
Received February 12, 2020, accepted March 12, 2020, date of publication March 23, 2020, date of current version April 6, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2982500

Efficient Integration of Logical Topology Design
and Survivable Traffic Grooming for Throughput
Enhancement in WDM Optical Networks
ASIMA BHATTACHARYA 1, MALABIKA SARDER 2, MONISH CHATTERJEE 3, (Member, IEEE),
AND DIGANTA SAHA 4
1TEOCO Software Pvt., Ltd., Kolkata 700091, India
2Samsung India Electronics Pvt., Ltd., Noida 201301, India
3Department of Computer Science and Engineering, Asansol Engineering College, Asansol 713305, India
4Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, India

Corresponding author: Monish Chatterjee (monish_chatterjee@yahoo.com)

ABSTRACT Optical networks that employ traffic grooming, merge several low-speed traffic streams onto a
high-speed lightpath. A fiber cut (or a link failure) in such networks can disrupt a large number of lightpaths
and can cause a huge amount of data loss. Designing survivability schemes to make the network withstand
a link failure is thus vital. In this paper we address the problem of survivable traffic grooming in a static
scenario. In a static scenario the primary objective is to maximize throughput with the available network
resources. Since the problem is NP-Complete, we propose an efficient heuristic TATG (Throughput Aware
Traffic Grooming) for the problem. TATG employs an efficient approach of integrating logical topology
design and survivable traffic grooming with heuristics at sub-problem level. Our approach ensures that the
logical topology carrying the traffic always stay connected in the event of a link failure. Time complexity
analysis shows that our heuristic runs in polynomial time. We study two separate forms of survivability in
heuristics TATG-SC (TATG -Survivability at Connection) and TATG-SL (TATG-Survivability at Lightpath)
with three categories of traffic demand. Performance comparison with a well known heuristic shows that the
proposed approach provides much better throughput performance when resources are scarce. The average
percentage decrease in request blocking over all experiments obtained using TATG-SC and TATG-SL is
54.87% and 59.57% respectively.

INDEX TERMS Logical topology, survivability, survivable routing, traffic grooming, throughput aware,
WDM networks.

I. INTRODUCTION
Optical Wavelength Division Multiplexed (WDM) networks
with their huge transmission bandwidth forms the back-
bone network of the Internet [1]. Such networks use optical
communication channels called lightpaths [2] to carry data
in the form of encoded optical signal at a rate of 10 or
even 40 Gbps. Compared to the huge bandwidth of a light-
path OC-768 (10 Gbps to 40 Gbps) in modern networks,
individual requests for connections are typically for data
streams at a much lower data communication rate, of the
order of megabits per second (Mbps) such as OC-3 and
OC-12. This huge mismatch between the capacity of individ-
ual lightpaths and the bandwidth requirements of individual

The associate editor coordinating the review of this manuscript and

approving it for publication was Cristina Rottondi .

traffic demands has led to development of traffic grooming
techniques.

Traffic grooming techniques in WDM networks can be
defined as a group of techniques for combining a number of
low-speed data streams from users, to use the high capacity of
lightpaths as efficiently as possible [3]. The sub-wavelength
connections with their corresponding traffic demands may be
either known in advance or may randomly arrive/depart and
accordingly, traffic grooming is classified as static [26] or
dynamic [10] and there has been considerable interest of the
research community in both of these areas. The lightpaths in
a WDM network can be considered as the edges of a directed
graph G(V , E), where the nodes in V are the end-nodes of
the network. Such a graph is called the logical topology (also
called the virtual topology) of an optical network and the
edges of such a graph are called logical edges [2].

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 58155

https://orcid.org/0000-0002-1791-0372
https://orcid.org/0000-0001-5614-6306
https://orcid.org/0000-0002-6304-6976
https://orcid.org/0000-0002-1416-2241
https://orcid.org/0000-0002-9867-1093

A. Bhattacharya et al.: Efficient Integration of Logical Topology Design and STG

Establishment of a lightpath involves considerable cost.
This is because not only a transmitter at the source and a
receiver at the destination are required, but a wavelength
or WDM channel is consumed in every fiber link in the
lightpath route. But since a lightpath offers huge bandwidth,
it is important to utilize the bandwidth offered by the existing
logical topology G(V , E) as efficiently as possible. Thus
for a new request for connection with traffic demand t from
source s to destination d , a search may be initiated to find a
sequence of logical edges (lightpaths having sufficient capac-
ity to accommodate demand t), connecting s and d . If such a
directed path is found then the demand t can be routed over
it. Such a directed path will be called a logical path from s to
d in G. It may be noted that logical paths can be single-hop
or multi-hop.

The traffic-grooming problem has the following four sub-
problems, which are not necessarily independent [4]. Any
solution to the problem must be able to efficiently address
all of these.

a) Topology Design sub-problem: Determine the logical
topology consisting of lightpaths for the given set of traffic
demands,

b) Routing sub-problem:Determine the route of each light-
path by routing over the physical topology,

c) Wavelength Assignment sub-problem: Assign a chan-
nel (wavelength) in each link traversed by the lightpath route
in the physical topology and

d) Traffic Routing sub-problem: Route the traffic over the
logical topology i.e. make a choice of the logical path to use
for each user traffic stream in a way that the total load of
each edge in the logical path does not exceed the capacity
of a lightpath.

Since it is extremely important to efficiently utilize the
bandwidth offered by a lightpath, the problem of traffic
grooming [3]–[5], [10]–[15], [17]–[19] and [21]–[28] has
attracted a lot of research interest. Since a lightpath in a
traffic-groomed optical network carries huge amount of data
and 100 ormore lightpathsmay traverse a fiber, the disruption
of this traffic due to a fiber cut (link failure), even for a
short period of time is a serious event. Consequently some
of the works have extended the problem of traffic grooming,
by addressing the joint problem of survivable network design
and traffic grooming [6], [8], [16], [20] and [24] known as
the survivable traffic grooming (STG) problem. The traffic
grooming problem is known to be NP-complete [5] and
consequently the problem of STG remains NP-complete [6].
Thus researchers over the years have proposed heuristic solu-
tions to the problem of traffic grooming with or without
survivability.

Since networks resources are scarce, it is necessary that
any heuristic solution to the traffic grooming problem with
or without survivability must minimize the use of these
resources. Consequently the objective of [10] and [17] is to
minimize the number of transceivers (alternatively the num-
ber of lightpaths), the objective of [19] and [22] is tominimize
the number of transceivers and the number of wavelengths,

the objective of [5], [11] and [14] is to minimize electronic
switching cost and the objective of [15] is to minimize the use
of Add Drop Multiplexers (ADMs). The work [4] addresses
minimizing of lightpaths, minimizing of wavelengths used
and minimizing the number of traffic hops (delay), each
through a separate heuristic. Given a specified number of
resources, the works [6], [8], [12], [13] and [24] studies the
problem of maximizing the number of accommodated traffic
demands or throughput maximization.

Traffic grooming may be carried out using the bifurcated
model adopted in [27] or the non-bifurcated model adopted
in [4], [8] and [24]. In the non-bifurcated model each user
traffic stream is routed over a single logical path. Thus in the
non-bifurcated model the traffic demand corresponding to a
user request becomes part of the total load of each lightpath
in the selected logical path from its source to its destination.
In the bifurcated model, the traffic stream corresponding to
any request is divided into a number of data streams, each
having lower data rates than that of the original traffic stream,
and each data stream is carried by a distinct logical path from
source to destination.

The bifurcated model is more resource efficient, but
the non-bifurcated model provides many technical advan-
tages [3], [8] and [24]. In our work, we do not consider split-
ting of traffic demands as most of the works on STG use the
non-bifurcated model. Also a recent study [28] finds that if a
lightpath carries a large amount of fine-granularity demands
each with a very small wavelength fraction, the number of
(de)-multiplexing ports increases considerably. We use the
non-bifurcated model of traffic grooming in static traffic
environment.

Due to negligibly small probability of the presence of
multiple failures, most work on faults assumes that there can
be only a single fault in the network [2], [8] and [24]. In this
paper we focus on single link fault, the most common type of
fault. The standard way of ensuring survivability from single
link failure is to employ dedicated path protection (DPP)
or shared path protection (SPP) [2]. If DPP is employed
then for every working path, network resources are reserved
in advance for a link disjoint backup path and no resource
sharing is allowed among the idle backup paths. In SPP
however, two or more backup paths are allowed to share
network resources if and only if the corresponding working
paths are mutually link disjoint, making SPP more resource
efficient than DPP. Since survivable network design involves
idle reservation of resources, it is customary for any scheme
of survivability to minimize the use of network resources to
the extent possible.

