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ABSTRACT We propose a neural network architecture for detecting intrusions on the controller area network
(CAN). The latter is the standard communication method between the electronic control units (ECUs) of
automobiles. However, CAN lacks security mechanisms and it has recently been shown that it can be attacked
remotely. Hence, it is desirable to monitor CAN traffic to detect intrusions. In order to find both, known and
unknown intrusion scenarios, we consider a novel unsupervised learning approach which we call CANet.
To our knowledge, this is the first deep learning based intrusion detection system (IDS) that naturally handles
the data structure of the high dimensional CAN bus, where different message types are sent at different times.
Our method is evaluated on real and synthetic CAN data. A comparison with previous machine learning based
methods shows that CANet outperforms them by a significant margin. For reproducibility of the method,

our synthetic data is publicly available.

INDEX TERMS CAN bus, deep learning, intrusion detection.

I. INTRODUCTION

Automobiles are getting more and more connected by tech-
nologies such as Bluetooth, Wifi or smart phone plug-ins.
While this simplifies the driver’s life, it simultaneously opens
new paths for potential remote attacks on the electronic
control units (ECUs) of cars. Hijacking an ECU can allow
attackers to place messages on the vehicle-internal communi-
cation network. Thereby the attacker could e.g. invoke sudden
breaking or turning off the engine which can cause traffic
accidents [1], [2]. Hence, detecting the attempt of attacks in
car networks is in the interest of traffic safety.

In this paper, we focus on the controller area network
(CAN) bus as it is the most common vehicle bus standard.
Typically, CAN messages are used to transmit signals
between ECUs. For example, an ECU can send the informa-
tion about objects on the road so that the brake assist can react
accordingly.

An extensive overview about previous work on CAN intru-
sion detection systems (IDS) can be found in [3]. Currently,
a strong focus lies on rule based and statistical methods
to detect known attack scenarios. While many types of
intrusions can be detected efficiently by these approaches,
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the configuration of such an IDS is time-consuming, requires
domain expertise, and it is unlikely that unknown attack sce-
narios can be detected. Moreover, it is challenging to generate
rules that capture the complex behavior of multiple signals
that are transmitted via the CAN bus.

With the advances in deep learning in the recent
years [4]-[6] new tools are becoming available that have
the potential of detecting unknown attacks. Prior work on
intrusion detection with neural networks on single CAN sig-
nals can be found in [7]-[9]. However, to the best of our
knowledge, there is no neural network architecture that can
handle the CAN bus data structure in the multidimensional
signal space. On the CAN bus, at every point in time at most
one message is transmitted. As a result, CAN traffic consists
of consecutive messages with different IDs. These messages
contain different kinds of signals (see Table 1). The data
structure makes it difficult to feed the data of the CAN bus
directly into any kind of standard neural network.

The contributions of this manuscript are the following:
We introduce CANet, a novel neural network architecture
tailored to work on the signal space of CAN data. We show
that it outperforms existing methods by a significant margin.
We describe how this architecture can be trained in an unsu-
pervised manner and evaluated in such a way that a variety
of unknown attack types can be detected in the moment they

VOLUME 8, 2020


https://orcid.org/0000-0002-7410-7455
https://orcid.org/0000-0002-6712-2171
https://orcid.org/0000-0003-4996-4188
https://orcid.org/0000-0001-7146-3473
https://orcid.org/0000-0001-5663-7420

M. Hanselmann et al.: CANet: An Unsupervised IDS for High Dimensional CAN Bus Data

IEEE Access

TABLE 1. Schematic representation of CAN bus data after preprocessing its payload bytes to signals.

CAN Bus Data after Preprocessing

Time Stamp  ID | Signals of A

Signals of B Signals of C' Signals of D

1.045
3.102
4.978
7.014
8.993
9.750

4415 3802 2 O

>mOQP»Uw
S

13 4401 3967 1 O

5471 0 7.24 - - - -
- - - - - - 31.47
- - - 1779 7 2 -
5502 1 721 - - - -

occur while identifying normal data correctly. We show that
our method is especially strong in finding certain manip-
ulations of signals that are difficult to detect by classical
approaches. Hereby, we exploit the fact that the network is
able to learn the physical relationships between the signals
under consideration.

