet forward-
ing devices. They are formulated for a particular P4 architec-
ture. A P4 architecture defines the P4 programming model
of a packet forwarding device. P4 targets are software or
hardware packet forwarding devices that implement a spe-
cific P4 architecture. Target-specific P4 compilers generate
binary code from P4 programs that can be loaded on the
P4 targets.

VOLUME 8, 2020 58849



F. Hauser et al.: P4-MACsec: Dynamic Topology Monitoring and Data Layer Protection With MACsec in P4-Based SDN

B. CORE COMPONENTS FOR PROGRAMMING A
P4 SWITCH
Figure 5 shows all core components of the P4 pipeline fol-
lowing the specification of P416. We explain them in the
following.

• P4 header types describe the format of packet headers
through an ordered collection of base types. For exam-
ple, an Ethernet header is described by bit vectors for the
MAC source address, the MAC destination address, and
the EtherType.

• P4 parsers are state machines that extract packet data
through applying predefined sequences where data is
identified and extracted based on P4 header types. For
instance, the value of a parsed EtherType field of a
packet determines the following extraction state which
could be LLDP, MACsec, or IP.

• P4 tables are match-and-action structures mapping
user-defined keys to particular P4 actions that may
manipulate packet data.

• P4 externs are functions provided by a P4 target that
can be used within P4 programs. P4 externs have a
defined interface with a set of methods that can be used
in the P4 program. An example would be a function that
calculates a checksum for a given chunk of data.

• The P4 deparser assembles the headers back into a
well-formed network packet that can be sent out via an
egress port of the packet forwarding device.

C. P4Runtime
The P4Runtime framework provides an API for control-
ling P4 targets. Its operation is visualized in Figure 5. The
P4Runtime features the manipulation of match-and-action
tables through the control plane. In addition, it provides a
CPU port for sending out and receiving packets similar to the
packet-in and packet-out mechanism known from OpenFlow.
P4Runtime leverages gRPC [9] that is based on HTTP/2 and
protocol buffer [8] data structures. The connection between
P4 targets and the control plane can be secured through
TLS with optional client and server certificates for mutual
authentication.

D. P4 SOFTWARE & HARDWARE TARGETS
The BMv2 [6] is the most widely-used P4 software target
platform that features multiple P4 targets. Examples are a
P4 target with the P4Runtime API (simple_switch_grpc) or
a P4 target implementing the Protocol Independent Switch
Architecture (PISA). The NetFPGA-SUME [57] and the Net-
cope NFB-200G2QL [13] are P4 targets that are based on
FPGA platforms. Ethernet switches featuring the Barefoot
Tofino ASIC [1] are the most widely-used P4 targets nowa-
days. The Barefoot Tofino ASIC implements the PISA and
offers 12.8 Tb/s of packet throughput in its latest version.
It is part of Ethernet and whitebox switches that also feature a
general-purpose computing unit with a x86 CPU, RAM, and
a SSD that runs a Linux-based operating system.

FIGURE 6. P4-MACsec in LAN with P4 switches. The local controllers
consist of the MLF, LDF, and MSF. They communicate with the central
controller that runs the LDCF and MSCF.

V. P4-MACsec
In this section, we describe P4-MACsec. We review its archi-
tecture and outline the three functional parts in detail: packet
switching with MAC address learning, secure link discovery,
and automated deployment of MACsec.

A. OVERVIEW
Figure 6 depicts the concept of P4-MACsec. It consists of a
LAN with P4 switches that are steered by an SDN control
plane. The switches provide Ethernet connectivity for the
connected hosts and include the data plane functionality of
the three functional parts. P4-MACsec features a two-tier
control plane structure. Each P4 switch runs a local controller
that connects to a central controller. The two-tier control
plane offers the possibility to implement functions either on
the global controller or on local controllers, or to split them
and implement their parts on both the glocal controller and
the local controllers. This reduces traffic in the management
network, load on the central controller, and latency from
forwarding packets between the SDN switches and the SDN
controller. The concept of hierarchical SDN control is not
novel but part of several SDN control plane architectures
(e.g., [39], [40], [46]). With P4-based SDN, a two-tier control
plane can be easily supported as most P4 targets feature
general purpose computing capacities that can host a local
controller. This is different with most OF switches which
usually do not offer local computing capacities so that addi-
tional devices are needed to implement local controllers.
Having the local controller on the switch eliminates depen-
dencies on external devices and reduces the risk of failure.
Bannour et al. [35] provide an overview of hierarchical and
distributed SDN control planes and discuss their specifics.
Although we see many advantages in the two-tier control
plane architecture, P4-MACsec can also be implemented
with only a central controller that carries out the func-
tions of the local controllers. However, this is less elegant,
causes more communication overhead, and is more prone to
failure.

We design the three functional parts as follows. First,
MAC address learning for packet switching ensures that

58850 VOLUME 8, 2020



F. Hauser et al.: P4-MACsec: Dynamic Topology Monitoring and Data Layer Protection With MACsec in P4-Based SDN

FIGURE 7. Process of forwarding Ethernet packets on the P4 processing
pipeline. If the MAC table misses an entry, it triggers MAC address
learning that is performed by the MLF running on the local controller.

P4 switches forward Ethernet packets to provide Layer 2 con-
nectivity for all network hosts. We implement it as MLF on
the local controller and describe its details in Section V-B.
Second, secure link discovery detects and monitors the link
topology of the network using LLDP PDUs that are protected
with AES-GCM. We implement it as two-tier control plane
function consisting of LDFs and the LDCF. The LDFs run
on the local controllers and inform the LDCF on the cen-
tral controller about local links. The LDCF composes the
global link map which is the basis for automated deployment
of MACsec. We describe the details of this functional part
in Section V-C. Third, automated deployment of MACsec
dynamically creates, sets up, andmaintains SCs on all switch-
to-switch links from the global link map. We implement it
as two-tier control plane function with decentral MSFs that
receive configuration from a MSCF running on the central
controller. We describe its details in Section V-D.

