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ABSTRACT In recent times, with the advancement of digital imaging, automatic facial recognition has
been intensively studied for adults, while less for neonates. Due to the miniature facial structure and
facial attributes, newborn facial recognition remains a challenging area. In this paper, an automatic video-
based Neonatal Face Attributes Recognition (NFAR) approach in a hierarchical framework is proposed by
coalescing the intensity-based method, pose estimation, and novel dedicated neonatal Face Feature Selection
(FFS) algorithm. The intensity-based method is used for face detection, followed by the facial pose estimation
algorithm and FFS are dedicated to neonatal pose and face feature recognition, respectively. In this study,
video-data of 19 neonates’ were collected from the Children’s Hospital affiliated to Fudan University,
Shanghai, to evaluate the proposed NFAR approach. The results show promising performance to detect
the neonatal face, pose estimation (—45°, 45°), and facial features (nose, mouth, and eyes) recognition. The
NFAR approach exhibits a sensitivity, accuracy, and specificity of 98.7%, 98.5%, and, 95.7% respectively,
for the newborn babies at the frontal (0°) facial region. The neonatal face and its attributes recognition can
be expected to detect neonate’s medical abnormalities unobtrusively by examining the variation in newborn
facial texture pattern.

INDEX TERMS Neonatal face detection, facial feature selection (FFS), neonatal pose estimation, face
neonatal attributes recognition (NFAR), video electroencephalogram (VEEG).

I. INTRODUCTION

Face is one of the most unique and distinct attributes of
a human, which can convey relevant information such as
age, gender, emotion, etc. Compared to adults, the neona-
tal facial structure contains approximately 10,000 nerves
along with facial attributes that are still immature [1], [2].
The miniature and unformed newborn facial characteristics
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make it challenging to recognize their expression and sex
demarcation [3]-[6]. Recently, neonate’s facial rationaliza-
tion has emerged as a spry area of research for various appli-
cations, e.g., baby swapping [7], baby abduction [8], neonatal
pain and sedation scale via change in face pattern [9], infant
pain scale measurement using facial expression moment [10],
crying relating to variates in facial expression [11]-[13], etc.

However, due to the non-maturity in neonate’s facial fea-
tures, expressions, and random changes in their facial pat-
tern and pose [3], [14], neonatal face and its attributes
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recognition is still a stimulating area and has only lim-
ited literature reports. Bharadwaj et al. [7] conducted a
preliminary study for neonate’s face recognition to avoid
the babies swapping and abduction. Furthermore, studies
on pose-invariant face recognition in newborn babies on
Indian ethnics groups [8], [15] show quite promising results.
Though, previous studies show that the algorithm that works
well on one ethnics group may depict less accuracy on the
other ethnicities as a facial pattern, demographics, and struc-
ture of neonates vary from region to region [16]. Furthermore,
pose estimation and recognition of its attributes (mouth, nose,
and face) have not yet been studied for neonates. Therefore,
a robust algorithm is required to detect neonatal face and its
characteristics precisely.

Image processing [17], [18], feature extraction [17], [19],
and feature selection [20], [21] methods have been intensively
studied and widely applied in face and its facial attributes
detection. In the past, face detection [22], pose estimation,
and facial attributes recognition were considered as an inde-
pendent problem [23]. Face detection was mostly handled
by the trained classifier [24]. In the last decade, numerous
algorithms have been developed and claimed to have accu-
rate performance to solve adult face detection problem, e.g.,
Principle Component Analysis (PCA) [25], Linear Discrimi-
nant Analysis (LDA) [26], wavelet-based algorithm [27] [28]
and skin color-based algorithm (intensity-based) [29]-[32].
Among all these existing algorithm skin color-based algo-
rithm is one of the most robust algorithm as it does not
require to generate any feature matrix or Eigenface values to
detect the face region. The efficacy, robustness, and device
independency of the intensity-based model in the previous
work motivate us to use intensity-based for neonate’s face
detection. On the other hand, pose detection focus on a video
scenario based on 3D models [33]-[35] and facial pattern
estimation was done via a classic method known as an Active
Appearance Model (AMM) [36] and elastic graph match-
ing [37]-[39]. In recent years, advancement has been made
in face detection along with its pose and landmark estimation
to detect a facial pose [22]. A literature review [40] shows
that pose estimation models provide more precise details of
facial orientation, which could be helpful in analyzing facial
neonate’s expression and its attributes with more accuracy.
Modern research shows that face detection and pose estima-
tion algorithms have been designed and tested for the adult
face and its features recognition. The existing algorithms,
e.g., intensity-based, are quite robust for face detection and
pose estimation, helps to estimate the pose variation, as dis-
cussed in the previous research work. However, there are
no existing algorithms that have been tested on the infant’s
faces and their attributes recognition using image processing
algorithms to extract the face and its features from video
frames.

