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ABSTRACT Massive amount of water level data has been collected by using Internet of Things (IoT)
techniques in the Yangtze River and other rivers. In this paper, utilizing these data to construct deep neural
network models for water level prediction is focused. To achieve higher accuracy, both the factors of time
and locations of data collection sensors are considered to perform prediction. And the network structures of
gated recurrent unit (GRU) and convolutional neural network (CNN) are combined to build a CNN-GRU
model in which the GRU part learns the changing trend of water level, and the CNN part learns the spatial
correlation among water level data observed from adjacent water stations. The CNN-GRU model that using
data from multiple locations to predict the water level of the middle location has higher accuracy than the
model only based on GRU and other state-of-the-art methods including autoregressive integrated moving
average model (ARIMA), wavelet-based artificial neural network (WANN) and long-short term memory
model (LSTM), because of its ability to decrease the affections of abnormal value and data randomness of a
single water station to some extent. The results are verified on an experiment dataset that including 30-year
observed data of water level at several collection stations in the Yangtze River. For forecasting the 8-o’clock
water levels of future 5 days, accuracy of the CNN-GRU model is better than that of ARIMA, WANN and
LSTM models with three evaluation factors including Nash-Sutcliffe efficiency coefficient (NSE), average
relative error (MRE) and root mean square error (RMSE).

INDEX TERMS CNN, GRU, water level prediction.

I. INTRODUCTION
The water level of the inland waterway is an important factor
in guiding the navigation of vessels and their reasonable load-
ing. Accurate prediction of the middle-term trend of water
level is helpful to waterway maintenance and to improve the
traffic safety and capacity.

By setting IoT sensors based on auto-telemetry technology
at observation locations along an inland river, the dynamics
water level can be periodically observed and be used to moni-
tor the status of waterway. After perception, a large amount of
historical data of water level has been collected. How to mine
the value of these historical data of water level, especially to
catch the water level trend for accurate prediction, are still
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hot topics that many scholars are constantly researching and
exploring.

It is too complex and difficult to build a mathematical
model which considers factors (e.g. rainfall, temperature,
riverbed, water conservancy projects and other physical fac-
tors) to catch and analyse the trend of water level. Therefore,
for water level prediction, themoremainstreammethods have
used the historical data of water level to build models by
statistics and machine learning techniques.

Behzad et al. used the support vector machine (SVM) and
artificial neural network (ANN) to predict groundwater level
in different weathers and periods, and the results showed
that SVM has more advantages than ANN in medium and
long-term water level prediction, especially in the case of a
small amount of data [1]. Guo et al. proposed an improved
least squares support vector machine (LSSVM) model by
including an extra bias error control term in the objective
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function for intelligent prediction of the daily water level in
the Yangtze River, and more accurate forecasts were obtained
although the improvement is regarded as moderate [2].
Adnan et al. proposed a water level prediction model for
river flooding period based on back propagation (BP) neu-
ral network with a Kalman filter added at the output to
improve prediction accuracy [3]. Galavi et al. proposed
an ARIMA model and an adaptive network-based fuzzy
inference system (ANFIS) to predict the water level of
the Klang River, and the experimental results showed that
the optimized ARIMA model achieved better results than the
ANFIS model [4]. The ANN and ARIMA were combined by
A. Wibowo et al. to establish a water level prediction model
to achieve a higher prediction accuracy [5]. Wang et al.
proposed an EEMD-ARIMA model coupling the ARIMA
and ensemble empirical mode decomposition (EEMD) to
forecast annual runoff time series, and the results showed that
EEMD-ARIMA model can significantly improve ARIMA
time series approaches for annual runoff time series fore-
casting [6]. Lee et al. proposed a short-term water level
prediction model by combining neural networks and genetic
algorithms (GA) for 15 water level locations in four major
rivers in Korea, and the experimental results showed that the
model has strong accuracy and adaptability [7]. Yao et al.
proposed a GA-Elman method for river water level predic-
tion using GA to optimize the Elman neural network, and
the experimental results showed that the model converges
quickly and has high precision [8]. Fan et al. analysed the
influence of downstream return water and upstream water for
forecasting the water level of a middle location, and proposed
a short-term water level prediction model based on multiple
linear regression (MLR) to obtain high accurate prediction in
the Jianli water observation station of the Yangtze River [9].
Zhang et al. proposed a groundwater level prediction model
based on principal components analysis (PCA) andmultivari-
ate time series controlled auto-regressive (CAR) according
to the hysteresis and randomness of water level trend to
obtain better results [10]. Yang et al. proposed a time-series
forecasting model based on Random Forest to forecast the
Taiwan Shimen reservoir’s water level, and the experimental
results indicate that the Random Forest forecasting model
when applied to variable selection with full variables has
better forecasting performance than the other models [11].
Adamowski and Chan proposed a WA-ANN model based
on discrete wavelet transform (DWT) and ANN to perform
monthly prediction of groundwater level, and the results
show that the WA-ANN model can provide more accurate
monthly average groundwater level prediction than ANN
and ARIMA [12]. Seo et al. applied wavelet-based artificial
neural network (WANN) and wavelet-based adaptive neural
fuzzy inference system (WANFIS) to forecast daily water
level, and the results indicated that the conjunction of wavelet
decomposition and artificial intelligence models can be a
useful tool for accurate forecasting daily water level and
can yield better efficiency than the conventional forecast-
ing models [13]. Wang et al. proposed a hybrid approach