Another way of addressing survivability can be accom-
plished through the notion of survivable routing of logical
topologies introduced in [7]. In this scheme, routing and
wavelength assignment (RWA) of lightpaths are performed
in a manner that the logical topology stays connected after
any arbitrary single link failure. However, the work [7] does
not consider routing of sub-wavelength traffic and so even
if a survivable routing of the logical topology exists, there

58156 VOLUME 8, 2020

A. Bhattacharya et al.: Efficient Integration of Logical Topology Design and STG

is no assurance that existing logical topology will be able
to support the required traffic. The authors in [8] and [24]
enhanced this concept by introducing the traffic routing phase
and propose the complete and combined problem of STG
and logical topology design (LTD). We shall refer to the
scheme in [24] which is an extension of the work [8] as
STGLTD. Results in [24] show that STGLTD requires much
lesser number of lightpaths and wavelengths than schemes
such as [6], which use DPP and SPP for solving the said
problem, suggesting STGLTD to be more resource efficient.

We use STGLTD to present a scheme of survivable net-
work design that does not employ a backup path for every
working path as in DPP or SPP. Our scheme is designed
to achieve significant resource saving. This is because the
logical topology is augmented with an additional lightpath if
and only if the existing capacity of logical topology is unable
to support the traffic stream of a connection, disrupted due
to a link failure. Minimization of use of WDM channels or
wavelengths can significantly improve the performance of
any traffic grooming scheme [4], [19] and [22]. Our heuristic
not only minimizes the number of wavelengths used per
link to the extent possible, it also attempts to minimize the
number of wavelengths in lightpath routes while restricting
the number of traffic hops (delay) to the extent possible.
To the best of our knowledge few heuristics for STG available
in the literature have taken into consideration all the above
mentioned parameters to address the problem.

We use the non-bifurcated model of traffic grooming in
static traffic environment. We address STG of unicast traffic
demands [6], [8], [16], [20] and [24] and not many-to-many
traffic grooming [17], [19] and [22]. We propose both forms
of survivability for our heuristic i.e. survivability at connec-
tion level and survivability at lightpath level. To the best of
our knowledge few heuristics for STG available in the liter-
ature have taken into consideration all the above mentioned
parameters to address the problem.

The rest of the paper is organized as follows. In sec II we
provide a broad review of the previous works, in sec III we
illustrate why a decision between single-hop and multi-hop
grooming is important for STG, in sec IV we include our
contributions, in sec V we provide the heuristic solution to
the STG problem, in sec VI we provide the two forms of
survivability studied in this work, in sec VII we analyze the
time complexity of the proposed heuristic algorithm, in sec
VIII we provide the performance comparisons and analyze
our results and finally we present our conclusions in sec IX.

II. REVIEW WORK
There has been a great deal of research interest to study
the problem of traffic grooming in optical WDM networks
with or without survivability lately. An auxiliary graph model
to address traffic grooming in heterogeneous networks (net-
works with nodes having variable number of transceivers,
variable wavelength conversion capability and grooming
capabilities and variable number of wavelengths in links) is
proposed in [4] and the work also proposes three grooming

policies for the network operator. The first one tries to min-
imize the number of lightpaths, the second tries to minimize
the number of wavelength-links and the third tries to mini-
mize the number of traffic hops. The authors [5] prove that the
problem of minimizing switching cost in path networks dur-
ing traffic grooming is NP-complete. The authors [6] propose
heuristics for maximizing throughput during STG employing
dedicated path protection and shared path protection with
survivability at connection level in WDM mesh networks.

The problem of STG and the logical topology design
problem are combined in [8] and [24] to design a scheme
for grooming survivable traffic using much lesser number of
backup paths than schemes that employ path protection. The
authors further propose a heuristics for maximizing the traffic
carried by the surviving logical topology. Static and dynamic
versions of the problem, various grooming models and poli-
cies, grooming node architectures and design of grooming
network is presented by authors in [9]. The work [10] propose
a transceiver saving auxiliary graphmodel for dynamic traffic
grooming in WDM mesh networks that can take care of
two constraint: the wavelength constraint and the transceiver
constraint. The traffic-grooming problem in WDM path, star
and tree topologies with the objective of minimizing the
network-wide electronic switching are considered [11].

The authors in [12] consider an alternate approach to
dynamic traffic grooming. They consider designing a static
logical topology in advance and then route randomly arriving
user connections over it for avoiding frequent lightpath setup
and teardown. Two problems are considered: minimizing
resource usage constrained by traffic blocking requirements
and maximize performance constrained by given resources.
The problem of traffic grooming with the objective of max-
imizing the number of accommodated traffic demands in
SONET/WDM networks with a given number of ADMs is
addressed in [13]. The authors first prove that the problem is
NP-hard and then propose an approximation algorithm for the
problem. A transparent Wavelength Routing Switch (WRS)
architecture named G+ is proposed in [14] that allow aggre-
gation of traffic en-route over existing optical routes without
undergoing expensive optical-electrical-optical (OEO) con-
versions. The authors propose optical routes called ‘‘light-
tours’’ such that traffic demands can partially use optical
routes to reach their destination.

The problem of traffic grooming is addressed in [15]
by considering a Min-Max optimization problem where the
objective is to minimize the number of ADMs at the network
node where the number of required SADMs is maximum
over all nodes. Two dynamic restoration schemes for STG
in WDM mesh networks that improve blocking probability
and restoration performance are proposed in [16]. Given a
set of many-to-many traffic requests, the work [17] addresses
the problem of minimizing the cost of grooming the ses-
sions by minimizing the number of transceivers used and
addresses the problem for both splitting (nodes having optical
splitting capability) and non-splitting networks. Given the
blocking criteria in dynamic traffic grooming, the problem

VOLUME 8, 2020 58157

A. Bhattacharya et al.: Efficient Integration of Logical Topology Design and STG

of determining the minimum resources needed to meet this
criteria is studied in [18]. The authors termed this problem as
resource planning for the dynamic version of the problem.

The problem of designing and provisioning of WDM net-
works formany-to-many traffic grooming is addressed in [19]
with the objective of minimizing the overall network cost (the
number of transceivers and the number of wavelengths used).
Based on different WDM node architectures, the authors pro-
pose four different WDM networks for many-to-many traffic
grooming. A traffic grooming technique that use knowledge
of connection holding times of traffic demands to utilize
resources efficiently is proposed in [20]. The objective of the
work is to design a stable logical topology that can accom-
modate a given set of traffic demands with specified setup
and teardown times. A near optimal solution approach for
multi-hop traffic grooming that takes less time and consumes
lesser memory is proposed very recently [21] using branch-
and-bound technique. The authors [22] study many-to-many
traffic grooming with the objectives of minimizing the num-
ber of lightpaths and the number of wavelengths used and
propose approximation algorithms as the problem is NP-hard.

Two dynamic lightpath rerouting algorithms namely least
resources rerouting algorithm and load balanced rerouting
algorithm that consider alternate routing and traffic groom-
ing are proposed in [23] for all-optical networks. The algo-
rithms initiate the rerouting procedure when a connection
leaves and a lightpath is released and the lightpath to be
rerouted is selected according to the respective objectives in
the two algorithms. A new architecture is proposed in [25]
for the optical nodes to support all-optical traffic grooming in
Orthogonal Frequency DivisionMultiplexing (OFDM) based
elastic optical networks. The work [26] proposes a static
grooming policy that tries to reduce congestion on the logi-
cal topology in heterogeneous optical WDM networks. The
work [27] proposes dynamic traffic grooming approaches
which takes into account holding-times of connections and
bandwidth availability. Authors consider splitting of con-
nections into multiple sub-streams and then apply multipath
routing and traffic grooming for better utilization of network
resources.

In WDM networks, traffic demands containing a mix-
ture of coarse and fine granularity can cause poor resource
utilization of lightpaths and an excessive utilization of
(de)-multiplexing ports in waveband switching. For exam-
ple, if a coarse-granularity demand with a near-wavelength
capacity is routed onto a lightpath, it will not be able to
carry other demands on the other hand if a lightpath carries
a large amount of fine-granularity demands each with a very
small wavelength fraction, the number of (de)-multiplexing
ports will increase considerably. The authors [28] call this
gra-diversity problem. Furthermore, due to the large scale of
the backbone, optical network has been divided into multiple
domains to address scalability. The work [28] studies the gra-
diversity problem and proposes a granularity-layered graph to
facilitate traffic partition grooming in mixed granularity and
multi-domain optical networks.

In [29] authors present heuristics for grooming node selec-
tion and dynamic traffic grooming in a scenario where nodes
with grooming capability are sparse. The work [30] proposes
a greedy iterative algorithm for aggregating scheduled traffic
demands onto a lightpath in the electrical domain. A light
trail is a unidirectional bus from a convener node to an end
node. Authors [31] present a study on a number of traffic
grooming strategies that use algorithms, architectures and
schemes that requires a hierarchical structure on the physical
topology. Excess capacity which usually exists in backbone
networks to accommodate traffic fluctuations, can be effi-
ciently managed through pre-provisioning when traffic is
light, by re-provisioning of backup capacity and preventing
the termination of pre-established resources [32].