We point out that CANet may have other applications
beyond intrusion detection like anomaly detection in general,
e.g. early detection of technical failures.

This document is organized in the following way: In
Section II, the background of the CAN bus and the relevant
literature on CAN IDS is briefly covered. In Section III,
the proposed network architecture and its training process is
described. In Section IV, the method is evaluated on real and
synthetic CAN data and compared to related work. Finally,
in Section V, we present our conclusions.

Il. RELEVANT BACKGROUND

A. CONTROLLER AREA NETWORK

The following is a brief description of the IDS relevant
characteristics of the Controller Area Network. For a more
detailed presentation we refer to [10], [11].

The Controller Area Network is a vehicle bus standard [11]
designed to allow automotive Electronic Control Units to
communicate with each other. This broadcast communication
is done via messages, where each message type has a unique
identifier ID. The identifier can be used to derive which
signals are encoded in the message. Different IDs can encode
different numbers of signals. For example, messages with a
certain ID might encode the vehicle speed whereas a message
with a different ID might contain information like the engine
temperature and the engine speed.

The ID has further implications on the CAN bus.
Specifically, a low ID implies sending with priority over all
messages with a higher ID. Messages are only sent when
having priority on the CAN bus and otherwise are resent with
delay. Many message types that transmit physical values like
the vehicle speed are sent periodically with a specified cycle
time. Due to their high priority, cyclic messages with a low ID
typically show a lower variance in the observed cycle times
than messages with a high ID.

From the various characteristics each message carries,
we consider the time stamp, the ID and a typically 8-byte
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payload field as relevant for a CAN IDS. Here, the payload
refers to the signal values encoded in the message. The encod-
ing of a signal value ranges from single bits to several bytes of
the payload. A so-called CAN matrix specifies which payload
bits encode which signal for each ID. The CAN matrix is
considered intellectual property by most car producers which
makes it difficult for many research groups to convert the raw
binary payloads into the corresponding signals. In this paper,
we assume that the decoding of raw payload bits into signal
values has already been performed.

As aresult, we get a data structure as seen in Table 1, where
at each point in time exactly one ID is observed together with
its associated signals. Hence, the received signal numbers and
types are varying over time. This makes is particularly chal-
lenging to use any kind of algorithm, like a neural network
approach, that requires the same input parameter set at each
point in time.

B. SECURITY RELEVANT ATTACKS

The objective of an IDS is to detect intrusions into the CAN
bus communication. We assume that the attacker has already
gained access to the CAN bus, e.g. by hijacking one of the
connected ECUs. This follows the path of demonstrated secu-
rity relevant attacks [2]. We further assume that an attacker
tries to influence the vehicle behavior by manipulating
messages.

Our goal is to detect such attacks by identifying signals
deviating from their ‘““normal” behavior or signals breaking
out of physical relationships. These physical relationships are
typically complex, potentially unknown and hard to derive
by rule based intrusion detection systems for CAN. Note that
CANet is not designed to identify which message is explicitly
attacked, but rather to detect if there is any attacked message.

C. DEEP LEARNING
In this section we briefly describe the neural network building
blocks used in the proposed CANet architecture.

1) LONG SHORT-TERM MEMORY (LSTM)

The LSTM [12] is a neural network architecture specifically
designed to work on time series [13] or natural language
processing problems [14]. LSTMs belong to the class of
recurrent neural networks (RNNs). Unlike fully connected
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neural networks they have feedback connections. They were
originally developed to handle the vanishing gradient prob-
lem of standard RNNs [12] and are widely used nowadays.