To achieve the above goal, in this paper: a two-stage model
is proposed for neonatal facial and its attributes recogni-
tion named ‘‘Neonatal Face Attributes Recognition (NFAR)”
framework as shown in Fig. 1. At the first stage, neonates face
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FIGURE 1. Block diagram of our proposed NFAR.

detection based on the intensity-based approach identifying
the neonate’s face from videos that result in removing the
noisy region from each frame and pose estimation model
detecting the neonate’s facial pose from —45° to 45° are
performed. Next, the facial attributes recognition algorithm
based on Face Feature Selection (FFS) is developed to recog-
nize the particular Region of Interest (ROI) (e.g., eyes, mouth,
and nose). One of the main advantages of our proposed
hierarchical framework is that each step act as an aided tool
for the following algorithm for accurate and precise detection
and recognition ROI. Overall our proposed NFAR algorithm
is quite robust to detect and recognize neonatal face and
its attributes. In the end, the proposed framework has been
compared with the existing work on neonates followed by
the analysis and implementation of state-of-the-art existing
algorithm on our database.

The main contributions of this research for neonatal face
and its attributes recognition are summarized as below.

1) In this research, firstly, intensity-based detection and
pose estimation are performed on the neonate’s facial pat-
tern independently. Secondly, we present a novel two-stage
NFAR framework for face and pose estimation algorithm
using video-frame imaging.

2) Dedicated neonatal pose features extraction has been
designed to extract infant’s faces and their attributes recogni-
tion using Face Features Selection (FFS) algorithm to achieve
better performance.

3) Till now, to the best of our knowledge, there is no pub-
lic newborn database available for research on the neonatal
facial attributes recognition. Thus, evaluating the reliability,
efficiency of neonatal facial and related attributes recogni-
tion algorithms, and providing a comparative evaluation of
the performances of different algorithms are quite challeng-
ing. However, the collected dataset that with quality content
can be used as a benchmark for providing a comparative
comparison of the performance of the algorithm and promot-
ing the development of the relevant algorithms.
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FIGURE 2. The facial characteristic of newly born babies is not
proportionally equivalent to an adult face, as observed in the above
illustrations.Thermal(ironbow) images shown that adult feature variety
entirely differs from mature; heat variation in each feature can easily be
absorbed with the naked eye.

The rest of the paper is organized as follows. The next
sub-sections provide background studies via a literature
review on the related work and contribution of this research
article. Section II describes the neonatal faces characteris-
tic. Section III presents a detailed explanation of newborn
video-database information. Section IV shows the proposed
methodology to detect and recognize the neonatal face and
its attributes. Section V illustrates the results of our proposed
NFAR method. Section VI offers a comprehensive analysis
of our proposed work with the existing algorithms. Finally,
the last part concludes the paper and also provides the future
direction for our research work.

Il. NEONATAL FACIAL CHARACTERISTICS IN

CHINESE ETHNIC GROUP

Every human face has its unique facial characters and subtle
differences in form, the ratio of hard and soft facial tissues,
and even topographical delineations. However, the neonate’s
facial structures are even physically diverse from grownup
faces, and that makes it difficult to detect their facial features.
The following observations and studies provide evidence to
support that the existing adult faces and features detection
algorithm might not work as good on the neonatal face as
they do on mature adult faces. To detect the infant’s face
and attributes recognition through computer vision, it’s vital
to classify those facial features that lead to unique and dis-
criminative features that enable detection. The face region,
especially around the nasal cavity, is usually an essential point
in the neonate’s facial structure as the adjoining curvatures
depend on it for support, as shown in Fig. 2. Furthermore,
the craniofacial architecture of newly born babies has promi-
nent eyes, small jaws, fluffy cheeks, and a soft forehead.
These variations indicate that the shape and architecture of
newly born babies are different from adult faces. As com-
pared to other ethnics groups [7], the Chinese newborn baby’s
features are not as prominent as could easily be absorbed in
different ethnic groups, as shown in Fig. 3. It has been noticed
that the nasal cavity region is small and elongated fewer hairs
on cheek and forehead, eyes region is small.

As compared to other ethnics groups [7], the Chinese
newborn baby’s features are not as prominent as could easily
be absorbed in different ethnic groups, as shown in Fig. 3.
It has been noticed that the nasal cavity region is small and
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FIGURE 3. A) Indian ethnic group [7], B) Chinese ethnic group.

FIGURE 4. Fluke® TiX580 palette formation.

elongated fewer hairs on cheek and forehead, eyes region
is small. These observations indicated that Chinese neona-
tal faces also possess unique distinctive and specific facial
features that could be helpful for unobtrusive, medical assis-
tance to help clinicians to detect and diagnose neonatal
abnormalities.