B. ETHERNET PACKET SWITCHING WITH MAC ADDRESS
LEARNING
Although MAC address learning is a typical example for a
local switch function, it cannot be solely implemented on
the data plane of a P4 switch. Our proposed architecture
for that functional part consists of two components. First,
aMLF that runs on the local controller. Second, the data plane
implementation for MAC address learning with the MLF and
packet switching.

Figure 7 visualizes the process with all interactions
between both components. When the P4 switch receives an
Ethernet packet, it first checks if the source and destination
MAC address of the Ethernet packet are already part of the
MAC address table. If the MAC address table has entries for
both (1a), the switch forwards the packet on the port specified
for the destinationMAC address (1b). If theMAC table yields
no match for both addresses (2a), the switch forwards the
Ethernet packet to the MLF running on the local controller
as packet-in message (2b). The MLF first checks if the MAC
source address and the ingress port is already part of the
MAC address table. If not, theMLF updates theMAC address
table (2c). Afterwards, the MLF floods the Ethernet packet
on all ports except the ingress port from where it received the
packet through the packet-out function (2d).

FIGURE 8. Proposed format for encrypting LLDP PDUs with AES-GCM. The
EtherType from the original packet is followed by a Nonce that is used in
AES-GCM encryption and decryption. A sequence number protects against
replay attacks, a ICV holds a cryptographic checksum for authentication.

C. SECURE LINK DISCOVERY
The functional part of secure link discovery consists of three
components. First, LDFs running on local controllers that do
link detection and monitoring. Second, the LDCF running on
the central controller that composes the global link map from
local link information received from the LDFs. Third, the data
plane implementation for receiving and sending out LLDP
packets via packet-in and packet-out messages.

As novelty, we propose to create, encrypt, and decrypt
LLDP PDUs on the LDF using AES-GCM with a common
encryption key. We additionally introduce sequence num-
bers for LLDP PDUs to defend them against replay attacks.
Figure 8 visualizes our proposed format of LLDP PDUs in
comparison to the original format of LLDP packets. As in
legacy LLDP, the MAC source address is set to the MAC
address of the P4 switch. The MAC destination address and
the EtherType are set to the LLDP defaults as introduced
in Section III-B. LLDP PDUs consists of three TLVs. The
Chassis ID TLV contains the identity of the switch as defined
by the network administrator, the Port ID TLV contains the
number of the physical port, the End TLV marks the end of
the LLDP PDU. The common encryption key is installed and
frequently updated by the LDCF on all LDFs. In addition,
AES-GCM uses a 12 byte random number as nonce that
is re-generated for each LLDP PDU leaving a particular
port. It is part of the packet header following the EtherType.
The four byte sequence number as protection against replay
attacks is initialized with the LDF bootup timestamp and
incremented with each packet sent out. The receiving LDF
holds a sequence number counter for every physical port
that is incremented with any received packet. The sequence
number is part of the packet authentication of AES-GCM that
is applied to the sequence number and on the LLDP PDU. Its
result, the authentication tag, is stored within the ICV field
following the encrypted LLDPPDU.Our approach resembles
the one presented by Azzouni et al. [34] and protects against
all attacks that were discussed in Section III-C.

Figure 9 visualizes the process of secure link discovery
with all interactions among the three components. At startup,
the LDF initiates a connection to the LDCF through a pre-
configured IP address or FQDN (1). The LDCF installs
the common key that is used for encrypting and decrypt-
ing LLDP packets with AES-GCM and instructs the LDF
to start secure link discovery (2). The LDF generates and

VOLUME 8, 2020 58851



F. Hauser et al.: P4-MACsec: Dynamic Topology Monitoring and Data Layer Protection With MACsec in P4-Based SDN

FIGURE 9. Process of secure link discovery using the local LDF, the LDCF,
and the processing pipeline on the P4 switch.

transmits encrypted LLDP packets for all active ports via
packet-out messages to the P4 switch (3a) which then outputs
the received packets on the specified ports (3b). As all other
P4 switches received the same instruction to start link discov-
ery, the P4 switch now receives encrypted LLDP packets from
other P4 switches (4a) that it sends as packet-in messages
to the LDF (4b). It performs decryption and extracts the
Chassis and Port ID of the distant switch from the LLDP
PDU along the physical port number of the packet-in message
to update the map of local links (5). Finally, all changes
of the local link map are sent to the global link map on
the central controller (6). The global link map consists of
bidirectional links in the form of two tuples that indicate the
identity of the P4 switch and the physical port of the link
as (SwitchA,PortA) → (SwitchB,PortB). The link topology
can change at any time, e.g., when links between switches
are added or when cables break. Therefore, link discovery is
executed whenever the LDF running on the local controller
receives status messages from its assigned switches, e.g.,
due to a port-down notification when a cable breaks. Link
discovery is additionally performed after a fixed time interval
of 30 seconds so that security can be sustained even if status
messages from the P4 switches get lost.

In comparison to other approaches presented in
Section III-C, our proposal does not require modifications
of the SDN switches. All required mechanisms are imple-
mented as control plane functions that rely on packet-in and
packet-out mechanisms as offered by the CPU port in P4
or the packet-in and packet-out messages of OpenFlow.
A two-tier control plane as used by P4-MACsec is not
mandatory, the LDCF and LDF could be also combined into
one application to be run on a central controller.

D. AUTOMATED DEPLOYMENT OF MACsec
Automated deployment of MACsec consists of three parts.
First, a MSCF that creates two unidirectional SCs for each
link of the global link map. Second, a MSF that runs on the
local controller. It receives configuration data from theMSCF
and sets up the SCs on the P4 switch. Third, the data plane
implementation ofMACsec that consists of the P4 processing
pipeline and implementations of the MACsec validate and
protect functions that can be used as P4 externs.

