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ABSTRACT The use of cloud services that process privacy-sensitive information such as digital banking,
pervasive healthcare, smart home applications requires an implicit continuous authentication solution, which
will make these systems less vulnerable to the spoofing attacks. Physiological signals can be used for
continuous authentication due to their uniqueness. Ubiquitous wrist-worn wearable devices are equipped
with photoplethysmogram sensors, which enable us to extract heart rate variability (HRV) features. In this
study, we show that these devices can be used for continuous physiological authentication for enhancing the
security of the cloud, edge services, and IoT devices. A system that is suitable for the smartband framework
comes with new challenges such as relatively low signal quality and artifacts due to placement, which were
not encountered in full lead electrocardiogram systems. After the artifact removal, cleaned physiological
signals are fed to themachine learning algorithms. In order to train ourmachine learningmodels, we collected
physiological data using off-the-shelf smartbands and smartwatches in a real-life event. By applying a
minimum quality threshold, we achieved a 3.96% Equal Error Rate. Performance evaluation shows that
HRV is a strong candidate for continuous unobtrusive implicit physiological authentication.

INDEX TERMS Smartband, smartwatch, heart rate variability, continuous authentication.

I. INTRODUCTION
Implicit continuous authentication is required for cloud-
oriented services that grant access to the privacy-sensitive
information domains such as mobile banking, pervasive
healthcare [1], [2]. Smartphones, computers, smartwatches,
and Internet-of-Things (IoT) devices becomemore dependent
on these services. It is expected that the number of IoT devices
will be more than 75 Billion in 2025 [3]. However, these
services are vulnerable to attacks once users authenticate.
For example, a smartphone can be forgotten logged-in the
privacy-sensitive services and information can be stolen by
the attackers. A straightforward mechanism can be asking a
password to the user frequently. However, this is not very
pleasant for service users. Continuous authentication should
be implicit. Face-based systems can be tricked by using
presence attacks, such as printing the face of the victim on
a paper. Storing the face pictures of the users also create
a privacy concern [4]. Furthermore, fingerprint, which is
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another prominent traditional biometrics modality along with
the face-based systems, can be easily manipulated [5] and
fails on liveness detection tests. On the other hand, biosignals
are difficult to temper with, and they inherently have liveness
detection features [6]. Heart activity is unique to individuals
and biosignal authentication research has started investigat-
ing this signal [6]. One of the most essential properties of this
signal is the Heart Rate Variability (HRV). Although research
in the past mostly focused on the connection between HRV
and different types of health disorders [7], the validity of
using HRV for biometric recognition is supported by the fact
that the physiological and geometrical differences of the heart
in different individuals display certain uniqueness in their
HRV features [8].

High-end wearable systems are expensive and provide low
comfort for the users, which limit their wide range applica-
tion. Recently, smart bands and smartwatches became widely
adopted by consumers. These devices are equipped with a
rich set of sensors such as accelerometer, heart rate monitor,
and skin conductance. These advances create an opportu-
nity to build a continuous implicit authentication system.
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However, these devices are prone to activity-related errors
[9], unlike full lead ECG systems. Modality specific artifact
detection and removal mechanisms should be developed for
accurate measurements. A solution suitable for IoT con-
nected devices should be context-independent because every
service may require different types of behavior. Therefore,
systems that only work in certain scenarios, such as while
typing or walking, are very limited in terms of the application
area. The physiological parameters like hidden heart-related
biometrics are more suitable for this purpose due to their
uniqueness and activity independence [10], [11]. We propose
an unobtrusive, low cost, activity-independent continuous
authentication system with smartbands. We implemented our
solution on Empatica E4 Smartband [12], Samsung Gear S,
and Gear S2 [13], which are equipped with a photoplethys-
mography (PPG) sensor.

Let’s think about a scenario, where John has to make
money transactions through a mobile banking smartphone
application. He logins to the system via two-factor authenti-
cation. After he successfully makes the transaction, he forgets
to logout. Then, an attacker withdraws all the cash from
John’s account by using his session. If John has a continu-
ous biometric authentication system, he would not have this
problem. Such a system can be also used in services like city
bikes and electric scooter rental services which have become
popular in recent years. The literature on continuous authenti-
cationwith physiological signals gathered from smartbands is
limited. The effectiveness of HRV features derived from PPG
sensors of smartwatches and smartbands is still unknown
for continuous authentication [4]. We show that HRV can
be a promising candidate for biometric authentication. Our
proposed system enhances the state of the art as follows:

• One of the previous studies employed mean heart
rate per minute which requires longer recordings and
achieves approximately five minutes [14]. The proposed
system uses more sophisticated HRV features derived
from inter-beat intervals which are extracted from the
raw PPG sensor data.