A dynamic traffic grooming algorithm is proposed recently
in [33] using an auxiliary graph model for fully utilizing the
features of a light trail. The authors [34] recently propose two
heuristics for dynamic traffic grooming of multicast sessions
based on the bin packing method to reduce the number of
wavelengths. In a recent work [35] the authors investigate the
problem of traffic grooming using light trail in elastic optical
and WiMAX networks.

III. DECISION FOR SINGLE-HOP AND
MULTI-HOP GROOMING
The way logical topology is designed during traffic grooming
can considerably affect the transmission delay and resource
consumption. We illustrate this with a suitable example.
Consider the 6-node physical topology shown in Fig.1a. Let
each of the 7 links have a single wavelength channel λ1.
A connection request is of the form ri: (si, di, ti) where si
is the source, di the destination and ti the traffic demand in
OC-n notation. Let C = {r1: (2, 1, OC-12), r2: (1, 3, OC-12),
r3: (2, 3, OC-24), r4: (2, 5, OC-12)} be the set of connection
requests to be served and let the capacity of a lightpath be
OC-48.

The request r1: (2, 1, OC-12) is served by establishing a
lightpath, routed along the shortest path 2→1 on the physical
topology and using wavelength λ1 in link (2, 1). This light-
path is represented by the directed edge 2→1 (logical edge)
in the logical topology of Fig.1.b. After routing the traffic
OC-12 of r1, the capacity of the logical edge 2→1 is now
OC-36. The request r2: (1, 3, OC-12) is served in a similar
way by establishing a lightpath, routed along the shortest
path 1→3 on the physical topology and using wavelength
λ1 in link (1, 3). This lightpath is shown by the logical edge
1→3 in the logical topology of Fig.1.b. After routing the
traffic OC-12, the capacity of the logical edge 1→3 is now
OC-36.

For the request r3: (2, 3, OC-24), no new lightpath is estab-
lished as a logical path 2→1→3 exits in Fig.1.b with each
logical edge having a capacity of OC-36. So the traffic OC-24
of r3 is routed along the logical path 2→1→3 resulting in
each logical edge 2→1 and 1→3 to have a residual capacity
of OC-12. For the request r4: (2, 5, OC-12), there is no logical
path that connects nodes 2 and 5 and so a new lightpath has

58158 VOLUME 8, 2020

A. Bhattacharya et al.: Efficient Integration of Logical Topology Design and STG

FIGURE 1. (a) Physical topology. (b) Logical topology.

to be established for serving r4. There are two options to
consider.
Option1: A lightpath may be directly established between

2 and 5, by routing along the shortest path 2→4→3→5 (or
2→4→6→5) in the physical topology requiring 3 units of
λ1 and then routing OC-12 of r4 over it. The corresponding
logical edge will then be the dashed 2→5 in Fig.1.b whose
residual capacity will be OC-36. We shall call routes such
as 2→4→3→5 (or 2→4→6→5) in the physical topology
established directly between source and destination as direct
routes.
Option2: A lightpath may be established between nodes

3 and 5, by routing along the shortest path 3→5 in the
physical topology requiring only 1 unit of λ1 and the cor-
responding logical edge will be then the dashed 3→5 in
Fig.1b. The traffic amount OC-12 of r4 can then be routed
over the logical path 2→1→3→5. After routing the traffic,
the logical edges 2→1 and 1→3 will exhaust their capacity
while 3→5 will have a residual capacity of OC-36. We shall
call routes such as 3→5 not directly established between the
source and destination as indirect routes.
If option1 is used then the delay is just of a single hop

but 3 units of λ1 are consumed. However if option2 is used
then there is a delay of 3 hops for the traffic of r4 but a
saving (3 − 1) = 2 units of λ1. So a decision is required
whether to choose a single-hop or a multi-hop path for
routing traffic, keeping in mind the delay on one hand and
the number of resources consumed on the other hand. The
scheme employed in our proposed heuristic for STG, reduces
consumption of wavelengths to the extent possible and on
the other hand also attempts to limit the number of traffic
hops.

IV. OUR CONTRIBUTIONS
Among all the works [3]–[35] that deal with the problem
of traffic grooming, only a few [6], [8], [16], [20], [24]
and [32] have studied the combined problem of traffic

grooming and survivable network design (the STG problem).
The STG problem is significantly important from the network
operator’s perspective but even recent papers [33]–[35] have
addressed traffic grooming without considering survivability.
In this paper we address the problem of STG in a static
scenario.

Resources reserved for backup provisioning, causes net-
work resources to be unavailable during normal fault-free
operation. So any scheme for network survivability must
ensure to minimize the use of network resources as much as
possible. If the connection requests with their corresponding
traffic streams are known in advance, then the objective of
any strategy for STG should be to maximize throughput
(the number of accommodated traffic demands) to the extent
possible with the available number of resources. Since wave-
lengths are considered to be primary resource for lightpath
establishment, throughput can be maximized by minimizing
wavelength consumption.

The work [24] an extension of [8] shows that STGLTD
results in significant resource saving compared to schemes
that employ path protection (DPP and SPP). The heuristic
in [24] is designed to maximize throughput by efficiently
utilizing the bandwidth of the existing logical topology. The
authors however, do not consider employing sub-problem
level heuristic for STGLTD. Further the heuristic in [24] is
designed to address survivability at connection level only.
In this paper we investigate whether the throughput obtained
using STGLTD can be improved upon further by proposing
efficient heuristics at the sub-problem level and by employing
the other form of survivability namely survivability at light-
path level. It must be noted that we do not include any Integer
Linear Program (ILP) formulation for the problem. This is
because an ILP formulation for maximizing the total traffic
groomed is presented in [24]. So we only compare our results
with the optimal values obtained from the ILP. We contribute
by proposing and studying the following.

a) Proposing an efficient heuristic which can save signif-
icant network resources and consequently enhance through-
put. The heuristic saves resources by adding extra lightpath(s)
to the logical topology if and only if the existing capacity of
the logical topology is insufficient to carry additional traffic.

b) Proposing an efficient heuristic RWA strategy for surviv-
able routing of logical topology. The proposed RWA strategy
leads to establishment of lightpaths in a way that reduces the
number of wavelengths consumed in every link to the extent
possible.

c) Proposing an efficient traffic routing strategy that makes
a decision on the choice of logical path whenever an addi-
tional lightpath is to be included in the existing logical topol-
ogy. Our strategy reduces the consumption of wavelengths
to establish new lightpaths with restriction on the number of
traffic hops (delay).

d) Extensively studying the throughput performance of our
heuristic for three different categories of traffic demand and
two types of survivability, namely survivability at connection
and survivability at lightpath.

VOLUME 8, 2020 58159

A. Bhattacharya et al.: Efficient Integration of Logical Topology Design and STG

V. HEURISTIC FOR SURVIVABLE TRAFFIC GROOMING
We present our heuristic TATG (Throughput Aware Traffic
Grooming). In our heuristic, RWA of lightpaths are carried
out in a manner that a single link failure will not be able
to disconnect the logical topology. It must be noted that our
heuristic does not reserve resources for dedicated or shared
backup paths to replace working paths in the event of a link
failure. This saves the setup time and wastage of resources for
backup lightpaths. Our heuristic ensures that the generated
logical topology will always have a survivable routing over
the physical topology.

The proposed heuristic can be thought of as a two-step
method. In the first step, the aim is to generate a logical
topology for supporting the given set of connections under
a fault-free scenario. In the second step, the aim is to perform
a survivable routing of the generated logical topology in a
manner that any single link failure will not cause the network
to be disconnected. This is carried out by considering the
potential failure of each physical link in turn and adding extra
lightpath(s), if and only if the current capacity of the logical
topology due to the failure is not sufficient to accommodate
the disrupted connections. The second step proceeds if and
only if the first step succeeds.

The set of connection requests to be served is sorted in
decreasing order of traffic demand. We use the well-known
FF (First-Fit) wavelength assignment policy for assigning
wavelengths to lightpaths. We assume 1) full-wavelength
conversion capability in nodes, 2) all links to have same
capacity in terms of the number of wavelengths and 3) suf-
ficient number of wavelength converters and transceivers to
be present at the nodes so that no lightpaths block due to
want of these resources. In our scheme connection requests
can get blocked if and only if wavelengths are not available.
Table 1 provides the various notations used in TATG and their
meanings. Given a physical topology GP(VP, EP), a matrix
Cost [1: |EP|] is used where Cost [i] denotes the cost in terms
of the number of wavelengths consumed in link i. Initially
Cost [i] = 0, ∀i, 1 ≤ i ≤ |EP|. A matrix CS [1: |EP|][1: W]
is used to denote the current status of wavelengths in a link.
The value of CS [i][j] can be either 1 or 0 and denotes that
wavelength j is available or not available respectively in link
i. Initially CS [i][j] = 1 ∀i, j, 1 ≤ i ≤ |P|, 1 ≤ j ≤ W . TATG
is run both in a) non-blocking condition i.e. with sufficient
link capacity (sufficient number of wavelengths in links) and
b) blocking conditions i.e. with limited link capacity. We next
describe our heuristic whose details are provided in Fig.2.
Inputs: The inputs are GP, W , Cost, CS.
Outputs: a) In non-blocking conditions the outputs are

the generated survivable logical topology GL(VL , EL), R
and Wmin. b) In blocking conditions, the output is NOS,
the throughput measured as the number of accommodated or
satisfied connections.
Method: The heuristic has access to the global variable C ,

the set of connection requests to be served. Two variables
NOF and NOS are used to record the number of failures
and the number of success respectively. First, the procedure

TABLE 1. Notations used in TATG.