Figure 10 visualizes the automated deployment ofMACsec
with all interactions between the three components. We later

FIGURE 10. Process of automated MACsec deployment with the MSF,
MSCF, and the processing pipeline of the P4 switch.

describe the details of the MACsec validate and protect
function. The P4 processing pipeline is an extension of
the Ethernet packet forwarding pipeline that was introduced
in Section V-B. At start, the MSCF creates and maintains
MACsec SCs based on the global link map (a). It passes
SC configuration data to the MSF (b) which updates various
P4 tables in the processing pipeline (c). For the P4 processing
pipeline, it sets a MACsec flag to entries of the MAC address
table if a SC for that particular link exists.
Then, the data plane processing for packets works as fol-

lows. First, ingress packets are matched in an EtherType
table (1). Ethernet packets matching the MACsec EtherType
are forwarded to the MACsec validate function (2a). It val-
idates its authenticity, optionally decrypts the secure data,
and returns an Ethernet packet. Afterwards, the processing
pipeline continues with Ethernet packet forwarding, i.e., it
consults the MAC address table (2b), outputs the packet
in case of a match for both source and destination MAC
address (2c), or sends the packet as packet-in message to the
MLF on the local controller otherwise (2d). Ethernet packets
matching other EtherTypes are forwarded to theMACaddress
table (3a). If the MAC address table holds no flag for an
SC for the particular destination MAC address, the pack-
ets are either sent out (3b) or passed to the MLF (3c) as
explained in Section V-B. If the MAC table yields a match
for source and destination MAC addresses of the packet and
an SC flag, it forwards the packet to the MACsec protect
function (3d). The MACsec protect function responds with
a MACsec packet that can be sent out (3e) via the egress of
the processing pipeline.

Figure 11 visualizes the MACsec protect and validate
function. As SCs are unidirectional, the P4 switch has an
ingress MACsec SC (IG-SC) table and an egress MACsec
SC (EG-SC) table that maps secure channel identifiers (SCIs)
to SAs. SAKs are part of the SA table which holds SAs
for both ingress and egress SCs. The MACsec protect func-
tion (1) either encrypts or authenticates Ethernet payloads.
It is applied to Ethernet packets if the MAC address table
in the Ethernet packet forwarding pipeline has a flag set

58852 VOLUME 8, 2020



F. Hauser et al.: P4-MACsec: Dynamic Topology Monitoring and Data Layer Protection With MACsec in P4-Based SDN

FIGURE 11. MACsec protect (1) and MACsec validate (2) functions
implemented as P4 externs within the P4 processing pipeline.

for the particular physical port. Within the protect function,
an EG-SC table maps the egress port number as SCI to
security association identifiers (SAIs). The SA table holds
the SAKs to be used for the protect function. The MACsec
protect function receives the SAK and SCI from the SA table,
the packet number from a packet counter as part of the switch,
and the Ethernet packet. The AES-GCM cipher is initialized
with a concatenation of the SCI and packet number as initial-
ization vector. Afterwards, the EtherType and the payload are
concatenated and encrypted. The MACsec protect function
creates a new Ethernet packet with the MAC source and
MAC destination address of the Ethernet packet, theMACsec
EtherType, the SecTAG, the secure data, and the ICV. The
MACsec validate function (2) works in a similar manner.
Again, an IG-SC table maps SCIs to SAIs. The MACsec
validate function receives the SAK and SCI from the IG-SC
and SA table, the packet number from a packet counter, and
the MACsec packet. It then checks the integrity and option-
ally decrypts the packet. It returns an Ethernet packet with
the original Ethernet header and payload to the processing
pipeline where forwarding and MAC address learning are
performed as described before.

The MSCF creates and maintains MACsec SCs whenever
the global link map changes. SCs exist until the correspond-
ing link is deleted, e.g., in case of a link failure, the cor-
responding SC with all its SAs is deleted. If a new link is
detected, the MSCF creates a new MACsec SC with SAs.
In addition, MACsec SCs and SAs are renewed on a regular
basis. Administrators define timeouts for encryption keys,
the MSCF generates and installs new SAs on the P4 switches
after the defined time interval through the MSF. Whenever
SCs are created, changed, or deleted, configuration data and
SAs are passed to the MSF that programs the P4 switch
through writing in the EG-SC, IG-SC, and SA table.

VI. PROTOTYPICAL IMPLEMENTATION WITH MININET
In the following, we describe a prototypical implementation
of P4-MACsec. We review the Mininet testbed environment
and describe the three components of P4-MACsec in detail.

A. TESTBED ENVIRONMENT
We use theMininet [12] network emulator to build the testbed
environment for the prototypical implementation. We use the
BMv2 P4 software target [6] for implementing the P4 switch
and run the local controllers and the central controller as
Python applications. For testing purposes, we additionally run
Mininet network hosts that are connected to the P4 switches.
All testbed components are executed within a KVM/QEMU
VM that runs Ubuntu 16.04 with 4 CPU cores and 4 GB
RAM. The hypervisor host features an Intel Core i5 8250U
CPU, 16 GB RAM, and an SSD. It runs Manjaro Linux in
Version 18.1.5.

We publish the source codewith instructions for the testbed
under the Apache v2 license on GitHub [7]. As of 2020-02,
the maintainers of BMv2 discuss about integrating our imple-
mentation as an example for a crypto extern in the BMv2
source code repository [5].