2) AUTOENCODER

The class of neural network structures that is known as
autoencoders has the objective to learn the structure of a
training data set, e.g. the normal behavior of a technical
system, in an unsupervised manner [15]. This is, no labeled
data is needed in the training process. A trained autoencoder
can be used to identify data points that deviate from the
normal behavior and therefore can function as anomaly detec-
tion system [16]. The basic idea behind autoencoders is that
high dimensional data that originates from some underlying
system often contains correlations. Therefore, a meaning-
ful embedding into a lower dimensional subspace typically
exists. An autoencoder consists of two neural network blocks,
an encoder and a decoder. Both can be realized by a set of
consecutive fully connected layers. The task of the encoder
is to map the high dimensional input data into the lower
dimensional embedding space, which is called autoencoder
bottleneck. The task of the decoder is to reconstruct the input
data from its representation in the embedding space. Whereas
the deviation between the real input data and its reconstruc-
tion should be small on normal data, large deviations are
expected for anomalous data that has not been seen by the
system in the training process.

3) EXPONENTIAL LINEAR UNIT (ELU)
ELU is a nonlinear activation function used in deep neural
networks. It is defined as

X, ifx >0
ELU(x) =

a(e* — 1), otherwise,

where a > 0 is a constant. It has been shown that that ELUs
outperform rectified linear units (ReLUs) in many tasks [17].

D. RELATED RESEARCH

In this section, we discuss previous approaches for intru-
sion detection on CAN bus data. In [7], a LSTM network
structure for predicting the next payload of a single ID is
proposed. A similar strategy is implemented in [18] on a
mobile edge. Other deep learning based results include [8],
where an autoencoder like network architecture is used on
a sliding window over the appearances of a specific signal.
In [9], a lightweight on-line detector of anomalies (LODA)
is proposed. While these methods show promising results,
they all build a model for a single time series operating on
the values from one signal or signals of one ID.

We extend this by enabling CANet to work with all sig-
nals of multiple CAN IDs simultaneously. This gives our
model the advantage that it can detect intrusions by inferring
physical dependencies that exist between signals on the CAN
bus. For example, assume that the attacker gains control over
the ECU that sends the vehicle speed into the CAN bus
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(e.g. every 10ms) and replays the vehicle speed signals from
a different traffic situation. It might be hard to detect this
intrusion when only given access to the messages containing
the vehicle speed. However, if the network also has access
to messages of a different ECU that contain some correlated
signal, say the engine speed (appearing e.g. every 5 ms),
it gives CANet the possibility to infer that the current mes-
sages on the CAN bus are anomalous. Previous methods
are not able of this reasoning because they do not possess
a network topology capable of handling different messages
appearing at different times and with different frequencies on
the CAN bus.

Non neural network based methods for anomaly detection
on CAN bus payloads include signature based methods [19],
finger printing [20], clustering methods [21], fuzzy logic [22],
Hidden-Markov-Model based methods [23], entropy based
methods [24], [25], analyzing time intervals [26], one class
support vector machine based methods [27], and consistency
and frequency analysis on the edge [28]. A comprehensive
review of the strengths and weaknesses of these and other
non-payload based methods can be found in [3], [29].

Ill. CANet

CANet is an unsupervised learning method. The basic idea is
to handle the challenging structure of CAN data by introduc-
ing an independent LSTM input model for each ID that can
capture the temporal dynamics of the corresponding signals.
The output of all input models is aggregated and fed into a
fully connected subnetwork with an autoencoder structure.
This enables the network to take interdependencies of signals
of all IDs into account. At each point in time, all poten-
tial input signals are reconstructed. The reconstruction error
between the true signal values and their reconstruction can be
used to calculate the anomaly score. The topology of CANet
with the corresponding layer sizes and activation functions
are summarized in Table 2. A visualization of the architecture
can be found in Figure 1.

TABLE 2. CANet architecture for detecting intrusions on the CAN bus.

CANet Architecture

Layer Type Size

LSTM per ID Number of Signals of ID X hgcqie
Joint Latent Vector N X hgcqle

Fully Connected N X hscate/2

ELU Activation -

Fully Connected N-—-1

ELU Activation -
Fully Connected N
ELU Activation -

A. NETWORK ARCHITECTURE

In order to describe the network architecture efficiently,
we first establish some notations. Let A = {A, ..., Ag} be
the ordered set of all K € N considered IDs. For each ID
A € A we take nyq corresponding signals into account that
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FIGURE 1. Schematic representation of the CANet architecture for intrusion detection on CAN bus data. Each ID has its own LSTM input model. When
the payload s; 4. of an ID is fed into its input model, only the corresponding memory in the joint latent vector is updated. The entire latent vector is
used to reconstruct the signals of all IDs. The deviation between the true input payload and the corresponding reconstruction is used for calculating the

anomaly score.

are encoded in the payload. We denote the total number of
signals by N. Whenever an ID A € A is observed at time
step ¢, we denote the vector containing the corresponding
signal values by s; 4 € R™. We hereby discretize the time.