IIl. NEONATAL DATABASE

The neonatal video/images database has searched in
January 2019 with the following key terms, neonatal baby’s
database, newly born babies images infant facial database,
newborn baby’s database and neonate’s video database.
Our neonatal video data collection was carried out at the
Children’s Hospital affiliated to Fudan University from
November 2017 to December 2018. The experiment protocol
was designed according to hospital clinical study regulation.
Nineteen subjects were involved in this study. 10 out of 19 are
less than 13 days old (mean = 9.8, SD = 1.87), and remaining
are less than 25 days old (mean = 18.5, SD = 3.80). Video
data were recorded to design the neonatal facial and its
attributes detection algorithm. While collecting the database,
VEEG data was recorded in parallel with videos with the
future aim of our research work to predict neonatal abnormal-
ities and behavioral monitoring by analyzing the facial motor
neuron variation unobtrusively. Video data were collected
from 9 am to 11-30 am for each baby, except the moments
when babies had to go through the medical examination by
the doctor, cluster feeding, and physical body’s examination
like body temperature, etc. Thus at the end of the experiment,
we had 2 hours of VEEG and video data per baby.

To collect the neonate’s video, Fluke®TiX580 is
used [41]. One of the main advantages of using the
Fluke®TiX580 camera is that it can record multiple types
of color palette, as shown in Fig. 4. During the data col-
lection, the distance between the subject and the camera
is fixed; we used the Laser Pointer/Distance Finder to
measure the range, from the Imager to a target, as shown
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FIGURE 5. Data collection setup A) shows four different sides of the private room along with various paraphernalia,

B) camera set up to record video.

FIGURE 6. A) A teat without the feeding bottle while collecting data.
B) Cushion around the head to reduce random head movement.

in Fig. 5 (B). The distance between the subject and the
camera is between 0.25-0.36m. In consideration to the subject
privacy, the neonatal video frames used in this paper are kept
bit blurred from the specific region of the face, except in pose
estimation, as it’s necessary to show a whole facial area with
detected points.

Newborn data collection is a bit complicated process as
compared to an adult. When babies snivels, pediatrician nurse
puts a teat without the feeding bottle, have been feed into the
baby mouth (to make them comfortable) that results in cover-
ing the mouth/chin region. As we are using a single camera,
it gets more challenging to detect the whole neonates’ face
using image processing algorithms, as shown in Fig. 6 (A).
Another problem, while collecting neonatal data, is the baby’s
head movement, as they change their position left to right
very quickly, that will cause a problem during facial analysis.
This problem was solved by providing an extra cushion so
that their head remains straight or tilt slightly left to right,
as shown in Fig. 6 (B). Data was collected in a private room
previously used for VEEG recording. The ward is situated and
designed in such a way that it gets less impact from the hos-
pital environment. Fig. 5 (A) shows the experimental setup
for neonatal data collection. The equipment set-up details
are: 1) subject position. 2) EEG signal monitoring screen.
3) VEEG recording camera. 4) Polysomnography (PSG)
device, it records signals from the electrodes and sensors
applied to the subject. 5): incubator. 6) Side place from where
clinicians observed data quality. Camera setup, whereas col-
lecting data have been shown in Fig. 5 (B).

During data collection, we have observed some unique
challenges with infant faces that can deter traditional
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FIGURE 7. Neonatal database challenges show the noncooperative
behavior of infants that effects traditional face detection and extraction
algorithms.

approaches to face recognition. The random infant movement
causes Electrooculography (EOG) and electroencephalogram
(EEG) electrodes to move from its position, and sometimes
neonates cover the eyes and cheek region with their hands,
as shown in Fig. 7. These issue has carefully monitored, video
and VEEG recording have stopped, and pediatrician adjusts
the position of electrodes before continue recording.

IV. METHOD: NEONATAL FACE AND ITS FEATURES
DETECTION APPROACH(NFAR)

This section describes our proposed NFAR approach that
involves neonatal face detection and pose estimation, fol-
lowed by our proposed FFS algorithm to recognize face
attributes. Fig. 8 shows the illustration of the steps involved in
our proposed algorithm for face and its attributes recognition.
Input video frames acts as an input for intensity-based detec-
tion to detect the neonatal facial region, then the detected
face region is used by pose estimation to estimate the pose
and facial area, respectively. At the end, FFS used the facial
detected (pose estimated) region to recognize neonate’s facial
attributes.

A. INTENSITY-BASED DETECTION

The International Commission defined the intensity-based
detection on Illumination in 1976 [42]. It also is known as
CIE. L*a*b is often abbreviated as merely ““Lab” color space.
It articulates color as three scientific standards, L represents
lightness and a and b for the green-red and blue-yellow color
regions [43]. Intensity-based detection was designed to be
perceptually constant concerning human facial color images.
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FIGURE 8. lllustrating the steps involved in the neonate’s face and its attributes recognition algorithm.

One of the essential attributes of the intensity-based detec-
tion model is that it is independent of the device; it defines
colors independent of how they are created or displayed.
Space itself is a three-dimensional real number space that
gives us space to represent an infinite number of colors. The
intensity-based detection has its advantages as compared to
other color models, e.g., RGB and CMYK, it aspires to per-
ceptual consistency, and its L part closely matches the human
perception of lightness. Thus, it can be used to make accurate
color balance corrections by modifying output curves in the
a and b components, or to adjust the lightness contrast using
the L component. Intensity-based colors are defined relative
to the white point of the CIEXYZ space from which they
transform; thus, CIELAB values do not represent full colors
unless the white area is also specified. CIELAB-CIEXYZ
conversions: (Forward transformation).