FIGURE 2. Heuristic TATG.

genInitTopology() is used (line 2, Fig.2) to obtain the logical
topology GL and its routing R on the physical topology
generated initially under fault-free conditions. The procedure

58160 VOLUME 8, 2020

A. Bhattacharya et al.: Efficient Integration of Logical Topology Design and STG

also returns success, a Boolean variable whose value indicates
success or failure in creating the initial logical topology. The
procedure also returns the updated CS and Cost.
If success equals FALSE, signifying failure in creating the

logical topology under fault-free condition then the heuristic
proceeds no further. If success equals TRUE, then failure
scenario of each fiber-link e ∈ EP is considered in turn. For
every such failure scenario, the procedure findSurvPaths() is
used (line 6) to obtain the survivable routing of the affected
logical topology to accommodate the disrupted connection
requests. The procedure findSurvPaths() returns the new GL ,
the new R, updated CS, updated Cost and the number of
failures Ncf . These new and updated records are input to the
procedure when the next failure scenario is considered. The
value of Ncf is added to NOF. In non-blocking conditions,
the number of connection failures Ncf returned is always
zero. So in non-blocking condition the value of NOF is 0 and
the heuristic returns GL , R and Wmin. Note that Wmin is the
maximum value of Cost [i] over all 1 ≤ i ≤ |EP|. This value
is obtained using procedure getMax() (line 10). In blocking
condition, the heuristic returns X, X and NOS. Here ‘X’
denotes failure in creating survivable logical topology and its
survivable routing. If success is 0, then the heuristic returns
X, X and X and stops.

We next provide the description of the procedures genInit-
Topology() and findSurvPaths() whose details are provided in
Fig.3 and Fig.4 respectively. The description of these proce-
dures is essential for understanding the strategy used in TATG.

A. PROCEDURE genInitTopology
This procedure is used by TATG to generate the initial logical
topology under fault-free condition. The procedure has access
to the global variable C , the set of connection requests to be
served. The procedure begins by initializing the variable suc-
cess to TRUE and initializing the empty logical topologyGL .
Every connection request ri ∈ C , procedure findPath() is
used (line 5, Fig.3) for finding a logical path connecting si
and di in GL such that the logical edges will be capable of
accommodating ti. If such a path lpath is found, then ti is
routed over it and the logical topology is updated. This is done
by using procedure updateTopology() (line 15) which returns
the updated GL and R. If lpath is NULL or not found, then a
new lightpath has to be set up. The procedure searchRoute()
is used (line 7) to find a lightpath route rtmin (a route having
minimum number of physical hops) and the wavelength list
WLmin for assignment.
IfWLmin is empty, signifying failure of RWA, success is set

to FALSE to indicate failure in generating the initial logical
topology. In case of non-empty WLmin, procedure update-
Topology() is used (line 12) for establishing a new lightpath
and updating GL and R. The procedure genInitTopology()
returns the generated initial logical topology GL , the routing
R of GL , the value of success and the updated CS and Cost to
TATG. The description of procedures findPath() and update-
Topology() is provided later and the details of searchRoute()
is shown in Fig.5.

FIGURE 3. Procedure genInitTopology.

B. PROCEDURE findSurvPaths
The procedure (in Fig.4) is used by TATG to deal with the
failure scenario of every link e ∈ EP. Since a lightpath carries
the traffic demand of one or more connections, a link failure
in the lightpath route causes all connections accommodated
by the lightpath to get disrupted. The procedure identifies
the set of lightpaths Le that can be interrupted due to the
failure of link e and also identifies the set of connection
requests Ce that can get disrupted. A new logical topology
GL’ is formed with the logical edges corresponding to the
lightpaths in Le removed. The procedure then tries to restore
each connection rj ∈ Ce by utilizing the available bandwidth
of GL’. Extra lightpaths are added to GL’ if and only if the
existing capacity is insufficient to accommodate the traffic of
a disrupted connection. In presence of resource restrictions
the procedure may fail to restore a connection rj ∈ Ce. The
number of connection failures is recorded in Ncf .
Since a lightpath route can traverse one or more links

in GP, it is necessary that a connection, which could not be
restored for a certain link failure scenario is not considered
for restoration in subsequent link failure scenarios. The pro-
cedure ensures this by marking connection rj as ‘‘FAILED’’
(line 14, Fig.4). Connection requests are assumed to be global

VOLUME 8, 2020 58161

A. Bhattacharya et al.: Efficient Integration of Logical Topology Design and STG

FIGURE 4. Procedure findSurvPaths.

variables and so this marking is available for subsequent
failure scenarios. The set Ce thus contains only the unmarked
connections that may be disrupted. Note all connections are
initially unmarked.

The connections requests in Ce are first sorted in the
order of decreasing traffic demand. The procedure handles
the restoration of an unmarked rj ∈ Ce in a way similar to
how connections are handled in genInitTopology() with the
following exceptions. Procedure findPath() is used (line 9,
Fig.4) to find a logical path in GL’ instead of GL , procedure
updateTopology() is used (lines 16 and 19) to update GL’
instead of GL and procedure searchRoute() is used (line 7) to
find a lightpath route in a modified physical topology GP’
with link e removed. Since the lightpaths in Le should be

FIGURE 5. Procedure searchRoute.

available for subsequent failure scenarios, after handling a
failure scenario the edges corresponding the lightpaths in Le
are added to obtainGL fromGL’. Note thatGP’ is not restored
as the failure scenario is handled locally and does not affect
the original GP. Procedure findSurvPaths() returns updated
GL , R, CS, Cost and Ncf .

C. PROCEDURE findPath
The procedure is used by both genInitTopology() and find-
SurvPaths() to find the logical path with sufficient capacity
to route the traffic of a connection request. If the required
logical path (lpath) is found then it is returned and if not found
NULL is returned. We use a modified form of Breadth First
Search (BFS) [36], not only capable of traversing the logical

58162 VOLUME 8, 2020

A. Bhattacharya et al.: Efficient Integration of Logical Topology Design and STG

topology (GL orGL’) but also having the capability of finding
logical paths with sufficient spare capacity. Since BFS is
employed, the shortest logical path connecting si and di of
ri having capacity sufficient to accommodate ti if available
is always returned. This ensures that single-hop grooming is
always tried first and only if it fails, multi-hop grooming is
used. This results in restricting the number of traffic hops.
We do not include the details of this procedure.

D. PROCEDURE searchRoute
The details of this procedure are shown in Fig.5. The nota-
tions used and their meanings are included in Table 2.
The procedure searchRoute() is used by both genInitTopol-
ogy() and findSurvPaths() whenever a new lightpath is to be
included in the logical topology. The procedure implements
the decision of whether to employ single-hop or multi-hop
grooming when the existing capacity of the logical topology
is insufficient to accommodate additional traffic. Employing
multi-hop grooming can lead to increase in delay, but in our
case if single-hop grooming is unsuccessful, the number of
traffic hops is restricted to two only. If a new lightpath has to
be included in the logical topology, RWAhas to be performed.
The objective of this procedure is to select the route of a
new lightpath in a way that the consumption of wavelengths
per link is minimized to the extent possible, the number of
wavelengths used for establishing the new lightpath is also
reduced to the extent possible while restricting the number of
traffic hops.

TABLE 2. Notations used in searchRoute.

The inputs to the procedure areGL ,GP, r ,CS,Cost,W . The
Cost vector represents the cost incurred in the links so far due
to wavelength consumption. The procedure getMin() (line 1,
Fig.5) is used to perform a search of |EP| values in Cost to

find minCost, the minimum value of cost in the Cost vector.
The vertex set Va is initialized with all vertices v, such that
(s, v) ∈ EL with capacity sufficient to accommodate t . The
Boolean variable found is used to indicate success or failure
in finding the required lightpath route, initially it is FALSE.

The procedure searchRoute() works if and only if minCost
has not exceeded W and found is FALSE (line 5). For each
vertex v ∈ Va, the procedure getRWL() (line 9) is used to
obtain an indirect route rtind connecting v and d , constrained
by minCost, satisfying the objective of searchRoute(). The
set of wavelengths WLind for assignment to rtind is also
computed by getRWL Pairs of the form (rtind , WLind) are
added to SRW . The procedure getRWL() is then used (line 12)
to obtain a direct route rtd connecting s and d constrained by
minCost, satisfying the objective of searchRoute(). The set of
wavelengths WLd for assignment to rtd is also obtained.