• Most of the previous works with smartbands only
focused on continuous authentication while using a lap-
top, a smartphone, an ATM and used lifestyle related
metrics. Our solution is not activity dependent. For
example, a user may use this system during any activity
such as live streaming, on social media, cycling, presen-
tation or working in an office.

• Our solution is comfortable, unobtrusive, seamless and
works without interrupting the ordinary pattern of any
activity.

• Real-life data contains artifacts. We evaluate the effect
of data quality on system performance.

In Section II we provide background information on
the smartwatch framework and heart rate variability.
In Section III, the related work on continuous authentication
and the comparison with our work in terms of its novelty are
presented. In Section IV, we describe the proposed system

for continuous authentication with smartwatches using heart
rate variability. In Section V, we explain the conducted exper-
iment for the proposed system. In Section VI, we provide
the results of our system. In Section VII, we present the
conclusion and future works of our study.

FIGURE 1. Empatica E4, Samsung Gear S2 and Samsung Gear S are
shown in the order.

II. BACKGROUND
A. SMARTBAND FRAMEWORK
Smartbands (some times called wristbands or smartwatches)
are comfortable devices that can be attached to the
wrist or arm. The devices used in this study are shown
in Figure 1. Recently, the battery life of smartbands is
increased to days. For example, the battery life of Empatica
E4 is two days when all sensors are used [12]. The extended
battery life of smartbands enables monitoring physiological
signals gathered from individuals for long periods. Most of
the wristbands are equipped with PPG which is an optically
obtained signal that can be used to detect blood volume
changes in themicrovascular bed of tissue [15]. From the PPG
signal, the time between the beats (RR intervals) can be com-
puted. Most of the modern smartbands provide RR intervals
thanks to their APIs. For example, Samsung smartwatches
use the Tizen framework which has Human Activity Monitor
API to gather the RR intervals. The sampling frequency of
the PPG sensor can vary from 20Hz to 100Hz (64Hz for E4,
100Hz for Samsung Gear Series) in many smartbands. Cubic
spline interpolation is used to detect the beats more accurately
and most of the devices correct the heartbeats by using an
accelerometer sensor for detecting the movements of the
subject. This functionality is available in Tizen and Empatica
API [12]. These devices are also equipped with Bluetooth
and recently NFC chips which enable them to connect to
smartphones, edge and cloud services. These short-range
network interfaces can be used to check if the user is in the
close proximity of the computer they are using. Even though
all of the smartwatches are in consumer grade product form,
Empatica E4 is mainly developed for researchers with their
APIs. The price of the Empatica E4 is higher than Samsung
models.
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B. HEART RATE VARIABILITY
The variability of RR intervals is called HRV [16]. It is a
very important feature for recognition of certain psycholog-
ical, physiological and personal properties of an individual
[16]. In the literature, Kubios [17] is a popular HRV feature
extraction tool to compute the HRV. Non-linear, time domain
and frequency domain features can define the variability of
the heart [17]. The calculation of frequency domain and
time domain features of HRV is computationally effective,
thanks to Fast Fourier Transform (FFT) O(n log n) for fre-
quency domain and O(n) for time-domain features. There
exists smartphone applications that calculate HRV in real
time [18], [19].

III. RELATED WORK
The behavioral and physiological biometrics from the wear-
able devices via sensors have become popular in individual
recognition and authentication models. Some models focus
on biometrics such as face [27], voice [28], fingerprints [29],
[30], electroencephalography (EEG) [31]–[33], ECG [30],
[34], [35] and phonocardiography (PCG), [36]. The contin-
uous authentication field is a fast-growing field, however,
the literature on a system that is not dependent on a certain
type of task is limited. Most of the previous work using phys-
iological signals have been done on laboratory-grade equip-
ment. Some of these sensors are not available in unobtrusive
devices such as smartphones, smartwatches, and smart bands.
On the other hand, fingerprints and face-based authentication
systems can be easily deceived. Authentication with voice has
privacy issues, which requires continuous voice recording of
the environment.