The network architecture consists of an input LSTM sub-
network for every ID A € A. The i-th LSTM subnetwork
is associated with ID A;, has n4, inputs, and a hidden
dimension of size ng, - hgcate- Here, hgcqre € N represents
the computational power of CANet. In the evaluation part,
the performance with different /.4, values is compared (see
Section IV-D). Whenever a new payload of an ID A € A is
fed through the corresponding LSTM subnetwork, its output
of size ny - hycqie 1s used to update the corresponding memory
in the joint latent vector. This latent vector is realized as
concatenation of the hidden states of all LSTM input models
and therefore has length N - hgqpe. It represents and stores
the current state of the CAN traffic. The joint latent vector
is followed by a set of fully connected layers where the
penultimate layer has strictly less neurons than the output
layer, which has N neurons. The task of the output layer is
to reconstruct all potential current input signals from all IDs.

During training, at each time step ¢+ € N the payload of
an ID, A; say, is fed through its corresponding LSTM input
model. It then is used to update the joint latent vector in
order to reconstruct the payload at time step ¢ for all A € A.
Formally, the reconstruction R; of the payload for the time
step t is denoted by

R;(s1,4;) = (Reci(s1,4,), .. ., Reci(s1,4x)),

where Rec;(s; 4;) represents the reconstruction of the payload
associated to ID A;.

We then compare the true signal values from the payload
of the current ID A; with their reconstructions Rec;(s; 4,)-
We use the quadratic error loss function, given by

loss(st.a;) = ||Rect(ss.a,) — St.all, - (1)

Since the temporal dependencies are stored for each ID
separately in the corresponding LSTM subnetwork, the train-
ing process has the advantage that the model as a whole is
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not sensitive to the exact order of consecutive message IDs.
In fact, in real CAN data, there is some variability in the order
of IDs, even within a short time interval.

B. ANOMALY SCORE

The quadratic error between a signal and its reconstruction
can be used to predict whether or not a signal at time step
t € Nis anomalous. This prediction can be made by testing
if the error is above a fixed threshold. Due to considering an
unsupervised learning problem, the threshold must be chosen
solely based on normal data. It is computed for each signal
separately and is given by a percentile P of all correspond-
ing quadratic errors on a small data set. During evaluation,
an individual anomaly indicator is stored for every signal.
Every time an ID is processed by the model, the anomaly
indicator of the respective signals is updated and set to 1 if the
reconstruction error exceeds the corresponding percentile P
and set to O otherwise. The global anomaly score at a time
step ¢ is set to 1 if and only if at least one of the stored signal
anomaly indicators is 1 and set to O otherwise.

IV. EXPERIMENTS
In this section, we evaluate our method on both, real and
synthetic CAN data.

The real data was collected on a test vehicle. In our exper-
iments, 13 IDs with a total number of 20 signals are taken
into consideration. The signals are chosen in such a way that
they contain physical values and that, for each signal, there
is at least one other signal with a physical dependency to it.
We divide about 13 hours of recorded data into 12.5 hours
of training and 0.5 hours of test data. We only consider data
representing the normal driving mode. Hence, we exclude
e.g. starting and turning off the engine. All payloads are
preprocessed into their signal value space (see Table 1).

In the case of the synthetic data, we consider a data
set consisting of 10 different message IDs, each with dif-
ferent amounts of signals per ID and different noisy time
frequencies. The total amount of signals is 20. The data is
created in such a way that it is similar to real CAN traffic.
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FIGURE 2. Visualization of CAN data with different attack types on short time intervals. The flooding attack contains high frequency anomalies
between its real signal values. In the suppress attack the dotted line represents real signal values that are not transmitted onto the CAN bus.