The procedure findMin() (line 16) is then used to obtain the
pair (rtmin, WLmin) out of all pairs SRW∪ {(rtd , WLd)} such
that the number of physical hops in the route is minimum.
If the direct route rtd and an indirect route in SRW has the
same minimum number of hops, then the pair (rtmin, WLmin)
returned by findMin() is (rtd , WLd) so that the number of
traffic hops is kept to a minimum. The variable found is
set to TRUE indicating successful route finding. Procedure
incrCost() (line 18) is used to update Cost by incrementing
the cost value, Cost[i] for each link i ∈ rtmin. The procedure
update() is then used to update CS by allocating wavelengths
for rtmin. If rtmin is an indirect route i.e. if the pair (rtmin,
WLmin) ∈ SRW , then procedure getFirstNode() is used to
obtain the first node vf in rtmin. This is required because
in case of multi-hop grooming a lightpath has to be set up
between vf and d of r .

If no route (neither direct nor indirect) is found with the
present value of constraint minCost i.e. if both SRW = 8

and WLd = 8, the value of minCost is incremented and the
entire process is repeated with the new value ofminCost. This
entire process (lines 6-23) is repeated in every iteration with
increased value of minCost until a route is found and till the
value of minCost do not exceed the link capacity W (line 5).
The procedure searchRoute() returns vf , rtmin andWLmin and
the updated CS and Cost. We do not include the details of
getMin(), findMin(), incrCost(), update() and getFirstNode()
as they are easy to understand.

E. PROCEDURE getRWL
The details of procedure getRWL() is shown in Fig.6. This
procedure is used by searchRoute() to obtain the route of a
lightpath and also the list of wavelengths that can be assigned
to the links of the route. The inputs to the procedure are v,
GP, ri, CS, Cost, minCost. If v is NULL, BFS [36] is initiated
for a route rtd in GP that connects si and di of ri with each
link i of rtd having Cost[i] < minCost +1. If v is not NULL
then BFS is initiated for a route rtind in GP that connects v
and di with each link i of rtind having Cost[i] < minCost +1.
The procedure also uses CS to find the list of wavelengths
WLd (WLind) that can be assigned following the FF-policy

VOLUME 8, 2020 58163

A. Bhattacharya et al.: Efficient Integration of Logical Topology Design and STG

FIGURE 6. Procedure getRWL.

to the links of rtd (rtind). The matrix CS is updated by setting
CS[i][j] to 0 for every link i in rtd (rtind) and every wavelength
j in WLd (WLind) to indicate current wavelength status. The
procedure returns rtd andWLd if v is NULL or rtind andWLind
if v is not NULL.

F. PROCEDURE updateTopology
This procedure is used by both genInitTopology() and find-
SurvPaths(). The procedure is used to update the logical
topology while accommodating the traffic of a new connec-
tion. The inputs to the procedure are GL , R, r , (rtmin\lpath),
(vf \NULL) (WLmin\8) The notation (x\y) is used to denote
either x or y. The following two cases may arise depending
on the inputs.
Case 1: The inputs are GL , R, r , rtmin, vf , WLmin. It must

be noted that vf denotes the first node of an indirect physical
route. The value of vf will be NULL if rtmin is a direct route
and not NULL if rtmin is an indirect route. The procedure
works as follows. If vf 6= NULL and WLmin 6= 8 then rtmin
is an indirect route. In this case a lightpath is established
between vf and d using rtmin, the wavelengths in WLmin are
assigned and rtmin is added to R. A logical edge vf → d is
added toGL . The traffic t of r is routed along the logical path
s → vf → d in GL and the capacities of the logical edges
of the path are updated. If vf = NULL and WLmin 6= 8 then
rtmin is a direct route. In this case a lightpath is established
directly between s and d using rtmin, the wavelengths in
WLmin are assigned and rtmin is added to R. A logical edge
s→ d is added to GL , traffic stream t of r is routed and the
capacity of the logical edge is updated. The updated GL and
its routing R are returned.
Case 2: The inputs are GL , R, r , lpath, NULL, 8. The

value WLmin = 8 indicates that the input lpath is a

logical path. In this case the traffic t is routed along lpath
and the capacities of the logical edges comprising lpath are
updated. The updated GL and its routing R are returned.

VI. TWO FORMS OF SURVIVABILITY
We study two forms of survivability namely survivability at
connection and survivability at lightpath in TATG-SC and
TATG-SL respectively.
1) TATG-SC (TATG-Survivability at Connection) – In

TATG-SC, we study the problem of providing survivability
to each connection request that may get disrupted due to
a potential physical link failure. To address this problem,
the heuristic seeks a survivable path in the logical topology
for each connection that may be disrupted. The TATG heuris-
tic as presented in the paper actually addresses survivability
at connection.

2) TATG-SL (TATG-Survivability at Lightpath) – In TATG-
SL, we study the problem of providing survivability to each
lightpath that may get disrupted due to a potential physical
link failure. To address this problem, the heuristic seeks a
survivable path in the logical topology for each lightpath that
may be disrupted.
The traffic of a connection request is accommodated in a

lightpath. Thus the links in a lightpath route is also traversed
by each connection that the lightpath accommodates. So if a
lightpath gets disrupted due to a link failure then all the con-
nections that it is carrying are disrupted as well. A connection
request is assumed to survive if it can be successfully restored
in the failure scenario of every physical link e ∈ EP that it
traverses. A connection request that cannot be restored for the
failure of a particular link should not be tried for restoration in
subsequent links that it traverses. This is ensured by marking
them as ‘‘FAILED’’. Connection requests are assumed to be
global variables and so once marked they remain marked
while considering subsequent link failures.

In TATG-SL, we not only mark the connections but we
also mark lightpaths. A lightpath is marked ‘‘FAILED’’ if it
cannot be restored for a link failure. It must also be noted
that for every failure scenario, findSurvPaths() creates and
returns the modified logical topologyGL (lines 22-24, Fig.4).
So the marked lightpaths are also available when subsequent
failures are considered. This ensures that a lightpath which
cannot be restored in the failure scenario of one physical link
is not considered in subsequent failure scenarios. In TATG-SL
the procedure findSurvPaths() (Fig.4) is modified as follows.
In line 4, the disrupted lightpaths in Le are sorted in increasing
order of residual capacity. The loop in line 7, iterates for
every unmarked lightpath li ∈ Le. If a lightpath li cannot be
restored i.e. (lpath = NULL) in line 10 and (WLmin = 8)
line 12 then all connections accommodated by the lightpath is
considered to be blocked i.e. line 13 is replaced byNcf ← Ncf
+|Ce|. Then all connections in Ce are marked FAILED in
line 14. Further, li is marked ‘‘FAILED’’. The input rj is
replaced by li in the procedures findPath(), searchRoute()
and updateTopology(). These procedures then work for
lightpath li.

58164 VOLUME 8, 2020

A. Bhattacharya et al.: Efficient Integration of Logical Topology Design and STG

VII. TIME COMPLEXITY ANALYSIS
We analyze the worst-case time complexity of the proposed
heuristic algorithm TATG.
Lemma: For a given physical topology GP(VP, EP) with

link capacityW andm connections to serve, TATG can take at
most O(m2

+mW (|VP|+|EP|)+ p2q2|EP|+pqW |EP|(|VP|+
|EP|)) time to complete, if the average number of lightpaths
that traverse a fiber link is p and the average number of
connections accommodated by a lightpath is q.

Proof: The entire heuristic of TATG as mentioned earlier
can be broken down into two steps i.e. Step-1: generate
the initial logical topology in fault-free scenario and Step-2:
perform survivable routing of the generated logical topology.

So we analyze the time taken by each of these two steps
separately to determine the overall time complexity. Let
|C| = m.
Step-1: The procedure genInitTopology() is called to create

the initial logical topology under fault-free condition. For
each ri ∈ C , procedure findPath() is called to find a logical
path (lpath) in GL having sufficient capacity to accommo-
date ti. Initially there are no lightpaths in GL but lightpaths
are added for connection requests for which findPath() fails
to find the required lpath. Let us assume the worst-case
i.e. findPath() fails to find the required lpath for every request
ri and a new lightpath is always established or in other words
a logical edge is always added to GL . With this assumption,
there can be at most m logical edges in GL and these are
added sequentially and not at the same time. Thus the number
of logical edge traversals in the worst-case by findPath() for
the first request is 0, for the second request is 1, for the third
request is 2 and so on. Thus the total number of logical edge
traversals is (1+ 2+ 3+ . . .+m− 1) = m(m− 1)/2 ≈ m2.
For every failure of findPath(), procedure searchRoute() is

used to find the route of the new lightpath to be established.
We first analyze the time required by searchRoute(). Let us
assume that on an average the number of vertices in Va turns
out to be x. Finding minCost from Cost causes |EP| opera-
tions to be performed. For each v ∈ Va, searchRoute() uses
getRWL() to find the route and wavelength list for RWA of the
lightpath connecting v and di in GP constrained by minCost.
We employ BFS in getRWL() and so the time required is
order of (|VP|+ |EP|). So the total time for all x nodes is
x(|VP|+ |EP|). The procedure getRWL() is also used to find a
direct route between si and di constrained by minCost which
also takes order of (|VP|+ |EP|) time. So the total time spent
by getRWL() for every request is order of x(|VP| + |EP|) +
(|VP| + |EP|) = (x + 1)(|VP| + |EP|). If searchRoute() fails
for the current value of minCost then the value of minCost is
incremented and the entire process is repeated. This goes on
till minCost < W . Thus the worst-case value of minCost will
beW . So the total time spent by getRWL() for every request in
the worst case is order ofW (x+1)(|VP|+|EP|). So total time
spent in searchRoute() for m connection requests in worst
case is order of m{|EP| +W (x + 1)(|VP| + |EP|)}. Thus the
time required by genInitTopology() is order ofm2

+m{|EP|+
W (x + 1)(|VP| + |EP|)}.