* — 116f <Y£> —16 1

() ) e
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e (2)

where
Jt ift>8
1) = t 4 4
F® + — otherwise @)
363 29
Here X,,, Y, and Z, are the CIE-XYZ tristimulus values
of the white reference point, where § = % and ¢ control

the slope of the function (f) [40]. In our proposed algorithm,
intensity-based detection takes raw image frames as input to
remove the noise region and detect the neonate’s facial area.
As the intensity-based method is independent of the device,
and due to its robustness, it is able to identify the region of
interest (ROI) efficiently.

B. FACE DETECTION AND POSE ESTIMATION

Face feature selection, pose estimation, and face detection
have conventionally considered as different problems with a
different set of methods, such as trained classifier scanning
window, view-based Eigenspace methods, and elastic graph
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models, respectively. For face detection and pose estima-
tion, we have used encoding elastic deformation and three-
dimensional structure, this technique involves share pools of
the part with a mixture of trees. The global trees mixtures are
used to model topological facial changes due to viewpoints.
The pattern generated from tree mixture helps the model to
analyze a large number of the facial region with low com-
plexity [25], [28]. Overall face detection and pose estimation
model is described as follows:

Model: Face and pose estimation model contains an assort-
ment of trees that include a facial landmark shared pool of
parts (V = K). Facial landmark has been considering part
of the model, and the global mixture is used to identify the
topological changes due to changes in viewpoints.

1) TREE STRUCTURE MODEL

Each tree U,, = (Vju, E;;) acts as a linear- parameterized
model [29], where m indicates a mixture V,, C V. In case of
an image (1), so [; = (x;, y;) for the pixel location in a part of
i.So scoring a ring of the configurationof part L = {l; : i € V'}
is defined as:

S{,L,m)=App,, (I,L)+ Shape,, (L) + ™ 5)
where
Appy (L) =3

Equation (6) shows the summation of appearance for plac-
ing of the template w{" for part i, for tuning the mixture m,
at location /;. The Histogram of Gradient (HoG) description
is used as a feature vector shown in as ¢(/, [;) extracted from
pixel location /; the image /.

Shape,, (L) =Y

ije

RTART(ND ©)

2 2
5 agi.dx” + bljj.dx + cjj.dy” + dii'.dy
(7N

Equation (7) score the mixture- specific partial arrange-
ment of parts L. where dx = x; — xj and dy = y; — y; are
the displacement of the ith part relative to the jth part. Each
term in the sum can be interpreted as a spring that introduces
spatial constraints between a pair of parts, where the param-
eters (a; b; c; d) specify the rest location and rigidity of each
spring [44] and the last term o™ is a scalar bias or “prior”
associated with view point mixture .

2) PART SHARING

For each mixture/viewpoints, m of part i (5) requires a sepa-
rate template w/'. On the other hand, small changes across
in viewpoint look consistent, even in extreme cases ‘‘fully
shared” model is used as a single template for any particular
change across all viewpoints wl'.” = w. The range between
these two extremes can, as wf(m), where f(m) is a function
that maps a mixture index (from 1 to M) to a smaller template
index (from 1 to M’). We explore various values of M’:
no sharing (M’ = M), sharing across neighboring views, and
sharing across all views (M’ = 1).
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3) INFERENCE
Inference corresponds to maximizing S (I, L, m) in (5) over
L and m:

s ) ="m (LS, L, m) ®)

Just enumerate all mixtures, and for each combination, find
the best configuration of parts. Since each mix 7,, =
(Vin, E;) is a tree, and the inner maximization can be done
efficiently with dynamic programming.

C. NEONATAL FACE FEATURE SELECTION (FFS)

Before recognizing the face and its attributes, Euclidian (U)
distance of all the points in features matrix is calculated, if the
values of U is less than Discarded (D) frames, these neonatal
frames are considered as False Negative (FN). The values
of D may vary from as other facial datasets; it depends on
camera resolution [45]. In our case, we set the value of D
is 100. This step is essential to remove false positive face
detection in the pose estimation step.

1) FACE EXTRACTION FROM POSE DETECTION

Once the pose (F) is detected, the first important step is to
extract the face region so the image (/) = (x;, y;), where
M, N is the number of rows and columns, respectively.
F is the feature matrix that contains all the coordinates’
features points found by pose detection. So F_S((x;, yi) =
min(F((xi, yi)), F_E((xi, y;) = max(F((x;, y;)), F_S is the start-
ing point co-ordinate for face, F_E is the endpoint of the
face region. The Face is extracted by joining the row and
column found in F_S, F_E in rectangle form. Once the face is
detected, F is updated by discarded, those feature points lie
on face boundary.