B. P4 SWITCH
We extend the simple_switch_grpc [29] P4 target of the
BMv2 P4 software target [6] to later run our P4 program that
describes the data plane functions. Figure 12 depicts its parts.
First, we implement the MACsec protect and validate func-
tions as P4 externs within the simple_switch_grpc P4 target.
We program the extensions in C++ and use the EVP interface
of OpenSSL [20] to apply AES-GCM for encryption, decryp-
tion, and packet authentication. Both functions can be used as
P4 externs within the P4 processing pipeline.When accessing
the functions from the P4 processing pipeline, packet header
data are exchanged using P4 attributes where packet payload
data can be accessed directly. Second, we implement an inter-
face to the local controller. It leverages the P4Runtime API
via gRPC and allows the local controller to modify entries of
the P4 tables in the processing pipeline. In addition, it holds
the CPU port interface that provides packet-in and packet-out
messages as known from OpenFlow. Packets sent from the
P4 pipeline to the CPU port are forwarded to the local
controller, packets received from the CPU port are injected
into the P4 processing pipeline. The data plane functions of
P4-MACsec described as P4 processing pipeline in Section V
are implemented as P416 program using P4 constructs as
introduced in Section IV. The P4 program then is executed
on the modified simple_switch_grpc P4 target.

C. LOCAL CONTROLLER
We implement the local controller as Python 2.7 application.
Figure 12 depicts its parts. We use the gRPC library [4] to
program the interfaces to the associated P4 switch and to the
central controller. We use the Scapy library [28] to create
and parse LLDP packets and the cryptography library [25]
for applying AES-GCM to encrypt and decrypt LLDP pack-
ets. For development and testing purposes, we include a
simple CLI in the local controller. It provides functions to
write/read table entries and to display status changes on the
P4 switch.

VOLUME 8, 2020 58853



F. Hauser et al.: P4-MACsec: Dynamic Topology Monitoring and Data Layer Protection With MACsec in P4-Based SDN

FIGURE 12. Structure of the prototypical implementation of MACsec.
It consists of a BMv2 P4 software switch that implements the data plane
functions of P4-MACsec and the two-tier control plane with the functions
as introduced in Section V.

D. CENTRAL CONTROLLER
We implement the central controller similar to the local con-
troller as Python 2.7 application. Figure 12 depicts its parts.
It also leverages the gRPC library [4] to build a gRPC inter-
face to the local controller. It also features a simple CLI for
development and testing purposes which displays informa-
tion about the current topology and active MACsec SCs. The
control plane functions of P4-MACsec can also be integrated
in ONOS [15] or other controller frameworks. However,
our objectives was a lightweight prototype using a slim and
easy-to-understand controller implementation which directly
leverages the P4RuntimeAPI and gRPC library for communi-
cation. Thereby, we avoided dependencies on other controller
frameworks which increase error space and implementation
complexity.

VII. FUNCTIONAL VALIDATION
We describe experiments for functional validation, execute
them on the testbed from Section VI, and report their results.

A. EXPERIMENT I: COMPLIANCE TO THE MACsec
STANDARD
We first perform an experiment to examine the compliance
of P4-MACsec to the IEEE 802.1AE standard. Therefore,
we create a virtualized testbed that consists of a KVM virtual
machine running Ubuntu Server in Version 18.04.1 LTS and
our implementation of P4-MACsec on the BMv2 P4 soft-
ware target as described in Section VI. The P4 switch
connects another Ubuntu Server 18.04.1 LTS KVM/QEMU
virtual machine that represents a network host behind a
MACsec-enabled switch. We configure a static MACsec con-
nection between the P4 switch and the Linux host to check
whether the MACsec implementation for BMv2 is compati-
ble with the Linux implementation of MACsec. On the Linux
host, we configure the static MACsec connection using the
iproute2 tools. For MACsec setup on the P4 switch, we use a

FIGURE 13. Virtual testbed environment that consists of network hosts,
access switches, distribution switches, and a core switch. Each P4 switch
is steered by a local controller (LoCo) that connects to the central
controller.

simple Python script that adds the corresponding entries in the
EG-SC, IG-SC, and SA tables of the P4 processing pipeline.
We successfully validate that the Linux host communicates
with the P4 switch via MACsec in different communication
scenarios, e.g., ICMP or streaming random data via TCP con-
nections with netcat. This does not validate a full compliance
to all parts of the MACsec standard but demonstrates that the
P4 switch can communicate viaMACsec with legacy devices.

B. EXPERIMENT II: FULL P4-MACsec SCENARIO
We now investigate the complete set of functionality
of P4-MACsec. Therefore, we create the topology depicted
in Figure 13. It follows the model of hierarchical net-
work switches that consists of core, aggregation, and access
switches. A set of 12 network hosts is split into four groups,
each attached to an access switch. The four access switches
are connected to two aggregation switches that are connected
by a single core switch. The testbed network is a single
Layer 2 domain, i.e., network packets are forwarded based
on their MAC address. After starting the Mininet testbed,
we verify the following aspects. First, we examine that topol-
ogy monitoring works correctly. In initial link discovery,
we verify that the detected topology matches the actual
network topology. Afterwards, we sporadically remove and
re-add links between switches and supervise the process of
link monitoring on the central controller via a CLI. Second,
we examine that automated deployment of MACsec and
rekeying works correctly. We investigate MACsec setup after
changes in link monitoring through supervising the EG-SC,
IG-SC, and SA tables on all P4-MACsec switches. Last,
we examine packet switching and correct setup of MACsec
protection. Therefore, we use ICMP and netcat to create
network traffic between various pairs of network hosts in the
experiment scenario. We investigate packet traces on links
between switches and verify that all packets are protected
by MACsec.

VIII. PERFORMANCE EVALUATION
We describe experiments for performance evaluation, execute
them on the testbed fromSectionVI, and analyze their results.

58854 VOLUME 8, 2020



F. Hauser et al.: P4-MACsec: Dynamic Topology Monitoring and Data Layer Protection With MACsec in P4-Based SDN

FIGURE 14. Evaluation testbed that consists of two network hosts that
are attached to two P4 switches. In between, we vary from 0 to 6
additional P4 switches to form variable-length P4 switch chains for the
evaluation experiments.