Step-2: To consider the potential failure of each physical
edge, procedure findSurvPaths() is used. Let the average
number of lightpaths that traverse an edge e ∈ EP be p.
Since the p lightpaths are removed fromGL , the new topology
GL’ can contain m – p logical edges (the upper bound on the
number of logical edges in GL is m). Let q be the average
number of connection requests accommodated by a lightpath.
The set Ce for every e ∈ EP will then contain pq number
of connection requests on an average. Sorting the set Ce in
descending order of traffic demand using heap sort [36] takes
order of pq log pq operations. For each rj ∈ Ce, findPath()
is used to find a logical path in GL’ that will be able to
accommodate the traffic tj of rj. Let us assume the worst
case for every rj i.e. the procedure findPath() fails to find a
logical path and a new lightpath have to be established. If this
happens then pq additional lightpaths will be added to GL’.
But all these pq additional lightpaths are added sequentially
and not at the same time. Thus the total number of logical
edge traversals by findPath() for the pq requests = (m− p+
0) + (m−p + 1) + (m−p + 2) + . . . + (m − p + pq − 1) =
pq(m−p)+ (1+2+3+ . . .+pq−1) = pq(m−p)+pq(pq−
1)/2 ≈ p2q2 (neglecting smaller terms).
For every failure of findPath(), procedure searchRoute()

is used to find the route of the new lightpath to be estab-
lished. Letting |Va| = x as in Step-1, the total time spent
for every request by getRWL() in the worst case is order of
W (x+)(|VP| + |EP|). So total time spent in searchRoute() for
pq connection requests in worst case is order of pq{|EP| +
W (x + 1)(|VP| + |EP|)}. Since the heuristic considers poten-
tial failure of every e ∈ EP, the total time spent by find-
SurvPaths() is order of |EP|[p2q2 + pq{|EP| + W (x + 1)
(|VP| + |EP|)}].
The total time spent by TATG is thus the sum of the times

taken by genInitTopology() in Step-1 and findSurvPaths() in
Step-2. Thus the total time spent by TATG is m2

+ m{|EP| +
W (x + 1)(|VP| + |EP|)} + |EP|[p2q2 + pq{|EP| + W (x +
1)(|VP|+|EP|)}] = m2

+m|EP|+mW (x+1)(|VP|+|EP|)}+
p2q2|EP| + pq|EP|2 + W (x + 1)pq|EP|(|VP| + |EP|)}] =
O(m2

+mW (|VP|+|EP|)+p2q2|EP|+pqW |EP|(|VP|+|EP|))
neglecting all other smaller terms.

VIII. PERFORMANCE COMPARISONS
Extensive simulation experiments were performed in an envi-
ronment that used 64-bit operating system Windows 10 and
Intel(R) Core(TM) i5-6200UCPU@2.30 GHzwith 4.00 GB
RAM. The heuristics were implemented using programswrit-
ten in Java using JDK 1.7. We compare the performance of
the two heuristics TATG-SC and TATG-SL with the heuristic
in [24] that uses STGLTD. We shall refer to the heuristic
in [24] as HTG. For comparison of the heuristics a 36-node
(6 × 6) Manhattan Street Network [37] was used. We per-
formed experiments with randomly generated sets of connec-
tion requests of sizes 50, 100, 150, 200, 300 and 400 and with
the following three categories of traffic demand.
1. Low traffic: The traffic ti of every traffic request ri is

randomly distributed between units of OC-3 to OC-24 in a

VOLUME 8, 2020 58165

A. Bhattacharya et al.: Efficient Integration of Logical Topology Design and STG

way that ti varies from 10% to 30% of the capacity of a
lightpath.
2. Medium traffic: The traffic ti of every traffic request ri

is randomly distributed between units of OC-3 to OC-48 in
a way that ti varies from 10% to 50% of the capacity of a
lightpath.
3. High traffic: The traffic ti of every traffic request ri

is randomly distributed between units of OC-3 to OC-96 in
a way that ti varies from 10% to 75% of the capacity of a
lightpath.

We assume the capacity of a single lightpath to be
OC-192. For a particular set size and for each traffic demand
category, 10 sets of connection requests were generated for
testing the three heuristics (TATG-SC, TATG-SL and HTG)
and we have reported the average. A connection request ri in
a set of requests is randomly generated as a 4-tuple (si, di, gi,
ki), where si represents the source, di the destination, gi the
granularity (for instance OC-48), ki the amount of traffic in
units of gi. The request ri is converted to a 3-tuple (si, di, ti)
where ti is calculated gi × ki. For example if in high traffic
category an OC-96 request is generated as the 4-tuple (1, 7,
96, 1.5) then it is converted to a 3-tuple (1, 7, 144).

We first compare the performance of proposed heuris-
tics with the optimal results obtained from the ILP formu-
lation presented in [24]. The ILP is solved using ILOG
CPLEX 12.8. The 6-node network shown in Fig.7 is used
for the comparison. We assume medium traffic conditions for
the comparisons. Each node is assumed to be equipped with
3 transmitter-receiver pairs and each link is assumed to have
capacity 10 (i.e. 10 wavelengths per link). We compare the
heuristics with the ILP for connection sets of sizes 15, 20,
30 and 40. For sets with more than 40 connections the ILP
failed to run. Fig.8 shows the percentage of total input traffic
groomed for the ILP and the proposed heuristics.

FIGURE 7. 6-Node network.

The three heuristics are compared in non-blocking as well
as blocking conditions.Wmin denotes the required link capac-
ity or the minimum number of wavelengths required in a link
to satisfy a given set of connection requests. In non-blocking
condition the heuristics are compared in terms of the values of
Wmin required for generating the survivable logical topology.
In blocking conditions i.e. with link capacity restrictions they
are compared in terms ofNOS or throughput (measured as the
number of satisfied connection requests). Fig.9, Fig.10 and
Fig.11 show the comparisons of Wmin for different sizes of

FIGURE 8. Comparison of ILP and proposed heuristics in the 6-node
network.

FIGURE 9. Comparison of Wmin for the three heuristics in low traffic for
36-node manhattan street network.

request sets with low, medium and high traffic categories
respectively. Fig.12, Fig.13 and Fig.14 show the percentage
reduction in Wmin obtained by using the proposed heuristics
overHTG for different sizes of request sets with low, medium
and high traffic categories respectively. Table 3 shows the
throughput for 18 different experiments (E1-E18) where each
experiment differs in terms of either a) request set size or
b) traffic category or c) the link capacity restriction. Fig.15,
Fig.16 and Fig.17 show the percentage reduction in request
blocking obtained by using the proposed heuristics overHTG
with low traffic, medium traffic and high traffic categories
respectively. Results obtained from the experiments leads to
the following six important observations.
Observation 1: In Fig.9, Fig.10 and Fig.11, we observe

that Wmin is lesser for the proposed heuristics for almost all
experiments, suggesting that the proposed heuristics are more
resource efficient. Both TATG-SC and TATG-SL outperforms
HTG but the performance of TATG-SL is the best. Even
with a set of 400 connections in high traffic TATG-SL and
TATG-SC require a link capacity of 107 and 133 wavelengths
respectively when the same required by HTG is 142.
Observation 2: In Fig.9, Fig.10 and Fig.11, we also observe

that TATG-SC outperforms TATG-SL in terms of Wmin for
request sets of smaller size, for example with |C| = 50

58166 VOLUME 8, 2020

A. Bhattacharya et al.: Efficient Integration of Logical Topology Design and STG

FIGURE 10. Comparison of Wmin for the three heuristics in medium
traffic for 36-node manhattan street network.

FIGURE 11. Comparison of Wmin for the three heuristics in high traffic for
36-node manhattan street network.

FIGURE 12. Percentage reduction in Wmin using the proposed heuristics
over HTG in low traffic.

irrespective of the category of traffic demand whereas for
request sets of larger size (|C| ≥ 200), TATG-SL outperforms
TATG-SC for all categories of traffic demand. For analysis,
let us assume that the average number of connection requests
accommodated by a lightpath is q and the average number of
lightpaths traversing an edge e is p. So the average number
of requests traversing the edge e is pq. When we consider the

FIGURE 13. Percentage reduction in Wmin using the proposed heuristics
over HTG in medium traffic.