WD-RSPA based on wavelet de-noise (WD) and rank
set pair analysis (RSPA) to improve forecasts of hydro-
meteorological time series [14]. Anh et al. proposed
a wavelet-artificial neural network (WAANN) model to
addresses daily water level forecasting with short time,
in which wavelet analysis (WA) was used to remove high-
frequency random noise of time series data and ANN was
then used to make the short-term prediction, the results of
WAANN of water level forecasting showed better perfor-
mance than ANN [15].

As mentioned above, various statistics and machine learn-
ing models such as SVM, ANFIS, ANN, GA, ARIMA,
WA and their hybrid methods have been used in many related
studies. However, utilizing deep neural networks to predict
water level has rarely been discussed, which have won big
successes in many other fields. For numerical prediction,
it has been proven that the recurrent neural network (RNN) is
good at buildingmodels from time series data. Since thewater
level data is normally collected location by location, and the
several years dataset of each location is a typical time series
data. Therefore, there is a big chance to get higher accuracy
with the RNN method. Furthermore, as the water stations are
adjacent one by one, a CNN could be a useful tool to capture
the spatial relationship among them, and find the relationship
of their water levels. Therefore, the contributions of this study
is highlighted as follows.

1) This study proposes a CNN-GRU model to analyse
the relationship of spatial-temporal data for water level
prediction.

2) The GRU layers in the proposed method can be used to
learn the time series wave shape of water level changes
in each observation station.

3) The convolutional layers in the proposed method can
be used to extract the spatial data features of water level
changes from several observation stations.

4) A 30-years practical dataset of water level from sev-
eral observation stations along the Yangtze River was
applied to evaluate the proposed model.

The remainder of the paper is organized as follows.
Section II discusses the techniques and applications of RNN,
GRU, and CNN in previous studies. The dataset of water level
from several observation stations along the Yangtze River is
presented in Section III. Section IV presents the GRU-based
prediction model to analyse the time series wave shape of
water level changes in each observation station, and SectionV
illustrates the proposed CNN-GRU prediction model to anal-
yse the spatial-temporal features of water level changes from
several observation stations for the improvement of water
level prediction. Sections VI and VII shows the practical
experimental results and comparisons for the evaluation of
the proposed model. Finally, the conclusions and future work
are summarized in Section VIII.

II. LITERATURE REVIEWS
In recent years, GRU-based RNN has been successfully
applied to spatial-temporal data and been quite popular
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among many scholars in other fields. In 2016, Fu et al.
applied LSTM and GRU neural network methods to pre-
dict short-term traffic flow [16]. In 2017, Liu et al. applied
GRU neural network to build predictive models to forecast
Chinese primary energy consumption in 2021 [17]. In 2018,
Zhao et al. proposed a local feature-based gated recurrent
unit (LFGRU) networks tomonitor machine health [18]. And,
Zhang et al. proposed a GRU-based deep learning approach
to predict urban traffic flow with combining weather con-
dition data [19]. In 2019, Deng et al. proposed a sequence-
to-sequence deep learning architecture based on the bidirec-
tional gated recurrent unit (BiGRU) for type recognition and
time location of combined power quality disturbance [20].
Li et al. proposed a multi-GRU prediction system based
on GRU models to predict the future electricity genera-
tion [21]. Moreover, Le et al. proposed an approach by using
multi-layer GRU to identify electron transport proteins [22].