A. EVALUATION SETUP
Figure 14 depicts the evaluation setup. It consists of two
network hosts that are attached to two P4 switches with
0 to 6 P4 switches in between. We perform performance
evaluation experiments to investigate the goodput and RTT.
We vary the number of P4 switches between the two network
hosts and measure goodput and RTT for 1 to 8 hops. For
each evaluation experiment, we consider three scenarios. In
the first scenario, MACsec is disabled, i.e., the P4 switches
between Host 1 and Host 2 only performMAC address learn-
ing and Layer 2 forwarding. In the second scenario, we enable
MACsec so that all packets between Host 1 and Host 2
are protected with AES-GCM implemented as P4 extern.
In the third scenario, we enable MACsec but skip AES-GCM
encryption and decryption in the P4 extern so that only plain-
text payloads are sent within the MACsec packets. Although
encapsulating plaintext payloads is not part of the MACsec
standard, we still use this scenario to measure the effect of
AES-GCMencryption/decryption by comparing it to network
packet exchange with a P4 extern.

B. TCP GOODPUT
We first investigate the TCP goodput in P4-MACsec in our
setting with software switches. To that end, we measure TCP
transmissions between Host 1 and Host 2 with iperf3 [11].
Host 1 runs an iperf server, Host 2 runs an iperf client.We per-
form three runs, each with a duration of 30 seconds. Figure 15
depicts the results calculated as average over the three runs.
The observed TCP goodput decreases with the number of
hops, which is a result of increased round-trip time due and in
particular of added queuing delay. However, we witness that
forwarding without MACsec achieves significantly larger
throughput than forwarding with MACsec. Obviously, there
is additional packet processing delay with MACsec. How-
ever, this is only to a minor degree due to encryption, which
can be seen by the fact that MACsec without encryption
decreases the TCP goodput in a similar manner. Therefore,
we conclude that the mere usage of externs on BMv2 increase
the packet processing delay and reduces the TCP goodput.

C. ROUND-TRIP TIME (RTT)
In the second experiment, we investigate the RTT between the
two network hosts that are connected by 1 to 8 P4 switches in
between. We use the ping tool on Host 1 to send 1000 consec-
utive ICMP echo requests to Host 2. We set an idle period of

FIGURE 15. TCP goodput evaluation with 1 to 8 hops represented by
P4 switches between two network hosts with iperf3. We consider three
scenarios: disabled MACsec, enabled MACsec with encryption and
decryption using AES-GCM, and enabled MACsec without encryption and
decryption.

FIGURE 16. RTT evaluation with 1 to 8 hops represented by the
P4 switches between two network hosts with pings. We consider three
scenarios: disabled MACsec, enabled MACsec with encryption and
decryption using AES-GCM, and enabled MACsec without encryption and
decryption.

0.01 seconds between two ICMP packets and perform three
runs of the experiment. Figure 16 depicts the RTTs calculated
as average over the three runs. The evaluation results are
similar to those of the experiment for TCP goodput. Enabled
MACsec causes an increase of the RTT. Again, applying or
omitting AES-GCM in the P4 extern does not cause large
differences in the RTT. As in the experiment for TCP good-
put, the interaction between the P4 pipeline and the MACsec
protect and MACsec validate P4 externs in BMv2 seems to
cause the negative effects on the RTT.

D. MACsec SETUP TIME
As described in Section V, the two-tier control plane auto-
matically configures and enables MACsec on all assigned
P4 switches. As described in Section II-B, MACsec deploy-
ment requires manual configuration effort regardless of static
key setup on all switches or MKA. With P4-MACsec, that
configuration effort completely disappears. The process of
link discovery, MACsec setup, and MACsec rekeying are
performed within nearly not measurable time. The two-tier

VOLUME 8, 2020 58855



F. Hauser et al.: P4-MACsec: Dynamic Topology Monitoring and Data Layer Protection With MACsec in P4-Based SDN

control plane processes all events sequentially, i.e., delays
might visibly increase only with a very large number of
controlled P4 switches.

IX. IMPLEMENTATION ON NetFPGA SUME
In the following, we briefly describe the NetFPGA
SUME [14] platform and outline our experiences in imple-
menting P4-MACsec for that platform.

A. NetFPGA SUME PLATFORM
The NetFPGA SUME board is an open-source platform for
rapid prototyping of network applications with support for
bandwidths up to 100Gb/s. It features a Virtex-7 690T FPGA,
four SFP+ network transceivers, and a PCI Express interface
to the host system [57]. The P4-NetFPGA project [22] trans-
forms the NetFPGA SUME board into a hardware P4 target.
P4 programs are transformed into SDNet descriptions by the
P4-SDNet compiler that creates HDL modules which run as
part of the reference architecture of the NetFPGA SUME
board.

B. IMPLEMENTATION OF P4-MACsec
We modify the P4 processing pipeline of our software proto-
type to cope with limitations of the NetFPGA SUME archi-
tecture, e.g., a missing look-ahead function in packet parsing
or the limitation to a single control block instead of multiple
control blocks in the P4 processing pipeline.We implemented
AES-GCM based on a publicly available Verilog module
from OpenCores [18]. However, we were not able to create
a fully working P4-MACsec switch due to two severe limita-
tions. First, the NetFPGA SUME platform does not provide
functions to parse or access variable-length payloads of net-
work packets. Therefore, payloads of network packets need
to be parsed as headers, which limits the implementation to
fixed-length packets. Last, exchange of packet data between
the P4 processing pipeline and the P4 external function is
limited. Currently, data that is transferred from the P4 pro-
cessing pipeline to a P4 external function needs to be trans-
mitted within one clock cycle of the FPGA. Due to timing
limitations, it is only possible to transmit very small amounts
of data. The developers from the P4-NetFPGA project con-
firmed that its current version does not provide support for
processing complete network packets within P4 externs. We
were able to increase data to be exchangeable to 128 bytes by
reducing the base clock frequency of the NetFPGA. However,
this is still far away from applicability to real-world problems.
A packet streaming function was announced, but is not avail-
able so far. Summing up, both limitations did not allow us to
build a prototype that is suitable for real-world scenarios with
variable-length packets exceeding a total length of 128 bytes.