FIGURE 14. Percentage reduction in Wmin using the proposed heuristics
over HTG in high traffic.

FIGURE 15. Percentage reuction in request blocking using the proposed
heuristics over HTG in low traffic.

failure of an edge, the p lightpaths and the pq requests are
assumed to be disrupted.

With request sets of smaller size, the value of p is small
and consequently that of pq is also small. Also there is lesser
utilization of the capacity of a lightpath and consequently
the lightpaths in the logical topology have more spare capac-
ity. Thus there is a greater chance of finding a survivable
logical path with adequate spare capacity for each of the

VOLUME 8, 2020 58167

A. Bhattacharya et al.: Efficient Integration of Logical Topology Design and STG

FIGURE 16. Percentage reuction in request blocking using the proposed
heuristics over HTG in medium traffic.

FIGURE 17. Percentage reuction in request blocking using the proposed
heuristics over HTG in high traffic.

pq disrupted connections using TATG-SC resulting in lesser
number of additional lightpaths being established. However,
as the traffic carried by a lightpath is much greater compared
to that of an individual connection request, chances of finding
survivable paths with enough capacity for each of the p
disrupted lightpaths using TATG-SL is much lesser and so
more additional lightpaths are required. Since this is true for
every e ∈ EP,Wmin of TATG-SC is less than that of TATG-SL
for request sets of smaller size.

On the contrary with traffic requests of larger size,
the value of p is large and so is the value of pq. Also with
larger request set size there is more utilization of the capacity
of a lightpath and consequently the spare capacity is lesser.
Thus the chance of finding survivable paths for a disrupted
request using TATG-SC and for a disrupted lightpath using
TATG-SL is lesser. In the worst case it may so happen that
neither TATG-SC nor TATG-SL is able to find the required sur-
vivable logical paths for the pq disrupted connections and the
p disrupted lightpaths respectively. In such a case additional
lightpaths have to be established by both the heuristics. But
since p is much smaller than pq, lesser number of additional
lightpaths is required by TATG-SL than by TATG-SC. Since
this is true for every e ∈ EP, Wmin of TATG-SL is less than
that of TATG-SC.

TABLE 3. Throughput obtained using the heuristics for the eighteen
experiments conducted on manhattan street network.

Observation 3: From Fig. 12, Fig.13 and Fig.14,
we observe that a significant percentage reduction in required
link capacity (Wmin) is obtained in almost all experiments
using the proposed heuristics over HTG for all categories of
traffic demand. The maximum(average) percentage reduc-
tion using TATG-SC over HTG and TATG-SL over HTG
is 7.46(6.32) and 25.51(13.15) respectively in low traffic,
16.66(7.77) and 24.64(11.29) respectively in medium traf-
fic and 14.89(7.49) and 17.79(12.75) respectively in high
traffic.
Observation 4: From the entries in Table 3, it is observed

that throughput of the proposed heuristics is more com-
pared to HTG with the same link capacity in almost all
experiments. Both the heuristics outperforms HTG but the
throughput of TATG-SL is more than that of TATG-SC. The
maximum(average) increase in throughput using TATG-SC
overHTG and TATG-SL overHTG is 83(26.16) and 89(29.33)
respectively in low traffic, 74(21.66) and 78(21.66) respec-
tively in medium traffic and 26(10.16) and 30(13.5) respec-
tively in high traffic.
Observation 5: We observe that the throughput of

TATG-SC is more than that of TATG-SL in all experiments
with request sets of smaller size for example with |C| = 50,
whereas in experiments with |C| ≥ 200, the performance
reverses. This is because for request sets of smaller size,Wmin
of TATG-SC is less than that of TATG-SL and consequently
greater number of spare wavelengths becomes available. But
for request sets with |C| ≥ 200, Wmin for TATG-SL is
less than that of TATG-SC and as a result the performance
reverses.
Observation 6: From Fig.15, Fig.16 and Fig.17,

we observe that the percentage reduction in request blocking

58168 VOLUME 8, 2020

A. Bhattacharya et al.: Efficient Integration of Logical Topology Design and STG

obtained by using the proposed heuristics overHTG is signif-
icant for any category of traffic demand. Considering all the
18 experiments that were performed, the maximum(average)
percentage reduction in request blocking obtained using
TATG-SC and TATG-SL over HTG is 58.38(54.87) and
93.97(59.57) respectively.

IX. CONCLUSION
This work addresses the problem of throughput enhance-
ment during survivable traffic grooming (STG) in a static
scenario by dealing with the joint problem of STG and
logical topology design (LTD) which has been referred to
as STGLTD. This work shows that if efficient heuristics at
the sub-problem level are employed during STGLTD then
significant resource saving can be obtained. This in turn can
lead to much better throughput performance when resources
are scarce. Heuristics are proposed that can solve the prob-
lem in polynomial time. Performance comparison with a
well-known heuristic shows that our heuristics are definitely
better options to address the problem.

REFERENCES
[1] R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Per-

spective. San Mateo, CA, USA: Morgan Kaufmann, San Francisco, CA,
United States, 2002.

[2] S. Bandyopadhyay, Dissemination of Information in Optical Networks.
New York, NY, USA: Springer-Verlag, 2008.

[3] K. Zang and B. Mukherjee, ‘‘A review of traffic grooming inWDM optical
networks: Architectures and challenges,’’ Opt. Netw. Mag., vol. 4, no. 2,
pp. 55–64, Mar. 2003.

[4] H. Zhu, H. Zang, K. Zhu, and B.Mukherjee, ‘‘A novel generic graph model
for traffic grooming in heterogeneous WDMmesh networks,’’ IEEE/ACM
Trans. Netw., vol. 11, no. 2, pp. 285–299, Apr. 2003.

[5] M. Shalom, W. Unger, and S. Zaks, ‘‘On the complexity of the traffic
grooming problem in optical networks,’’ in Proc. Int. Conf. Fun Algo-
rithms (FUN) (Lecture Notes in Computer Science), vol. 4475. 2007,
pp. 262–271.

[6] W. Yao and B. Ramamurthy, ‘‘Survivable traffic grooming with path
protection at the connection level in WDM mesh networks,’’ J. Lightw.
Technol., vol. 23, no. 10, pp. 2846–2853, Oct. 29, 2005.

[7] E. Modiano and A. Narula-Tam, ‘‘Survivable routing of logical topolo-
gies in WDM networks,’’ in Proc. IEEE INFOCOM, Apr. 2001,
pp. 348–357.

[8] A. Bari, Q. Rahman, A. Jaekel, and S. Bandyopadhyay, ‘‘Traffic grooming
inWDMmesh networks with guaranteed survivability,’’ in Proc. IEEE Int.
Conf. Dependable Syst. Netw., Jun. 2008, pp. 307–315.

[9] K. Zhu, H. Zhu, and B. Mukherjee, Traffic Grooming in Optical WDM
Mesh Networks. Springer, 2005.

[10] H. Yao, Z. Yang, L. Ou, and X. Tan, ‘‘A transceiver saving auxiliary
graph model for dynamic traffic grooming in WDM mesh networks,’’
in Proc. 31st IEEE Conf. Local Comput. Netw. (LCN), Nov. 2006,
pp. 319–326.

[11] S. Huang, R. Dutta, andG. N. Rouskas, ‘‘Traffic grooming in path, star, and
tree networks: Complexity, bounds, and algorithms,’’ IEEE J. Sel. Areas
Commun., vol. 24, no. 4, pp. 66–82, Apr. 2006.

[12] C. Xin, B. Wang, X. Cao, and J. Li, ‘‘Logical topology design for dynamic
traffic grooming in WDM optical networks,’’ J. Lightw. Technol., vol. 24,
no. 6, pp. 2267–2275, Jun. 2006.

[13] Y. Wang and Q. Gu, ‘‘Maximizing throughput for traffic grooming with
limited grooming resources,’’ in Proc. IEEE Global Telecommun. Conf.
(GLOBECOM), Nov. 2007, pp. 2337–2341.

[14] F. Solano, L. Caro, J. De Oliveira, R. Fabregat, and J. Marzo,
‘‘G+: Enhanced traffic grooming in WDM mesh networks using light-
tours,’’ IEEE J. Sel. Areas Commun., vol. 25, no. 5, pp. 1034–1047,
Jun. 2007.

[15] Y. Wang and Q.-P. Gu, ‘‘A min-max optimization problem on traffic
grooming in WDM optical networks,’’ in Proc. 16th Int. Conf. Comput.
Commun. Netw. (ICCCN), Aug. 2007, pp. 228–233.

[16] H. Yao, Y. Yang, and Z. Yang, ‘‘Two dynamic restoration schemes for
survivable traffic grooming in WDM networks,’’ in Proc. 33rd IEEE Conf.
Local Comput. Netw. (LCN), Oct. 2008, pp. 560–561.

[17] M. A. Saleh and A. E. Kamal, ‘‘Many-to-many traffic grooming in WDM
networks,’’ IEEE/OSA J. Opt. Commun. Netw., vol. 1, no. 5, pp. 376–391,
Oct. 2009.