UT<U)
__ |1 (UNDEX (M,N)) if I (INDEX (M,N))=F (M,N)
o else

©))

Equation (10) helps to detect and extract the mouth/eyes
region precisely by calculating the shortest Euclidian (U) of
a particular index by comparing it with the value of T.

2) FFS-ALGORITHM FOR MOUTH AND EYES

EXTRACTION (VOTING RULE)

For eyes region, directly used the image, on the other hand,
for mouth detection horizontal flip the image to detect and
extract the mouth region. Let us consider O = M + 1 and
P = N + 1 according to value M, N at a particular instance
in (10), to calculate the distance of specific feature point with
others points so

(ML) = {(Eul(Uy y. Uo,p)) if distance < (T =k)} (10)

Once the eyes and mouth have been extracted, the rest
feature matrix belongs to the nose region. The value of T has
been determined from the feature region matrix (k) obtained
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MLy, ,

m=m+1
n=n+l

FI = Eul (ML, ML, )

FIGURE 9. Overall flow chart of FFS.

via pose detection. Based on fluke camera calibration and
resolution, the values of k are set to 50; this value can be
calibrated and adjusted according to camera resolution and
pixel quality.

3) FLOWCHART FOR MOUTH, EYES AND NOSE

EXTRACTION VIA FFS

Let m, n is the coordinate of the current feature point, and
O = m+ 1and P = n + 1 are the next features points;
first, we check these coordinates points lie inside the original
image. Fig. 9 shows the overall flow chart of feature extrac-
tion where ML, , is the features point matrix obtained via
pose detection, O = m+1, and P = n+1 are the next features
points. The U calculates the Euclidian distance between the
current and the neighboring features point. When the distance
is less than then 7, it is considered as belong to particular face
region (nose, eyes, mouth); otherwise, the value of m, n, P,
O is incremented, and ML_NEW get next value from F_S,
this process continues until the framework gets minimum
four neighboring’s features points from F_S to detect and
recognize the particular facial features.

V. RESULTS

In this section, we investigate and evaluate the performance
of existing face detection algorithm methods (intensity-
based, pose estimation) and our proposed algorithms named
“Neonatal Face Attributes Recognition (NFAR).” for the
infant’s face, and its attributes recognition. Fig. 10 depicts
the complete description of our proposed approach adopted
to evaluate the results on the neonate’s dataset, where
A) Intensity-based method solely detects the neonatal face
region. B) Pose detection and FFS estimates the pose
and recognizes facial features, respectively. C) Our pro-
posed framework (NFAR) simultaneously detects the infant’s
facial region, followed by the pose estimation and FFS to
estimates the pose and recognize infant’s facial features
precisely.
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CIELAB single channel image

FIGURE 11. Neonates face detection using Intensity-based detection.

A. INTENSITY-BASED DETECTION

Our research on infant facial detection, pose estimation, and
its attributes recognition rely on face detection with minimum
noise region around the infant’s facial area. To detect the
infant’s facial region using intensity-based detection, first,
we have converted the RGB video frames into CIELAB
color space, after analyzing the color intensity values of
each CIELAB channel, the threshold has been determined.
The CIELAB single-channel frame is converted into binary
frames, and the connected area is separate from each other.
In the end, the facial intensity region with the highest number
of the related/linked part is imbricate on the original RGB and
thermal images. The experiment has been performed on 700k
video frames approximately from 19 infants to detect the
neonatal face. We obtained Sensitivity (Se), Specificity (Sp),
and Accuracy (Ac) of 99%, 99.8%, and 95.8% respectively by
analyzing each frame using following Eq. (11), (12) and (13)
respectively. Neonatal intensity-based detection is shown in
Fig. 11, in which the RGB image is converted into CIELAB
using the RGB to CIELAB transformation followed by the
conversation into a binary image. The binary image is mapped
to the RGB frame to detect the facial region. The results show
that intensity-based detection identifies the face region with
more accuracy, but it’s unable to detect facial features.

True Positive(TP)

Se =
True Positive (TP) + False Negtive(FN)

(11)
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FIGURE 12. Pose estimation: Trees model mixture encodes topological changes due to the viewpoint. Red lines signify springs between pairs of
parts. All trees make use of a common, shared pool of part templates, which makes learning and inference efficient.

Sp — True Negative(TN) (12)
P = True Negative(TN) + False positive(FP)
TP + TN
c = (13)

TP + FN + 1IN + FP

TP = correctly identified, FP = incorrectly identified
TN = correctly rejected, FN = incorrectly rejected

Statistical results of all the face detection are calculated on
the bases of the following parameter: TP = Face region exist
and correctly identified by intensity-based algorithm, FP =
incorrectly identified (face doesn’t exist, but frames has been
identified as face region), TN = neonate’s face region doesn’t
exist and its correctly rejected by intensity-based algorithm,
FN = incorrectly rejected (face exists, but frames have not
been identified as face region).