Scholz et al. [54] pursued implementation of crypto-
graphic hash functions on P4 data planes. NetFPGA SUME
is part of their examined platforms. The authors confirm
our experiences and propose a workaround where crypto-
graphic hash functions are relocated to the platform’s egress
path behind the synthesized P4 program. However, if packet

processing within the P4 programm relies on the output of
the cryptographic hash functions, other workarounds need
to be considered. All proposed workaround modifications
require in-depth knowledge about FPGAprogramming. From
our point of view, this conflicts with P4’s original idea of
platform-independent and abstract network programming.

X. CONCLUSION
In this work we proposed P4-MACsec, a concept to auto-
matically protect links between switches with MACsec in
P4-based SDN. Our concept features a P4 data plane imple-
mentation for MACsec including encryption and decryption
using AES-GCM. P4 switches are steered by a novel two-tier
control plane that consists of local controllers running on all
P4 switches that connect to a central controller. We presented
a novel mechanism for link discovery using encrypted LLDP
packets and automated deployment of MACsec link protec-
tion. P4-MACsec completely eliminates previous configura-
tion efforts for MACsec. We presented the architecture of
P4-MACsec and demonstrated its feasibility in a prototypical
implementation for the BMv2 P4 software target. We used
that prototype to experimentally validate P4-MACsec in a
virtualized testbed built with Mininet and performed evalu-
ation experiments. We also reported on unsuccessful efforts
to implement P4-MACsec on the NetFPGA SUME platform.
Our work is an example for P4 switches supporting security
features like authentication, encryption, and identity checks.
Other applications may be traffic protection on different lay-
ers, e.g., Layer 3 VPNs. Therefore, P4 switches should offer
native functional blocks for encryption and decryption and
overhead-free interfaces to P4 externs.

LIST OF ACRONYMS
MACsec Media Access Control Security
MKA MACsec Key Agreement
SDN Software-Defined Networking
OF OpenFlow
BMv2 Behavioral Model version 2
FPGA field programmable gate array
AES-GCM Advanced Encryption Standard in

Galois/Counter mode
LLDP Link Layer Discovery Protocol
SecY MAC security entity
KaY MAC security key agreement entity
CA connectivity association
SC secure channel
SA secure association
SAK secure association key
GMAC Galois Message Authentication Code
ICV integrity check value
SecTAG security tag
CAK connectivity association key
ACL access-control list
ECU electronic control unit
OFDP OpenFlow Discovery Protocol
CDP Cisco Discovery Protocol

58856 VOLUME 8, 2020



F. Hauser et al.: P4-MACsec: Dynamic Topology Monitoring and Data Layer Protection With MACsec in P4-Based SDN

PDU protocol data unit
TLV type-length value
MIB management information base
MAC message authentication code
BDDP Broadcast Domain Discovery Protocol
SCI secure channel identifier
SAI security association identifier
RTT round-trip time
MLF MAC address learning function
LDF link discovery function
LDCF link discovery controller function
MSF MACsec function
MSCF MACsec controller function
IG-SC ingress MACsec SC
EG-SC egress MACsec SC
PISA Protocol Independent Switch Architecture

ACKNOWLEDGMENT
The authors would like to thank Joshua Hartmann for fruitful
discussions and programming contributions.

REFERENCES
[1] Barefoot Networks: Tofino 2. Accessed: Feb. 2, 2020. [Online]. Available:

https://www.barefootnetworks.com/products/brief-tofino-2/
[2] Cisco Discovery Protocol Configuration Guide. Accessed: Feb. 2, 2020.

[Online]. Available: https://www.cisco.com/c/en/us/td/docs/ios-
xml/ios/cdp/configuration/15-mt/cdp-15-mt-book/nm-cdp-discover.html

[3] Floodlight: OpenSource SDN Controller, Accessed: Feb. 2, 2020.
[Online]. Available: http://www.projectfloodlight.org/floodlight/

[4] GitHub: GRPC Python. Accessed: Feb. 2, 2020. [Online]. Available:
https://github.com/grpc/grpc/tree/master/src/python/grpcio

[5] GitHub: Open Pull Requests of p4lang/Behavioral-Model: Add Crypto
Extern to Behavioral-Model. Accessed: Feb. 2, 2020. [Online]. Available:
https://github.com/p4lang/behavioral-model/pull/834

[6] GitHub: P4lang/Behavioral-Model (BMv2). Accessed: Feb. 2, 2020.
[Online]. Available: https://github.com/p4lang/behavioral-model

[7] GitHub: Uni-Tue-kn/p4-Macsec. Accessed: Mar. 29, 2020. [Online].
Available: https://github.com/uni-tue-kn/p4-macsec

[8] Google Protocol Buffers. Accessed: Feb. 2, 2020. [Online]. Available:
https://developers.google.com/protocol-buffers/

[9] Grpc. Accessed: Feb. 2, 2020. [Online]. Available: https://grpc.io/
[10] IEEE8021-SECY-MIB: Definitions of Managed Objects Supporting

IEEE 802.1AE MACsec. Accessed: Apr. 14, 2019. [Online]. Avail-
able: http://www.ieee802.org/1/files/public/MIBs/IEEE8021-SECY-MIB-
200601100000Z.txt.