[18] C. Xin, ‘‘Resource planning for dynamic traffic grooming in WDM
optical networks,’’ J. Lightw. Technol., vol. 27, no. 7, pp. 817–824,
Apr. 1, 2009.

[19] M.A. Saleh andA. E. Kamal, ‘‘Design and provisioning ofWDMnetworks
with many-to-many traffic grooming,’’ IEEE/ACM Trans. Netw., vol. 18,
no. 6, pp. 1869–1882, Dec. 2010.

[20] A. Jaekel, Y. Chen, and A. Bari, ‘‘Stable logical topologies for survivable
traffic grooming of scheduled demands,’’ IEEE/OSA J. Opt. Commun.
Netw., vol. 2, no. 10, pp. 793–802, Oct. 2010.

[21] A. Balma, N. B. Hadj-Alouane, and A. B. Hadj-Alouane, ‘‘A near-
optimal solution approach for the multi-hop traffic grooming prob-
lem,’’ IEEE/OSA J. Opt. Commun. Netw., vol. 3, no. 11, pp. 891–901,
Nov. 2011.

[22] M. A. Saleh and A. E. Kamal, ‘‘Approximation algorithms for many-to-
many traffic grooming in optical WDM networks,’’ IEEE/ACM Trans.
Netw., vol. 20, no. 5, pp. 1527–1540, Oct. 2012.

[23] S.-W. Wang and C.-Y. Wen, ‘‘Lightpath-level active rerouting algorithms
in all-optical WDM networks with alternate routing and traffic grooming,’’
in Proc. Int. Conf. Inf. Netw., Feb. 2012, pp. 42–46.

[24] A. Jaekel, A. Bari, Q. Rahman, Y. Chen, S. Bandyopadhyay, and Y. Aneja,
‘‘Resource efficient network design and traffic grooming strategy with
guaranteed survivability,’’Opt. Switching Netw., vol. 9, no. 4, pp. 271–285,
Nov. 2012.

[25] M. I. Anis, N. Amaya, G. Zervas, S. Pinna, M. Scaffardi, F. Fresi,
A. Bogoni, R. Nejabati, and D. Simeonidou, ‘‘All-optical traffic grooming
in elastic optical network,’’ in Proc. Opt. Fiber Commun. Conf./Nat. Fiber
Optic Eng. Conf. (OFC/NFOEC), 2013, pp. 1–3.

[26] A. Bhattacharya, A. K. Saha, and M. Chatterjee, ‘‘An efficient traffic
grooming policy for heterogeneous WDM mesh networks,’’ in Proc.
IEEE Int. Conf. Adv. Netw. Telecommun. Syst. (ANTS), Dec. 2014,
pp. 1–6.

[27] J. de Santi, A. C. Drummond, N. L. S. da Fonseca, and X. Chen, ‘‘Holding-
time-aware dynamic traffic grooming algorithms based on multipath rout-
ing for WDM optical networks,’’ Opt. Switching Netw., vol. 16, pp. 21–35,
Apr. 2015.

[28] W. Hou, L. Guo, and J. Lu, ‘‘Multi-domain traffic partition grooming
in mixed granularity optical networks,’’ Opt. Switching Netw., vol. 17,
pp. 25–37, Jul. 2015.

[29] S. R. Shinde and S. H. Patil, ‘‘Heuristics for sparse traffic grooming
in dynamic WDM optical mesh networks,’’ in Proc. Int. Conf. Comput.
Commun. Control Autom., Feb. 2015, pp. 159–163.

[30] M. Gagnaire and E. Doumith, ‘‘An iterative greedy algorithm for scheduled
traffic grooming in WDM optical networks,’’ in Proc. 1st Int. Symp. Adv.
Netw. Telecommun. Syst., 2007, pp. 1–2.

[31] H. Wang and G. N. Rouskas, ‘‘Hierarchical traffic grooming: A tutorial,’’
Comput. Netw., vol. 69, pp. 147–156, Aug. 2014.

[32] F. Dikbiyik, M. Tornatore, and B. Mukherjee, ‘‘Exploiting excess
capacity for survivable traffic grooming in optical backbone net-
works,’’ IEEE/OSA J. Opt. Commun. Netw., vol. 6, no. 2, pp. 127–137,
Feb. 2014.

[33] H.-C. Lin and Y.-X. Zhuang, ‘‘An effective algorithm for dynamic
traffic grooming in light-trail WDM mesh networks,’’ in Proc. Opto-
Electron. Commun. Conf. (OECC) Photon. Global Conf. (PGC), Jul. 2017,
pp. 1–5.

[34] A. K. Pradhan, S. Singhi, and T. De, ‘‘Multicast dynamic traffic grooming
using bin packingmethod inWDMmesh networks,’’Opt. Switching Netw.,
vol. 23, pp. 40–51, Jan. 2017.

[35] D. Naik, Nikita, and T. De, ‘‘Congestion aware traffic grooming in elastic
optical andWiMAX network,’’ in Proc. Technol. Smart-City Energy Secur.
Power (ICSESP), Mar. 2018, pp. 1–9.

[36] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. Cambridge, MA, USA: MIT Press, 2001.

[37] H. Hwang, H. Kim, Y. Choi, and C. Kim, ‘‘Multicast routing algorithms for
Manhattan street network,’’ in Proc. 22nd EUROMICRO Conf. (EUROMI-
CRO), 1996, pp. 397–404.

VOLUME 8, 2020 58169

A. Bhattacharya et al.: Efficient Integration of Logical Topology Design and STG

ASIMA BHATTACHARYA received the M.Sc.
degree in physics from the University of Sci-
ence and Technology, Calcutta, India, in 1995,
and the Post Graduate Diploma degree in infor-
mation management (PGDIM) from the Techni-
cal Teachers’ Training Institute, Calcutta, in 1996.
She started her carrier at Software Industry,
in 1996. In her 22 years of tenure in this
industry, she worked in organizations like CMC
LTD, UshaComm, Reliance Infocomm, Amdocs,

Accenture, iConnectiva, TEOCO, and so on., in the capacity of a Project
Lead, a Project Manager, the Vice President, and the Director mainly in
telecommunications domain. She is currently working as the Director of
TEOCO, responsible for global product delivery and support in radio access
network domain. Her research interests include solving existing problems
for telecommunication mesh networks, survivability, and traffic grooming in
optical networks.

MALABIKA SARDER received the B.Tech.
degree in computer science and engineering from
the West Bengal University of Technology, India,
in 2009, and the M.E. degree in computer sci-
ence and technology from Bengal Engineering
and Science University, Shibpur, India, in 2012.
She is currently working as a Software Engi-
neer at Samsung India Electronics Pvt., Ltd. Her
research interests include mobile ad hoc networks
and WDM optical networks.

MONISH CHATTERJEE (Member, IEEE) rece-
ived the Ph.D. (engineering) degree in the
branch of computer science and engineering from
Jadavpur University, India, in 2012, and the M.E.
degree in computer science and technology from
the Indian Institute of Engineering Science and
Technology (IIEST), Shibpur, India, in 2000, for-
merly Bengal Engineering and Science University
(BESU), Shibpur, one of the oldest pioneering
engineering institutes in India. He started his

career as a Software Engineer at IT industry, but after a short period he
subsequently switched over to academia. He is currently working as an
Associate Professor and the Head of the Department of Computer Science
and Engineering, Asansol Engineering College, India. He has 17 years
of teaching experience and two years of IT industry experience. He has
publications in refereed International Journals and the IEEE International
Conference Proceedings. His research interests include existing problems
in WDM optical networks and elastic optical networks. He has been a
member of Technical Program Committee of the many IEEE International
Conferences and Workshops. He was a Sessions Chair.

DIGANTA SAHA received the B.E., M.E., and
the Ph.D. (Engineering) degrees in the branch of
Computer Science and Engineering from Jadavpur
University, India, in 1995, 1998, and 2009, respec-
tively. He is currently working as a Professor with
the Department of Computer Science and Engi-
neering, Jadavpur University, India. His research
interests include communication networks, natural
language processing, and text data mining. He is a
member of IET.

58170 VOLUME 8, 2020

	INTRODUCTION
	REVIEW WORK
	DECISION FOR SINGLE-HOP AND MULTI-HOP GROOMING
	OUR CONTRIBUTIONS
	HEURISTIC FOR SURVIVABLE TRAFFIC GROOMING
	PROCEDURE genInitTopology
	PROCEDURE findSurvPaths
	PROCEDURE findPath
	PROCEDURE searchRoute
	PROCEDURE getRWL
	PROCEDURE updateTopology

	TWO FORMS OF SURVIVABILITY
	TIME COMPLEXITY ANALYSIS
	PERFORMANCE COMPARISONS
	CONCLUSION
	REFERENCES
	Biographies
	ASIMA BHATTACHARYA
	MALABIKA SARDER
	MONISH CHATTERJEE
	DIGANTA SAHA