The data contains physical values, counters and signals that
are dependent on one or multiple other signals. We use a
training data set of about 16.5 hours and a test data set of
about 7.5 hours of CAN traffic. The data set is available at
https://github.com/etas/SynCAN.

A. SIMULATED ATTACKS

In both, the real and the synthetic data set, the test data is
divided into six subsets of equal time length. We use one
subset to evaluate our model on normal data. The other five
test data sets are used to evaluate our model on the following
attack types:

1) Plateau attack: A single signal is overwritten to a con-
stant value over a period of time, i.e. a jump or freezing
the signal.

Continuous change attack: A signal is overwritten so
that it slowly drifts away from its true value. This
assumes that the attacker wishes to set a signal to a con-
crete value while trying to fool the IDS with realistic
small changes in the signal.

Playback attack: A signal value is overwritten over a
period of time with a recorded time series of values
of that signal. The attacker hopes to trick the IDS
by sending completely real looking signal values of a
different traffic situation.

Flooding attack: The attacker sends messages of a
particular ID with high frequency to the CAN bus.
This attack is easier to perform in practice than the
aforementioned ones, since the attacker does not need
to control an ECU. It only requires to send additional
messages to the CAN bus in order to “overwrite” the
real message values.

2)

3)

4)
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5) Suppress attack: The attacker prevents an ECU from
sending messages, for example, by turning it off. This
kind of attack implies that messages of some particular
ID do not appear in the CAN traffic for some period of
time.

The length of a typical attack interval in both, the real and the
synthetic data set, is between 2-4 seconds. A visualization of
each attack type can be found in Figure 2.

B. NETWORK TRAINING DETAILS

In this section, we present the training details of our method
in order to make the results reproducible. All code for
training and evaluation is written in Python 3.5.3 with
pyTorch 0.3.0 [30]. All computations are performed on a
3.5 GHz system with 4 cores and 32 GB of installed physical
memory (RAM). We use the network architecture described
in Table 2 for different A .4 values (cf. Table 4). The opti-
mizer of choice is Adam [31] with a initial learning rate
of 0.01. The input signals of the network are rescaled with
a signal-wise 0-1 normalization.

We train the network for 1000 iterations with batch size 25.
Every element in a batch is a series of 5000 consecutive
messages at random starting position in the training data.
At the beginning of each iteration the hidden and cell state
vector of all LSTM models are initialized with zero. During
a single iteration, a back-propagation is performed every
250 time steps in order to update the network weights. For
a more robust training, the loss function is multiplied by a
fixed scalar for different IDs. That is, the scalar is linearly
smaller the more frequent its corresponding ID appears in the
training data set. This is to ensure that IDs that appear more
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FIGURE 3. ROC curves of CANet with hg.,/e = 10 and the baseline models on all attack types. The corresponding AUC values can
be found in Table 3.

often do not get more weight than less frequent IDs during

training.
The training

is performed on the training data set after

removing a small subset to compute the thresholds for the

anomaly score.

C. COMPARISON WITH RELATED RESEARCH

CANet is the first approach capable of handling the data
structure of CAN bus data with multiple CAN IDs simultane-
ously within a single neural network model. Therefore, a one
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to one comparison with an existing method is not possible.
In order to compare CANet with a baseline, we adapted the
following methods:

1y

Predictive Baseline: In [7], the basic idea is to learn
a separate model for each ID. At each time step,
the model predicts the payload of the next occurrence
of its associated ID. The network directly processes
the bit representation of the payload. As preprocess-
ing step, the raw data is fed to a subnetwork of fully
connected layers. The output is then processed by a
combination of LSTM and fully connected layers that
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TABLE 3. AUC of the ROC curves on real and synthetic CAN data.