[11] Iperf. Accessed: Feb. 2, 2020. [Online]. Available: https://iperf.fr/
[12] Mininet. Accessed: Feb. 2, 2020. [Online]. Available: http://mininet.org/
[13] Netcope P4. Accessed: Feb. 2, 2020. [Online]. Available: https://www.

netcope.com/en/products/netcopep4
[14] NetFPGA. Accessed: Feb. 2, 2020. [Online]. Available: https://netfpga.org
[15] ONOS. Accessed: Feb. 2, 2020. [Online]. Available: https://onosproject.

org/
[16] ONOS Wiki: Network Discovery. Accessed: Feb. 2, 2020. [Online]. Avail-

able: https://wiki.onosproject.org/display/ONOS/Network+Discovery
[17] OpenCORDWiki: MAC Security. Accessed: Feb. 2, 2020. [Online]. Avail-

able: https://wiki.opencord.org/display/CORD/MAC+Security
[18] Open Cores: GCM-AES. Accessed: Feb. 2, 2020. [Online]. Available:

https://opencores.org/projects/gcm-aes
[19] Open Daylight. Accessed: Feb. 2, 2020. [Online]. Available: https://www.

opendaylight.org/
[20] OpenSSL. Accessed: Feb. 2, 2020. [Online]. Available: https://www.

openssl.org/
[21] P4 Language Consortium. Accessed: Feb. 2, 2020. [Online]. Available:

https://p4.org/
[22] P4->NetFPGA Wiki. Accessed: Feb. 2, 2020. [Online]. Available:

https://github.com/NetFPGA/P4-NetFPGA-public

[23] P4 Runtime Spec. 1.0.0. Accessed: Feb. 2, 2020. [Online]. Available:
https://p4.org/p4runtime/spec/v1.0.0/P4Runtime-Spec.html

[24] P4_16 Language Specification, Version 1.2.0. Accessed: Feb. 2, 2020.
[Online]. Available: https://p4.org/p4-spec/docs/P4-16-v1.2.0.html

[25] Pyca/Cryptography Documenta. Accessed: Feb. 2, 2020. [Online].
Available: https://cryptography.io/en/latest/

[26] Rambus: MACsec Toolkit for Ethernet Security. Accessed:
Feb. 2, 2020. [Online]. Available: https://www.rambus.com/security/
software-protocols/secure-communication-toolkits/macsec-tk/

[27] RHD Blog: MACsec: A Different Solution to Encrypt Network Traffic.
Accessed: Feb. 2, 2020. [Online]. Available: https://developers.
redhat.com/blog/2016/10/14/macsec-a-different-solution-to-encrypt-
network-traffic/,

[28] Scapy. Accessed: Feb. 2, 2020. [Online]. Available: https://scapy.net/
[29] Simple Switch Grpc. Accessed: Feb. 2, 2020. [Online]. Available:

https://github.com/p4lang/behavioral-model/tree/master/targets/simple
_switch_grpc

[30] Cisco: Innovations in Ethernet Encryption (802.1AE—MACsec).
Accessed: Feb. 2, 2016. [Online]. Available: https://www.cisco.com/
c/dam/en/us/td/docs/solutions/Enterprise/Security/MACsec/WP-High-
Speed-WAN-Encrypt-MACsec.pdf

[31] T. Alharbi, M. Portmann, and F. Pakzad, ‘‘The (in)security of topology
discovery in software defined networks,’’ in Proc. IEEE 40th Conf. Local
Comput. Netw. (LCN), Oct. 2015, pp. 502–505.

[32] T. Alharbi, M. Portmann, and F. Pakzad, ‘‘The (In)Security of topology
discovery in openflow-based software defined network,’’ Int. J. Netw.
Secur. Its Appl., vol. 10, no. 3, pp. 01–16, May 2018.

[33] A. Azzouni, N. T. Mai Trang, R. Boutaba, and G. Pujolle, ‘‘Limitations
of openflow topology discovery protocol,’’ in Proc. 16th Annu. Medit. Ad
Hoc Netw. Workshop (Med-Hoc-Net), Jun. 2017, pp. 1–3.

[34] A. Azzouni, R. Boutaba, N. Thi Mai Trang, and G. Pujolle, ‘‘SOFTDP:
Secure and efficient topology discovery protocol for SDN,’’ 2017,
arXiv:1705.04527. [Online]. Available: http://arxiv.org/abs/1705.04527

[35] F. Bannour, S. Souihi, and A. Mellouk, ‘‘Distributed SDN control: Survey,
taxonomy, and challenges,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 1,
pp. 333–354, 1st Quart., 2018.

[36] O. I. Bentstuen and J. Flathagen, ‘‘On bootstrapping in-band control chan-
nels in software defined networks,’’ in Proc. IEEE Int. Conf. Commun.
Workshops (ICC Workshops), May 2018, pp. 1–6.

[37] P. Bosshart, ‘‘P4: Programming Protocol-independent Packet Processors,’’
ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95.
Jul. 2014.

[38] J.-H. Choi, S.-G. Min, and Y.-H. Han, ‘‘MACsec extension over software-
defined networks for in-vehicle secure communication,’’ in Proc. 10th Int.
Conf. Ubiquitous Future Netw. (ICUFN), Jul. 2018, pp. 180–185.

[39] Y. Fu, ‘‘Orion: A Hybrid Hierarchical Control Plane of Software-Defined
Networking for Large-Scale Networks,’’ in IEEE Int. Conf. Netw. Protocols
(ICNP), 2014, pp. 569–576.

[40] S. Hassas Yeganeh and Y. Ganjali, ‘‘Kandoo: A framework for efficient
and scalable offloading of control applications,’’ in Proc. 1st workshop Hot
topics Softw. defined Netw., 2012, pp. 19–24.

[41] IEEE Standard for Local and Metropolitan Area Networks—Media Access
Control (MAC) Security, Standard 802.1AE-2006, 2006.