B. POSE DETECTION AND FFS

Pose detection outperforms state-of-the-art detection algo-
rithms and gives us a wide range of face detection in terms of
angle on adult datasets [44]. In consideration of that, we have
employed this model of pose estimation to detected face pose
and followed by our dedicated neonatal algorithm known
as FFS for recognizing the facial attributes. Face detection,
along with the pose detection and neonatal feature recogni-
tion algorithm, improves the classification stage to have a
separate analysis of face origination at 90° or —90° as they
are the counterpart of each other. The entire 19 subjects with
approx. 2-hour video at each frame followed by the feature
extraction has been tested using pose estimation and FFS
approach.

Fig. 12 shows the standard trees model mixture generated
that encodes topological changes due to the viewpoint at dif-
ferent angles [—90°, 90°]. Red lines signify springs between
pairs of parts. All trees make use of a standard, shared pool of
part templates, which makes learning and inference efficient
to detect and estimate the facial pose [44]. The pose estima-
tion tree model has been used to detect the RGB face with
different pose angles from [—90°, 90°], as shown in Fig. 13.
Once the face is detected, FFS is used to recognize the facial
attributes like nose [—30°, 30°], eyes [—60°, 60°], and mouth
[—45°, 45°] as shown in Fig. 14, Fig. 15, and Fig. 16 respec-
tively. We observed that FFS at different pose angles is getting
narrow as neonates face moving toward left and right. The
statistical result has been shown in Table 1. Overall, analytical
results are not up to quite promising; even at specific pose
angles, the facial area is not detected accurately, as shown
in Fig. 13 (—15°, bottom left ); this also results in the limited
facial attributes pose detection angles. These statistical have
been calculated via equations (11), (12), and (13).
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FIGURE 13. Extracted face region via FFS with different neonatal pose
variations.

FIGURE 14. Nose extracted region via FFS with different neonatal pose
variations.

FIGURE 15. Eyes extracted region via FFS with different neonatal pose
variations.

FIGURE 16. Mouth extracted region via FFS with different neonatal pose
variations.

TABLE 1. Statistical performance of pose estimation and FFS (F = Face,
E = Eye, N = Nose, M = Mouth).

TP N FP FN Se%  Ac%  Sp %
F 352302 196302 96653 227335 60.7 628 67.0
E 230525 95202 51451 146777 61.0 62.1 64.9
N 231344 93014 53639 170958 57.5 59.0 63.4
M 241095 94100 52553 136207 63.8 63.9 64.1

C. NEONATAL FACE ATTRIBUTES RECOGNITION (NFAR)

The intensity-based detection algorithm detects only the face
region; on the other hand, pose estimation, and FFS extraction
provides more information about face orientation and its
attributes. To acquire accurate facial recognition by the better
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TABLE 2. Statistical results of our proposed NFAR algorithm.

Sensitivity Specificity Accuracy
TP TN FP FN (%) (%) %)
Face 60755 5247 295 3102 95.14 94.67 95.1
Eye 45° 56599 280 15 4156 93.15 94.9 93.16
Nose 55489 277 18 5266 91.33 93.8 91.34
Mouth 55675 275 20 5080 91.63 93.22 91.64
Face 56899 6665 302 3251 94.59 95.66 94.74
Eye 300 53554 285 17 3345 94.13 94.37 94.13
Nose 53349 288 14 3550 93.77 95.36 93.78
Mouth 53449 291 11 3450 93.93 96.35 93.94
Face 66310 10110 556 4215 94.02 94.47 94.14
Eye s 62110 530 26 4200 93.36 95.53 93.67
Nose 62115 534 22 4195 93.6 96.04 93.69
Mouth 62105 536 20 4225 93.65 96.4 93.65
Face 250180 20621 912 3145 98.7 95.7 98.5
Eye 0° 241092 877 35 9088 96.3 96.16 96.3
Nose 242070 877 35 8110 96.4 96.16 96.7
Mouth 243080 877 35 7100 96.8 96.16 97.15
Face 55132 9565 713 3975 93.27 93.06 93.24
Eye 150 52277 670 43 2855 94.08 93.96 94.81
Nose 52300 685 28 2832 94.86 96.07 94.87
Mouth 52315 680 33 2817 94.89 95.37 94.89
Face 75680 8075 611 5236 93.52 92.96 93.47
Eye 300 73679 570 41 2001 97.3 93.28 97.32
Nose 72502 576 35 3178 95.82 94.27 95.78
Mouth 72882 572 39 2798 96.3 94.76 95.2
Face 62755 5142 311 2877 95.61 94.29 95.51
Eye 450 59654 293 18 3101 90.72 94.21 95.05
Nose 59756 287 24 2999 95.22 92.28 94.92
Mouth 59755 286 25 3000 95.21 91.96 95.2

FIGURE 17. Face and its features detected region at a different angle
using pose detection.

analytical result, we have designed a new framework to pro-
cess these algorithms in hierarchical order. The main idea of
using the NFAR approach is to reduce the noise region around
the neonates’ faces using the intensity-based method. So the
tree mixture pose estimation model has a specific region
of interest to detect the neonate’s facial features precisely
followed by FFS to recognize each facial feature’s attributes.