As amethod for recognizing individuals, Elkader et al.[20]
presented a sensor-based motion biometric model that is
suitable for 20 sedentary and non-sedentary activities (Vac-
uuming, Sweeping, Walking Downstairs, Walking Upstairs,
Dusting, Iron Cloth, Folding Cloth, Washing Hands, Brush-
ing Teeth, Washing Dishes, Washing Vegetables, Dicing,
Peeling Vegetables, Grating, Stirring, Watching TV, Using
PC, Talking on Phone Texting on Phone, Writing with Pen).
They used different combinations of 3 sensors (accelera-
tion, gyroscope and magnetometer sensors) on 6 different
body positions (dominant wrist, dominant upper arm, non-
dominant wrist, chest, thigh, and ankle positions). They
concluded that features extracted from the combination of
six sensors reach the best classification accuracy in overall
(98.3%). These activities are gathered in a laboratory environ-
ment with manual segmentation of the signals. Bao et al. [37]
examined the heart rate variability features gathered from
body area sensor network based PPG device by applying
hamming distance. They collected data from 12 subjects in
a stationary position.

Another approach for implicit identification and authen-
tication based on activity information, WearAI, Zeng et al.
[21], proposed a biometric model that utilizes accelerometer
and gyroscope sensors from five body locations such as left

FIGURE 2. The system diagram of our proposed solution.

FIGURE 3. Our proposed solution continuously authenticate the user by
processing the RR intervals coming from the smartband.

wrist (Shimmer 6DoF IMU), right ankle (Shimmer 6DoF
IMU), center right hip/torso (Samsung Galaxy S4 i9500),
left thigh/front pocket (Samsung Galaxy Nexus i9250), right
upper arm (Samsung Galaxy Nexus i9250)). They achieved
97% accuracy with less than 1% false-positive rate. However,
in both methods, placing many sensors on the body can be
disturbing for the user in daily life usage.

Acar et al. [38] used smartwatches with keystroke dynam-
ics for continuous authentication. Musale et al. [25] pro-
posed a continuous authentication system based on Motorola
360 Sport by using accelerometer and gyroscope features.
Vhaduri and Poellabauer [22] proposed continuous user
authentication scheme that uses 44 features extracted from
various biometrics (calorie burn, metabolic equivalent of task
(MET), heart rate and step count) using Fitbit Charge HR
device and they achieved average accuracy of 87.37% with
Quadratic SVM classifier in one-to-many approach and aver-
age accuracy of 93% with Quadratic SVM classifier in one-
to-one approach. In their revised scheme [14], they adopted
more features (65) with different feature selection approaches
and 93% (sedentary) and 90% (non-sedentary) with equal
error rates of 5% is obtained. However, the Fitbit framework
only provides only one sample each minute and access to the
raw data is not possible. A system for continuous authentica-
tion with physiological signals should be low-cost and unob-
trusive, and should not be dependent on certain activity for the
sake of universality. We compared the proposed system with
the related work in Table 1 in terms of device and device posi-
tion, features, unobtrusiveness, environment, and dependency
to the activity type. Our system outperforms other studies
when feature engineering complexity, activity independence
and unobtrusiveness are taken into consideration.

IV. PROPOSED SYSTEM
In this section, we explain our continuous authentication
scheme. In Figure 2, we show the data collection applica-
tion, preprocessing for artifact detection, feature extraction,
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TABLE 1. Previous works on continuous authentication.

feature selection and classification units of our system. The
overall multi-factor authentication diagram where a user ini-
tiates his/her session with a password, or fingerprint, is shown
in Figure 3.

A. DATA COLLECTION APPLICATION
We developed a data collection application in TizenWearable
API 2.2 [39] for Samsung Gear S and S2. The firmware for
Samsung Gear S is R750XXU1BNJ7 and for Samsung Gear
S2 is R732XXU2AOJ3. Some firmwares may not support RR
intervals. The application collects inter-beat intervals and 3D
accelerometer data and stores them as downloadable comma-
separated values (CSV files). Empatica E4 has a cloud based
data collection application. The physiological signals can
be downloaded as a CSV file. The gathered RR intervals

from two different participants are shown in Figure 6. The
sampling frequency of PPG sensor in Samsung Gear s and
Samsung Gear S2 is 100Hz [39]. Empatica E4 PPG sensor
provides 64Hz sampling frequency [12].

B. PREPROCESSING AND ARTIFACT REMOVAL
We implemented our preprocessing module in MATLAB
[40]. First, we loaded the CSV file provided from the smart-
bands. The signal is segmented into non-overlapping time
windows of 120 seconds. According to the HRV guidelines,
2 minutes is the minimum window length for calculation
of short-term HRV features [16]. Since response time is
important for a continuous authentication system, we selected
the minimum possible duration. Therefore, the minimum
required duration of physiological data for authentication is
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FIGURE 4. The preprocessing method for artifact detection is explained.
Interpolation option is selected over time and sample constraints and
selected path is highlighted in yellow.