Area Under the Curve (AUC)

Synthetic Data

Method Plateau  Continuous  Playback  Flooding  Suppress
CANet 0.983 0.936 0.974 0.979 0.882
Predictive 0.722 0.561 0.530 0.874 0.489
Autoencoder  0.755 0.563 0.532 0.903 0.496
Real Data
Method Plateau  Continuous  Playback  Flooding  Suppress
CANet 0.982 0.930 0.975 0.935 0.743
Predictive 0.685 0.828 0.595 0.661 0.494
Autoencoder  0.727 0.782 0.633 0.860 0.470

perform the prediction. The difference between the true
value and the prediction is used for the anomaly score.
We adapt this method by training one predictive model
per ID. Since we have access to the signal representa-
tion of the payload, we omit the preprocessing subnet-
work and feed the signal values directly into the LSTM
layers that are followed by a set of fully connected
layers.

2) Autoencoder Baseline: In [8], an autoencoder model for
asingle signal is used. That is, at time step ¢ the network
has the task to reconstruct the input vector that consists
of the signal values on a sliding window at the time
steps (t — 7, ..., t). We use their network architecture
to obtain one model for each signal.

Following our approach in Section III-B, we use a per-
centile P of the quadratic errors on a small data set (signal
wise) to combine it to a final anomaly score.

D. EVALUATION
As a first evaluation step, the receiver operating charac-
teristic (ROC) curve of CANet and the baseline methods

TABLE 4. Summary of experimental results on real and synthetic CAN data.

is computed. For a clear presentation, we only consider
hscale = 10 for the CANet model. The ROC curves are
computed by calculating the true and false positive rates with
respect to the anomaly score and a suitable set of percentiles
P (cf. Section III-B). The ROC curves of all models are
presented in Figure 3.

The performance of a binary classifier can be measured by
the area under the curve (AUC) value of its ROC curve. AUC
values close to 1.0 indicate a good overall performance. The
AUC values of all methods are summarized in Table 3. It can
be seen that CANet outperforms both baseline approaches by
a significant margin on every attack type on both, real and
synthetic data.

The ROC curves and the AUCs confirm a good overall
performance of CANet. However, for the in vehicle use case
of a CAN IDS it is required to have a true negative rate
close to 1.0. Hence, only the parts of the ROC curves with
very small false positive rates are of interest for application.
From now on, we follow this requirement by evaluating the
anomaly score at the P = 99.99% percentiles. We evaluate
the performance of CANet with A4, € {5, 10, 20}. A sum-
mary of the numerical results can be found in Table 4. The
accuracies, true positive rates (i.e. rate of attacks that where
successfully detected) and true negative rates (i.e. rate of
normal data that was found to be normal) are presented in
the table.

We find that in the real as well as in the synthetic data
setting the CANet models identify normal data correctly in
a solid way, with an accuracy typically larger than 0.99.
The attack types plateau, continuous change and playback
are detected reliably. The plateau and the playback attack
show particular high detection rates, typically in the range
of [0.85, 0.95]. The continuous change attack has a detection
rate normally larger than 0.70.

Evaluation Table

Synthetic Data

Model Specification Accuracy True Positive Rate / True Negative Rate
Method hscale  No Attack  Plateau Continuous Playback Flooding Suppress
CANet 5 0.991 0.896/0.980 0.740/0.994 0.896/0.997 0.900/0.997 0.496/0.996
CANet 10 0.990 0.955/0975 0.765/0.994  0.905/0.996 0.901/0.996 0.613/0.996
CANet 20 0.992 0.885/0.993 0.771/0.996  0.906/0.997 0.884/0.997 0.581/0.995
Predictive - 0.996 0.330/0.974 0.015/0.994 0.020/0.996 0.644/0.994  0.003/0.993
Autoencoder - 0.983 0.361/0.926 0.016/0.975 0.029/0.995 0.688/0.995 0.001/0.993