As far as the combination of CNN and GRU, there is also
some excellent works. For instance, a classifier by using the
CNN with GRU was proposed to strengthen the relationship
between words and words, text and text according to the
input feature matrix, and high accurate text classification was
obtained by the classifier [23]. In 2019, Tao et al. proposed
a deep learning model based on 1D convnets and bidirec-
tional GRU neural networks to forecast air pollution [24].
And Li et al. proposed a method by integrating CNN and
GRU networks with vibration and acoustic emission sig-
nals to solve the gear pitting fault diagnosis problem [25].
Furthermore, Zhang et al. proposed a BiGRU-FCN network
combining CNN and bidirectional GRU to investigate time
series classification [26].

Similarly, in this paper, GRU is used to analyze the trends
of water level of different stations, and CNN is further
combined to consider the spatial relationship between water
stations

III. DATASET OF WATER LEVEL
With the construction of digital waterway systems, several
water level observation stations have been deployed along the
Yangtze River. A large amount of water level data has been
collected by IoT techniques such as auto-telemetry systems.
According to the demand of vessels to develop voyage plans,
the prediction of water level is normally on a daily basis.
Therefore, the 8 o’clock observation values of every day
of some water level stations along the Yangtze River are
picked up to construct the dataset. The 8 o’clock observation
values of each station in about 30 years form a time series
dataset, where water level fluctuates periodically with daily
changes.

Table 1 shows the dataset information with record count
and the values of mean, std (standard deviation), min, max
and quantiles (25%, 50% and 75%) of water level.

For a time series data, the data quality has a great influence
on the prediction accuracy of the result models [27], [28].
Therefore, according to characteristics of the water level
dataset, a two-steps preprocess is performed before training.

TABLE 1. Description of water level dataset.

FIGURE 1. Noise reduction of the water level dataset.

1) There are a few abnormal outliers in water level dataset,
probably caused by some systematic errors. The box plot
is a standardized way of displaying the distribution of data
based on the five number summary: minimum, first quartile
(Q1), median, third quartile (Q3), and maximum. Values that
are either more above an upper limit or more below a lower
limit can be defined as outliers or suspected outliers [29].
So, to detect those outliers which deviate obviously from the
general trend of the water level sequence, the box plot method
is used with the upper limit of Q3 + 1.5 ∗ IQR (the gap
between Q1 and Q3) and the lower limit of Q1 − 1.5 ∗ IQR.
Then, the detected outliers will be replaced by the average
values of the four points around them.

2) Denoising is useful to reduce over-fitting and improve
the applicability of the final prediction model for a time
series data. Savitzky-Golay (SG) filtering is used commonly
in signal processing to filter out noise and eliminate effec-
tively the randomness without changing the shape and width
of the original signal obviously [30], [31]. In this case,
a SG filtering is designed to perform the second procedure
of noise reduction for the water level dataset, Figure 1 shows
the denoising results of part of water level dataset.

Figure 1(a) shows the smoothed result of a classical expo-
nential weighted averaging (EWA) method. A slight right
shift of the result can be observed, and the mean absolute
error (MAE) between the smoothed result and the original
data is about 2.518. Figure 1(b) shows the smoothed result
of the SG filtering, in which the frame length is set to 9 and
the polynomial order is set to 5. With the same dataset, the
MAE is only about 0.22 which is much better than that of
EWA method, and that is why it was chosen to perform the
denoising.

IV. GRU-BASED PREDICTION MODEL
This section applies the GRU-based prediction model to
analyze the time series wave shape of water level changes.
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FIGURE 2. GRU-based prediction model of single water station.

In Subsection IV.A considers the data from the single water
station and presents the principle of GRU-based model. Fur-
thermore, the GRU-based model is used to analyze the data
from the multiple water stations in Subsection IV.B.

A. SINGLE WATER STATION
GRU is a special kind of RNN, and compared with the LSTM
architecture, it has some advantages of fast convergence and
less parameters [32]. In this paper, a GRU-based prediction
model of single water station is firstly constructed, its net-
work is shown in Figure 2.

It is a 3-layer structure, both hidden layers are GRU, and
the output layer is a common fully connected layer. The shape
of the input layer is [None,20,1], ‘None’ is a placeholder that
represents the batch size of training such as 128; ‘20’ is the
time step witch indicates the data of previous 20 days will
be considered; ‘1’ is the number of input features, that is,
the 8 o’clock water level value of every day. The shape of
the output layer is [None, 5], ‘None’ also represents batch
size, and ‘5’ is the number of output features, that is, the five
predicted water level values of the future five days. So,
the number of parameters of the model is 2369541, which
is 784896 less than the model based LSTM, which could also
lead to faster training speed.