2 minutes. The artifacts in the RR intervals are detected
by checking the difference between the consecutive points.
We labeled the points exceeding more than 20% of the local
average of consecutive 3 beats as artifacts, and the other
points as the validated RR intervals, this threshold is selected
from the previous works [41]. The points labeled as artifacts
are deleted. After the removal, we implemented two different
techniques. The first one is to interpolate the missing data
points using a cubic spline interpolation algorithm which is
commonly used [17]. The second technique is to apply the
minimum consecutive time and sample constraints on the
remaining data to be regarded as meaningful. For example,
if the minimum sample constraint is set to 5, we do not count
three consecutive samples followed by a missing data point
because the sequence is too short to be evaluated. In this
study, we applied the former technique because it achieved
better results [9]. The diagram of the preprocessing technique
is shown in Figure 4.

C. FEATURE EXTRACTION
We extracted time and frequency domain heart rate variability
features from the segmented time windows. We used Marcus
Volmer’s toolbox [42] which is implemented in MATLAB.
We selected the features which are commonly used in the pre-
vious works related to heart rate variability [9], [41] and [43].
In order to compute the frequency domain features, the RR
intervals are interpolated using 4Hz cubic spline interpola-
tion, because RR intervals are unevenly sampled. We applied
FFT (O(n log n)) to the interpolated windows. FFT is used
to compute the discreate fourier transfrom (DFT). The DFT
is obtained by decomposing a sequence of values into com-
ponents of different frequencies. The computed features are
shown in Table 2. The total number of extracted features is
11 for each window. For further references for HRV features
we encourage readers to read [16]. These features are com-
monly used in HRV based applications in many domains [6],
[19], [44], [44]–[47].

D. FEATURE SELECTION
We applied correlation-based feature selection (CBFS) which
is implemented in Weka toolkit [48]. The importance of the
features are shown in Figure 7. We report the best results
gathered from feature selection. We conducted experiments
1 to 11 features. We achieved best results with 11 features.

TABLE 2. Heart rate variability features and their definitions.

FIGURE 5. The image of working data collection application developed
for Samsung Gear smartwatches on Tizen Wearable 2.2 API.

E. HANDLING CLASS IMBALANCE
Since some of the windows are deleted due to improper
placement of the devices or heavy movements. There is a
class imbalance between participants. We applied the major-
ity class subsampling to equalize the number of windows for
each participant. This method is the most commonly used one
in the literature [49].

F. MACHINE LEARNING
We used the machine learning classifiers shown below;

• k-Nearest Neighbour (kNN) is a lazy-instance based
classifier, it computes the distance of an instance to the
training feature space, by using plurality voting assigns
class membership [50].

• Random Forest (RF) constructs a multitude of decision
trees at training time and outputting the class by com-
puting the mode of the classes [51].

• Multi-Layer Perceptron (MLP) is a neural network
classifier, by using backpropagation learns to classify
instances [52].
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FIGURE 6. The RR intervals gathered from two participants using
Samsung Gear S. The difference can be seen by looking at the raw signals.

FIGURE 7. Features listed in order of importance based on
correlation-based feature selection.

• Logistic regression is a classification algorithm used to
assign observations to a discrete set of classes [52].

• N Naive Bayes is a classifier which uses the Bayes
Theorem. It predicts membership probabilities for each
class such as the probability that given record or data
point belongs to a particular class. The class with the
highest probability is considered as the most likely
class [53].

The implementation of the classifiers which are available in
the Weka Machine Learning software [48].

We fine tuned the parameters for different classifiers. The
best performing feature set are as follows: N selected as 3 for
the kNN, the number of trees is selected as 100 for the random
forest and the hidden layer is selected as 1 and hidden unit
as 5 for the MLP as shown in Figure 8. We created a binary
authentication model for each user. The selected user’s label
is set to 1 and others as 0.

We applied 10 fold stratified cross-validation (the distri-
bution of class labels are equal in each fold) for evaluating
our system and fine tuned the parameters where 90% of the
dataset is used for training and the rest is used for testingv
by changing the folds. In order to evaluate the effect of
more challenging train/test splits, we furthermore divided the
dataset to 70% training and 30% test sets.