The overall results are quite promising with high statistical
values as compared to the raw images tested previously.
Analytical results show that as face varies from left (—45°)
to right (4+45°) side, face poses along with its attributes
have been detected more precisely. Fig. 17 shows a marked
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infant’s face using pose estimation at a different angle. Pose
estimation tree model was used to identified and FFS helps
us to recognize and extract the RGB face with a varying
degree of the pose, as shown in Fig. 14-16. For face attributes
(mouth, nose, and eyes) recognition, it follows only those
frames that are considered as TP and FP in the previous
step (intensity-based face detection). Statistical results of all
the attributes are calculated on the bases of the following
parameter: *TP = correctly identified (face attributes exist,
but features matrix (U) is more the 100), *FP = incorrectly
identified (face attributes don’t exist, but features matrix
distance (U) is more than 100) *TN = correctly rejected ((face
attributes doesn’t exist, but features matrix distance (U) is less
the 100), *FN = incorrectly rejected (face attributes exist, but
features matrix distance (U) is less the 100). The results are
manually validated by comparing it to the input frame of the
particular face and its attributes. Table. 2 presents the perfor-
mance of the proposed method in recognizing the neonate’s
face and its attributes at different angles. It achieves the best
performance for detecting the face and facial attributes at
the frontal (0°) facial region with the sensitivity, accuracy,
and specificity of 98.7%, 98.5%, and, 95.7% respectively.
As the face tilts toward the left and right, the overall accuracy
decreases slightly. It is mainly because our study involves
only one camera, neonates wear EEG capes and EOG elec-
trodes for VEEG recording that cover the forehead and side
region of the neonate’s face. These artefacts makes it difficult
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TABLE 3. Comparison of our purposed (NFAR) with existing algorithms.

. Face detection Database Pose Attributes .
Authors Algorithm Accuracy Information information Recognition Ethnics Group
R. Singh and H. Om [15] T°WR 97.4% Neonates No No Indian
R. Singh and H. Om [49] LBP-Gaussian level 86.9 % Neonates No No Indian
R Singh and H Om [8] SURF 92.1% Neonates No No Indian
Himanshu et al. [7] SDAE 78.5% Neonates No No Indian
Tiwari et al. [47] PCA, FLDA 80.0% Neonates No No Indian
Bharadwaj et al [48] LBP 96.9% Neonates No No Indian
Our proposed algorithm NFAR 98.5 (0°%) Neonates Yes Yes Chinese
TABLE 4. Comparison of the well-known existing face and its attributes detection algorithms with NFAR on our database.
i ) 0/ 0
Ada-Boost (%) LBP (%) Pose Detection (0%%) "I B Detection o
Se Ac Sp Se  Ac Sp Se Ac Sp Se Ac Sp Se Ac Sp
Face 35 35 34 36 36 35 607 62.8 67.0 99 99.8 95.8 98.7 95.7 98.5
Eye No No No No No No 610 62.1 64.9 No No No 96.3 96.1 96.3
nose No No No No No No 575 59.0 63.4 No No No 96.4 96.1 96.7
Mouth No No No No No No 638 63.9 64.1 No No No 96.8 96.1 97.1

for tree mixture (pose estimation) model to recognize the
face and its attributes location precisely. This is also the
main reason why the proposed algorithm can only detect
face and facial attributes within 45° to —45°. In Table 2,
slight variations can be observed at different pose angles
for attributes detection between +45°. It is because while
data collection few neonates were fed with nipple (as shown
in Fig. 17) by the pediatricians to comfort them, which may
result in slightly less/higher identification results for one
pose to another. Overall, our proposed algorithm is quite
robust, with overall detection and recognition rates is less the
1 seconds approx. for single frame using Dell precision Tower
7910(Intel Xeon(R) CPU E5-2687W v4 @ 3.00GHz x 24)
with Nvidia 1080Ti Graphics card.

V1. DISCUSSION

In this study, we aim to detect and recognized the neona-
tal facial region along with the face pose and its attributes
recognition. Our proposed NFAR framework combines
intensity-based, pose estimation, and FFS shows promising
statistical results to recognize the neonates and its features.
The advantage of using the NFAR approach acts as an aided
tool to improve the recognition accuracy of the individual
algorithm followed by the FFS for neonate’s facial attributes
recognition. Results show that when we use raw video frames
directly for pose estimation and FFS, we ended up with more
number of FN and FP.

Furthermore, previous research has been done on neonatal
face detection [44] for different applications, e.g., to avoid
babies swapping, and kidnapping [46], etc. using a hier-
archical combination of various image processing algo-
rithms. Table. 3 depicts the comparison of our proposed
approach with the existing works. In the existing works,
the accuracy for face detection ranges from 78.5% to 97.4%.