[42] IEEE Standard for Local and Metropolitan Area Networks—Port-Based
Network Access Control, Standard 802.1X-2010, 2010.

[43] IEEE Standard for Local and Metropolitan Area Networks—Media
Access Control (MAC) Security Amendment 1: Galois Counter Mode—
Advanced Encryption Standard—256 (GCM-AES-256) Cipher Suite, Stan-
dard 802.1AEbn-2011, 2011.

[44] IEEE Standard for Local and Metropolitan Area Networks—Media Access
Control (MAC) Security Amendment 2: Extended Packet Numbering, Stan-
dard 802.1AEbw-2013, 2013.

[45] IEEE Standard for Local and Metropolitan Area Networks—Station and
Media Access Control Connectivity Discovery, Corrigendum 2: Technical
and Editorial Corrections, Standard 802.1AB-2009, 2015.

[46] T. Kohler, F. Durr, and K. Rothermel, ‘‘ZeroSDN: A highly flexible
and modular architecture for full-range distribution of event-based net-
work control,’’ IEEE Trans. Netw. Service Manage., vol. 15, no. 4,
pp. 1207–1221, Dec. 2018.

[47] E. Marin, N. Bucciol, and M. Conti, ‘‘An in-depth look into SDN topology
discovery mechanisms: Novel attacks and practical countermeasures,’’
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2019,
pp. 1101–1114.

VOLUME 8, 2020 58857



F. Hauser et al.: P4-MACsec: Dynamic Topology Monitoring and Data Layer Protection With MACsec in P4-Based SDN

[48] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, ‘‘OpenFlow: Enabling innovation
in campus networks,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, p. 69, Mar. 2008.

[49] P. S. Mohamed, ‘‘Network controller provisioned MAC sec keys,’’
U.S. Patent 14 763 484, Aug. 27, 2019.

[50] T.-H. Nguyen and M. Yoo, ‘‘Analysis of link discovery service attacks in
SDN controller,’’ inProc. Int. Conf. Inf. Netw. (ICOIN), 2017, pp. 259–261.

[51] L. O. Aday. (2015). Current Trends of Topology Discovery in
OpenFlow-based Software Defined Networks. [Online]. Available:
https://upcommons.upc.edu/handle/2117/77672.

[52] F. Pakzad, M. Portmann, W. L. Tan, and J. Indulska, ‘‘Efficient topology
discovery in software defined networks,’’ in Proc. 8th Int. Conf. Signal
Process. Commun. Syst. (ICSPCS), Dec. 2014, pp. 1–8.

[53] E. Rojas, J. Alvarez-Horcajo, I. Martinez-Yelmo, J. A. Carral, and
J. M. Arco, ‘‘TEDP: An enhanced topology discovery service for software-
defined networking,’’ IEEE Commun. Lett., vol. 22, no. 8, pp. 1540–1543,
Aug. 2018.

[54] D. Scholz, A. Oeldemann, F. Geyer, S. Gallenmuller, H. Stubbe, T. Wild,
A. Herkersdorf, and G. Carle, ‘‘Cryptographic hashing in p4 data
planes,’’ in Proc. ACM/IEEE Symp. Archit. Netw. Commun. Syst. (ANCS),
Sep. 2019, pp. 1–6.

[55] T. Szyrkowiec, M. Santuari, M. Chamania, D. Siracusa, A. Autenrieth,
V. Lopez, J. Cho, and W. Kellerer, ‘‘Automatic intent-based secure service
creation through a multilayer SDN network orchestration,’’ J. Opt. Com-
mun. Netw., vol. 10, no. 4, p. 289, Apr. 2018.

[56] M. Vajaranta, J. Kannisto, and J. Harju, ‘‘Implementation experiences and
design challenges for resilient SDN based secure WAN overlays,’’ in Proc.
Asia Joint Conf. Inf. Secur. (AsiaJCIS), Aug. 2016, pp. 17–23.

[57] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore, ‘‘NetF-
PGA SUME: Toward 100 Gbps as research commodity,’’ IEEE Micro,
vol. 34, no. 5, pp. 32–41, Sep. 2014.

FREDERIK HAUSER (Student Member, IEEE)
received the master’s degree in computer sci-
ence from the University of Tuebingen, Germany,
in 2016, where he is currently pursuing the Ph.D.
degree with the Chair of Communication Net-
works. Since then, he has been a Researcher
with the Chair of Communication Networks, Uni-
versity of Tuebingen. His main research inter-
ests include software-defined networking, network
function virtualization, and network security.

MARK SCHMIDT (Member, IEEE) received
the Diploma degree in computer science from
the University of Tuebingen, Germany, in 2010,
where he is currently pursuing the Ph.D. degree
with the Chair of Communication Networks.
Since then, he has been a Researcher with
the Chair of Communication Networks, Univer-
sity of Tuebingen. His main research interests
include software-defined networking, OpenFlow,
high-speed networks, and virtualization.

MARCO HÄBERLE (Student Member, IEEE)
received the master’s degree in computer sci-
ence from the University of Tuebingen, Germany,
in 2018, where he is currently pursuing the Ph.D.
degree with the Chair of Communication Net-
works. Since then, he has been a Researcher with
the Chair of Communication Networks, University
of Tuebingen. His main research interests include
software-defined networking, P4, network secu-
rity, and automated network management.

MICHAEL MENTH (Senior Member, IEEE) is
currently a Professor with the Department of
Computer Science, University of Tuebingen, and
the Chair holder of Communication Networks.
He has published more than 150 articles in the
field of computer networking. His special inter-
ests are performance analysis and optimization
of communication networks, resilience and rout-
ing issues, resource and congestion management,
software-defined networking and the Internet pro-

tocols, industrial networking, and the Internet of Things.

58858 VOLUME 8, 2020