G. EVALUATION METRICS
In order to present the results of our authentication system,
we provide the performance metrics used in the literature [8],
[14], [20], [21], [36] . In authentication systems, there are
two types of error which are False Acceptance Rate (FAR)

FIGURE 8. The MLP model used in the proposed system. The number of
hidden unit is 5.

and False Rejection Rate (FRR). These errors are depend on
selection of the threshold which can be between 0 and 1 for
the ML classifiers. A smaller value will cause a low FAR
but high FRR. The point of equilibrium is important for such
a system. This point is called Equal Error Rate (EER). The
definitions are provided below:

• False Acceptance Rate (FAR): It is the ratio of false
acceptance divided by the total attempts.

• False Rejection Rate (FRR): It is the ratio of denied
legitimate attempts to the total number of attempts.

• Equal Error Rate (EER): The common value when FRR
and FAR are equal, is called EER [54].

V. DATA COLLECTION
In this section, we describe the data collection in real life
and the ethics procedure. We collected physiological data
from 28 people in controlled real-life settings, during a sum-
mer school for teachers. All of the participants are healthy
teachers who have no prior medical condition. Before the
data collection, subjects received and filled a consent. The
gender of participants are 16 male and 12 female, the ages
are between 25 and 35. The data collection procedure is
shown in Figure 9. The duration of the total data collection is
110 minutes. The dataset has a baseline (20 minutes), lecture
(40 minutes), free-time (10 minutes), examination (20 min-
utes) and recovery session (20 minutes). We did not use the
free-time session which might create a bias on the results.
The reason that we had these different scenarios is to create a
daily life sequence. A system should take different emotional
states into consideration, because HRV can be affected by
valance and arousal. During the free-time participants were
allowed to take a break from the lecture. We applied our
implementation of Trier Social Stress Test [55] (TSST) which
is frequently used for inducing stress. We selected questions
from the mathematics Olympics (which is very hard for the
normal population). We told the subjects that this is a test
for measuring their intelligence, and we said that a moderate
person achieves at least a 75% score. Subjects participated in
every session and they did not know the objective of the study.
The physiological data is gathered with different brands of
commercial smartwatches (8 Empatica E4, 3 Samsung Gear
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FIGURE 9. Data collection procedure for the physiological continuous authentication system. The
experiment is started at 10:00 AM.

FIGURE 10. The change of EER metric with respect to minimum quality
thresholds. Best achieved EER is 3.96%.

S and 17 Samsung Gear S2). The total size of the dataset
is 1.17GB. Each window is 2 minutes. The total number of
subjects is 28. We recorded 110 minutes length sessions for
each participant. The number of RR-intervals varies for each
participant. The average number of RR-intervals is 7840.
Ethics: The procedure of the methodology used in this

study is approved by the Institutional Review Board for
Research with Human Subjects of Bogaziçi University with
the approval number 2018/16. Prior to the data acquisition,
each participant received a consent form which explains the
experimental procedure and its benefits and implications to
both the society and the subject. The procedure was also
explained vocally to the subject. The data collection proce-
dure and all of the interventions in this research fully meet
the 1964 Declaration of Helsinki [56]. The data is stored
anonymously.

VI. EXPERIMENTAL RESULTS AND DISCUSSION
We examined the results in two different subsections. In the
first one, we presented and evaluated the authentication
results of different devices and the whole system perfor-
mance. In the second part, by applying a signal data quality
filter, we improved the performance of the system.

A. EFFECT OF DEVICE TYPE ON THE BIOMETRIC
AUTHENTICATION PERFORMANCE
EER results for all 28 subjects are given in Table 3. These
results are calculated by one vs. all tests for all subjects.
Average EER results for four different classifiers are pre-
sented in Table 4. We also added the device type and average
data quality columns to this table. Data quality presents the
non-interpolated percentage of the data after the removal
of artifacts. As an example, if the average data quality is

TABLE 3. The EER metrics of each participant with different classifiers.
The average quality is the ratio of the deleted RR interval artifacts to the
total number of RR intervals.

TABLE 4. Authentication performance results, EER values of Empatica E4,
Samsung Gear S and Samsung Gear S2 are presented. The test/train split
is 90% for test set, and 10% for training set.