Real Data

Model Specification Accuracy True Positive Rate / True Negative Rate
Method hscale  No Attack  Plateau Continuous Playback Flooding Suppress
CANet 5 0.996 0.937/0.963 0.792/0.975 0.852/0.911 0.808/0.943  0.082/0.997
CANet 10 0.994 0.913/0.988 0.701/0.985 0.878/0.977 0.802/0.996 0.176/0.989
CANet 20 0.995 0.936/0.968 0.724/0.988 0.862/0.954 0.761/0.992  0.254/0.991
Predictive - 0.995 0.269/0.949  0.577/0.987 0.134/0.964 0.182/0.998 0.001/0.998
Autoencoder - 0.999 0.055/0.992 0.491/0.983 0.079/0.977 0.627/0.996  0.007 / 0.995
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FIGURE 4. The plots show four different signals of the synthetic CAN data set. They are extracted on the same time interval along with their
corresponding reconstruction of CANet. The different number of signal appearances in B compared with A, C and D are a result of different
message frequencies. A playback attack on B is performed. The corresponding attack interval is shaded in all plots. An intrusion is detected
by CANet if the anomaly score (red line) equals one. It can be seen that on non-attacked data, the reconstruction (straight blue line) of the
original signal (dashed black line) is almost exact. In the attack interval, deviations between the true signal and its reconstruction cannot
only be observed in B but also in A and C. This is due to functional dependencies between these three signals. In contrast, D has no
functional dependencies with A, B and C. Therefore, it remains unaffected by the attack.

The evaluation is performed point wise, i.e. per time step.
Hence, the method detects at average the vast majority of
points in each attack interval correctly. A visualization of this
finding can be found in Figure 4, where it can be seen that
the method detects most of each attack interval and normal
data correctly. Unsurprisingly, like in the AUC compari-
son, CANet outperforms the predictive and the autoencoder
baseline by a significant margin. Moreover, the baseline
approaches only detect the first few attacked messages of the
attack interval but identify the rest of the interval as normal
(see Figure 5). The baseline approaches perform particularly
poorly on the playback attack. That is, a playback attack and
the true signal are mostly indistinguishability if only one
signal is taken into account (see Figure 2-D). Only at the
beginning and the end of a playback attack interval there
might be an unexpected jump. On the other hand, CANet
has access to all signals. Hence, it can exploit physical
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dependencies between signals to find such attacks. This is
visualized in Figure 4, where a short synthetic data interval
is shown. It contains the corresponding plots of four different
synchronized signals. The signal of the upper right plot B
contains a playback attack. We observe that for all signals
the reconstruction on normal data is usually really accurate.
During the attack interval deviations between the true data
and its reconstruction can be found. Note that this deviation
also appears in signals that are not explicitly attacked but only
correlated in some way with the attacked signal, whereas
signals without any correlations stay unaffected. Further-
more, over an attack interval typically not the entire attack
is detected as such. This is expected, because an attacked
signal and its original counterpart may have similar values
in some parts of the attack window. For example, in case of
a continuous change attack (see Figure 2-C) the modified
signal values lie in a realistic range at the beginning of
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FIGURE 5. Performance of the predictive baseline on the same time
interval as in Figure 4. This method only detects the first few elements of
the attacked interval correctly. The second peak in the anomaly score is
technically a false classification at the jump from the anomalous signal
back to normal data.

the attack. As a consequence, the model detects an attack
only after the deviation between the original and the modified
signal exceeds a certain threshold.

Just for comparison, we also evaluate our models on two
other common attack types: suppress and flooding. These
attacks can be detected by a rule based approach in a
straight forward way, e.g. by analyzing the frequencies of
each ID [26]. Our model does not have access to the time
stamp but only to the order in which IDs are recorded and
is therefore not specifically designed to find such attacks.
However, it still detects flooding attacks with a high true
positive rate, whereas it struggles to detect suppress attacks.
This is expected since the values that are added with a high
frequency into the CAN bus during a flooding attack are much
easier to be found than the gradual change of the network
state that is the consequence of not sending a certain ID at
all. When comparing with the baselines, we find that CANet
is superior in all aspects. Nevertheless, both, the predictive
and the autoencoder baseline, show relatively good results on
the flooding attack. This is because in between the messages
from the flooding attack the normal data points are still
taken into account. Hence, during a single attack interval
many anomalous large jumps in signal values might be found
(see Figure 2-E).

We believe that for in vehicle usage it is reasonable to pair
CANet with the strengths of some rule based IDS. For exam-
ple, monitoring frequencies in order to detect e.g. flooding or
suppress attacks can be efficiently covered by a set of simple
rules [26].