VOLUME 8, 2020

Tiwari et al. [46], Bharadwaj et al. [47] and Singh and
Om [48] conducted preliminary studies on neonates face
recognition with the dedicated propose to avoid newborn
swapping and abduction. Singh and Om [15] achieved the
accuracy of 97.4% to detect the neonatal face. However, most
of these studies can only detect face instead of recognizing
pose or facial attributes. The main goal of existing works is
to recognize the neonate’s face and detect the discriminative
features that could help them differentiate newborns from one
another. In contrast, this paper provides an efficient method to
discriminate the face and facial attributes effectively. Exper-
imental results reveal that the proposed method outperforms
the state-of-the-art methods.

In comparison with widely used algorithms, e.g., Local
Binary Pattern (LBP) [48], Principal Component Analy-
sis (PCA) [46], Speed Up Robust Feature (SURF) [6],
Stacked Denoising Autoencoder (SDAE) [5], and pose esti-
mation [44], we analyzed our neonatal dataset on differ-
ent face detection and recognition algorithms. Table. 4
shows the performance comparison of our proposed method
with the existing face recognition algorithms on the same
database. The results depict that Ada-boost and LBP don’t
show promising results for neonatal face detection; how-
ever, intensity-based detection shows quite promising results
to detect neonate’s face, but it won’t be able to recognize
baby’s facial features. Pose detection performs reasonably
well to detect infant face and its features, but statistical
results are still not reassuring as compared to our proposed
algorithms (FAR). The main reason for these well-known
algorithms doesn’t perform well for infant’s video frames
is that the facial features are quite minute as compared to
an adult where facial characteristics, e.g., eyes, lips, and
nose, are pretty mature. Secondly, the existing classifica-
tion model e.g., RetinaFace [49], FaceBox [50] etc., for
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attributes detection and recognition was trained on adult
image datasets. The training of new classifiers from scratch
using current algorithms with a smaller face and its attributes
size could be helpful to detect the neonate’s face and its
features.

Although the results of the neonatal facial and its attributes
recognition by our proposed approach are quite promising,
the method can still be enhanced. Currently, the pose estima-
tion model is able to estimates pose varies from (—90°, 90°).
However, as the face moves either toward left or right,
it becomes less robust. Thus, in this paper, the pose variation
is limited to (—45°, 45°). Moreover, at present, the pro-
posed algorithm was tested on 19 neonates of the Chinese
ethnics group. To validate the robustness and reliability of
our proposed approach, more data collection will be per-
formed. Furthermore, current research is mainly focused on
the neonatal facial and its attributes recognition. Our future
aim is to analyze the facial region and its attributes recognize
by our proposed method to designed an unobtrusive neona-
tal behavioral and abnormalities (such as epilepsy, seizure,
sleep staging, etc., recognition system to ensure a more
comfortable fully non-contact monitoring with no disruption
at all for newly born babies by analyzing the variation in
facial motor neuron using biomedical image processing. This
study will be extended to unobtrusive neonatal monitoring,
which can act as an aided tool to help pediatrician to pre-
dict and diagnose abnormalities, e.g., sleep disorders, seizure
detection.

VII. CONCLUSION

Neonatal facial recognition is one of the complex and chal-
lenging areas of research in computer vision due to minia-
ture facial structure and inaccessibility to newly born babies.
In this paper, a novel NFAR framework for neonatal face
detection and its attributes recognition by the Coalesce of
the intensity-based detection, pose estimation, and dedicated
novel facial attributes recognition algorithm named FFS is
proposed. Intensity-based detection and pose estimation act
as the face and pose detector. FFS is designed for face
attributes recognition. Results exhibit that using intensity-
based detection independently shows better statistical results
in face detection as compared to other facial detection algo-
rithms. However, they won’t provide the pose angle and
attributes recognition information. In contrast, the proposed
NFAR algorithms achieve favorable results with detailed
facial attributes recognition. The sensitivity, accuracy, and
specificity of the proposed approach for neonate face detec-
tion can reach 98.7%, 98.5%, and 95.7% respectively from
the frontal side. The accuracy of the FFS can also achieve
over 96%. In the future work, the pose detection algorithm
will be upgraded to detect face and its feature along with
pose information with higher statistical values, especially for
brisk facial movement detection. Meanwhile, instead of using
a single camera, multiple cameras could be used to generate
a 3D-neonatal facial pattern to analyze and absorbed minor
changes in neonate’s motor neurons. Moreover, at present,
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the proposed algorithm was tested on neonates. To vali-
date the robustness and reliability of our proposed approach,
in future, our proposed framework will be tested/validated
on adult’s database. Our research work has the potential for
unobtrusive neonatal behavioral and abnormalities recogni-
tion to monitor events such as epilepsy, seizure, sleep staging,
etc. in a way of being more comfortable, fully non-contact,
with no disruption for neonate’s development by analyzing
facial variations.
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