70%, the remaining 30% of the data is interpolated. Data
quality along with the device type affects the EER results
significantly (see Figure 10). We achieved the best perfor-
mance with Gear S as 98.48% and 3.96% EER. This might
be due to low sample size. The selection of classifier has
also an important effect on the EER results. For example,
Empatica E4 achieves 19.43% EER with kNN and 6.77%
with RF classifier. The best classifier is selected as RF in
terms of EER. Design of the watch strap as shown in Figure 1,
PPG sensor quality, built-in processing algorithms of devices
might be the factors for the difference in EER results.

B. EFFECT OF DATA QUALITY CONSTRAINT FILTER
In daily life, seamless wrist-worn devices can get noisy sig-
nals, which drops the quality of the derived features. It is not
possible to collect high-quality data all the time during a day
because of various reasons such as high activity level and
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TABLE 5. Authentication performance results, EER values of Empatica E4,
Samsung Gear S and Samsung Gear S2 are presented. The test/train split
is 70% for test set, and 30% for training set.

improper use of smartwatches. After observing that the data
quality has a major effect on the authentication performance,
we applied a data quality constraint on our data. Suppose
that the data quality of a device is 50%. This means that
the other half of the data is obtained by synthetic cubic
interpolation data. Therefore, we expect that when the data
is compared with other participants’ data, it could not be
discriminated, because it lost most of the unique character-
istics of the PPG data. In Figure 10, we evaluated the effect
of a quality threshold on EER. As we investigate the EER
results of different device types, Samsung Gear S gives the
smallest error rate 3.796% when compared to Empatica E4
(6.77%) and SamsungGear S2 (13.66%) in low data qualities.
As the quality increases, while the error rates of Samsung
Gear S (2.67%) and Empatica E4 (4.4%) decrease at 95%
quality threshold, Samsung Gear S2 is unable to show the
same progress and eventually reaches 18.557% equal error
rate. None of the windows of Samsung Gear S2 has a higher
than 95% quality. The performance evaluation shows that the
proposed system can effectively authenticate with small and
consistent error rate which makes it reliable.

VII. CONCLUSION
Weproposed a scalable, unobtrusive and seamless continuous
authentication system with commercial grade smartwatches
and smartbands. We showed that HRV gathered from com-
mercial grade smartwatches is a strong candidate for implicit
continuous authentication. We collected physiological data
from 28 participants and demonstrated the EER measures for
each of the participants in a real-life scenario. We proposed
state-of-the art preprocessing for signals coming from real-
life data with artifacts due to the physical construction of
the smartwatches. We achieved promising results by using
our system (4.4% EER with Empatica E4). We showed the
effect of different smartwatches. The selection of the classi-
fier for the proposed system is very important. We applied
feature based signal processing along with machine learning
classifiers (kNN, RF, MLP, Logistic Regression and Naive
Bayes). Even-though, Gear S2 is a newer model of Gear S,
due to its leather strap, the signals coming from the heart
rate monitoring unit contained higher amount of artifacts,
therefore it affects the overall quality of the RR intervals and
the authentication system’s performance. For the authenti-
cation systems based on PPG sensors, sport straps can be a
better choice, as shown in Figure 1. We showed that HRV
can be used for continuous authentication without interrupt-
ing the activity of the user. We applied a signal removal
procedure by using the overall RR interval quality measure,

a higher quality leads to better performance after 80% quality
threshold. The performance of the scheme varies between
individuals. This conclusion is aligned with the literature
[8], [14]. The minimum required amount of recording to
apply our system for authentication is 2 minutes, once that
is satisfied, authentication can be validated in seconds thanks
to the sliding window approach. It logouts the user, once
he/she leaves off the watch. Our system can be implemented
on any wrist-worn device which can provide RR intervals
without a need for the raw PPG. The proposed methodology
can be used with various applications requiring continuous
authentication.

This study also has some limitations. The performance of
the system on the data coming from different days is still
unknown. For a better accuracy assessment larger sample size
is required. The sample coming from the different device
brands are not same. The perception of the stimuli may
affect the HRV metrics. Therefore, this system should be
examined in different conditions in daily life. We halved the
time required the work by the Vhaduri and Poellabauer [14].
However, the required 2 minutes might create problems in
terms of user-friendliness and usability.

As future works, we plan to apply our system completely in
thewild settings withmore participants and longer physiolog-
ical recordings and show the performance of the framework.
All of the evaluations are done in the same context, therefore
in different types of contexts, the system might achieve better
performance. Different types of features coming from other
domains might be useful, for example bispectrum or time-
frequency [57], [58]. Wearable sensors creates new opportu-
nities for authentication systems. Physiological signals that
are easy to acquire can be also examined.
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