We find that the different choices for the parameter /.40
have a relatively low effect on the performance of the models.
Even small models with /.4, = 5 perform reasonably well.
This is especially interesting for a potential use of such mod-
els on an embedded device where memory and computational
power are limited.
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When comparing the models on the real and synthetic
data, we find that the performance is in a similar range in
most cases. We believe that the synthetic data set is a good
benchmark to test CAN IDS models, even if the data is
somewhat “cleaner” than in the real case.

Since we believe that in real application, finding a large
number of attack intervals is more important than a high
overall point wise accuracy on attacks (i.e. true positives),
we investigate this by redefining what it means that an attack
is found (see Figure 6). That is, we define an attack as the
entire period of time during which the attack is performed,
i.e. an attack interval. We compute the percentage of attack
intervals that are detected. Here, the criterion for identifying
an interval as anomalous is that at least Q% of that interval is
detected point wise as anomaly. We can see in Figure 6 that
based on this definition CANet finds most anomaly intervals
if Q% does not get too large. This is true for both, the real and
the synthetic data case. However, both baseline methods have
very low detection rates of anomaly intervals even for small
0% (see Figure 6).

Summing up the results, we find that CANet is capable of
reliably detecting attacks on CAN bus data, while performing
solidly on normal data. Our main findings are:

1) The presented architecture is the first method that is
capable of handling the difficult data structure from
signals of multiple CAN IDs in a single model.

2) CANet outperforms the baseline CAN IDS methods by
a significant margin on all selected evaluation criteria.

3) Our model is trained in an unsupervised manner, i.e.
it has never seen attacks during training. Hence, it is
expected that the model finds further unknown attack
scenarios beyond the ones presented in this paper.

E. RISKS AND BENEFITS OF NEURAL NETWORK BASED
IDS MODELS

The biggest advantage of using machine learning based
approaches, such as the one presented in this manuscript,
is that they are potentially capable of detecting unknown
intrusions. That is, they are successful in a task in which
most other methods fail. Classically, for each possible attack
scenario, a defense mechanism must be chosen. However, this
process is highly time consuming and requires a significant
amount of CAN bus domain expert knowledge for a suc-
cessful detection. Here, neural networks significantly reduce
both, the development time and the required CAN domain
knowledge.

On the other hand, the output of machine learning based
methods can be complicated to analyze which makes it dif-
ficult to execute an automatic response once an intrusion
is detected. Furthermore, neural networks require a large
amount of training data and are typically more computational
and memory consuming than many other approaches. A visu-
alization of the approximate memory requirements of CANet
can be found in Figure 7, where for simplification each ID
consists of exactly one signal.
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FIGURE 6. The plot represents the ratio of detected attacks for each attack scenario. Here an attack is considered as the interval
in which the attack is performed. The criterion for an attack interval to be detected is: At least Q% of the interval have been point
wise detected as attack (x-axis). The CANet model was used with hs.qje = 10. By comparing the plots, it can be seen that CANet
outperforms the other two approaches by a large margin.

F. REPRODUCIBILITY

Most CAN bus based intrusion detection methods are tested
on real data. However, publishing real CAN traffic and the
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corresponding CAN matrix is usually not possible, since it
is considered intellectual property by most car producers.
Hence, to the best of our knowledge, there is no standard
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data set for comparing methods. We try to close this gap by
evaluating our model on both real and synthetic data and we
make the synthetic data publicly available.! We hope that this
simplifies the work of researchers to compare their work with
a baseline.

V. CONCLUSION

Cars are getting more and more connected. This opens ways
for attacking the CAN bus of automobiles remotely. Since
attacks can have a major impact on traffic safety, it is desirable
that such attacks are detected in a robust manner.

We present CANet, a novel neural network architecture
that is trained in a unsupervised manner to detect intrusions
and anomalies on the CAN bus. It is the first model in the
literature capable of working on messages with different IDs
simultaneously. CANet models have a high true negative
rate, typically over 0.99, which is necessary for real world
applications. Additionally, along with the high true negative
rate we are able to detect a large amount of the unknown
attacks, both on real and synthetic data correctly.
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