The activation functions of the first and second GRU layers
are set to ‘tanh’ and ‘relu’ respectively, and the output layer
does not have an activation function. To prevent overfitting,
add L2 normalization to each layer. So, the cost function of
the model is:

J (θ ) =
1
2m

m∑
i=1

L(ŷ(i), y(i))+
λ

2m
||θ ||22 (1)

where, θ is the parameters of model, m represents the
number of samples, L(ŷ(i), y(i)) represents the square error
between sample value and predicted value, and is an empirical
value, λ and is set to 0.001 here. And, to make the
J (θ ) decrease to converge, an optimizer is used.

Adaptive optimizers include Momentum, Adagrad,
RMSProp and Adam (which is a combination of Momentum
and RMSProp to some extent [33]) were compared, and their

FIGURE 3. The loss curves with different optimizers.

FIGURE 4. GRU-based prediction model with multiple water stations.

loss curves are shown in Figure 3 (with the dataset of Wuhu
water station).

Obviously, the Adam optimizer has the best optimization
effect with the fastest convergence and the lowest loss value.
So the Adam is selected as the optimizer for the GRU-based
model and the following other models.

In the actual prediction procedure, the shapes of input and
output will be [1, 20, 5] and [1, 5] respectively, that is using
the water level values of the last 20 days to predict the water
level of next 5 days.

B. MULTIPLE WATER STATIONS
According to experiences of waterway maintenance and data
analysis, the water level values of stations close to each other
have great correlation. In theory, for a water station, utilizing
not only the data of itself but also the data from around
stations will help to improve the prediction model. Therefore,
a prediction model based on the data from multiple water
stations is further investigated. Its network structure is shown
in Figure 4.

The structure is basically consistent with that of the single
water station. The difference is mainly in the shape of the
input layer. It is [None, 20, 3], here, ‘3’ represents that it
includes three water level value from three adjacent water
stations. The shape of output layer is still [None, 5], that
is, it only outputs the prediction values of next five days
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FIGURE 5. CNN-GRU-Based prediction model with multiple water
stations.

of one station which is the middle station here. So, in the
model, the water level values from an upstream station and
a downstream station are utilized to help to predict the water
level values of the middle station.

V. CNN-GRU-BASED PREDICTION MODEL
In the above-mentioned GRU-based prediction model, the
correlation of adjacent water stations was considered in some
extent. However, it is difficult to reflect the spatial relation-
ship between the water stations only by the simple structural
design of the input layer. The data correlative degrees of
neighboring stations with different distances are not consid-
ered carefully.

As is well known, in image and audio recognition, and
other fields, CNN has excellent performance because of its
excellent ability at capturing spatially related features [34].
In order to better reflect the spatial distribution characteristics
of water stations, CNN is further combined with the GRU net-
work to build the water level prediction model. Its structure
is shown in Figure 5.

The network consists of three convolution layers and three
GRU layers. The shape of the input layer is [None, 20, 3],
‘3’ represents three water level values of the three adjacent
water stations; the shape of the output layer is [None, 5],
‘5’ represents the predicted water level value of the next
5 days in the middle water station.

The three convolutional layers, namely C1, C2, and C3,
all are one-dimensional convolutional layer, they can be
expressed as:

C = f (wx + b) (2)

f is the activation function, and all three layers are set to
the ‘relu’ function. C1 has 16 convolution kernels, C2 has

FIGURE 6. The spatial relationship among water stations.

128 kernels, and C3 has one kernel. So the final shape of
the output of convolutional layers is [None, 20, 1]. It means
the three values from three water stations are abstracted into
one value according to their correlative degrees to the middle
station. These values will have better smoothness than the
original water level value of the middle water station, they
then enter the first GRU layer. The rest part of GRUs is
consistent with the one for single water station.

VI. PRACTICAL EXPERIMENTAL RESULTS
The above proposed three predictionmodels are implemented
by Python and the deep learning framework of TensorFlow-
gpu2.0.0 in a workstation with two graphics cards of NVIDIA
GeForce GTX 1080. And they are trained and tested in the
water level dataset of the Yangtze River. The 30-year data
is divided into training set and test set with the ratio of 8:2.
Furthermore, according to comparison analysis of the histor-
ical data and experience, the dataset is further classified into
three periods, the dry season (December-March), the mid-
dle water season (April, November) and the flood season
(May-October)[35]. In different period the water level has
different trends, so the classification will help to improve the
prediction accuracy.

For testing the models with multiple water stations, two
groups of three water stations are selected. As shown
in Figure 6, the three stations located at Jiujiang, Anqing and
Wuhu form one group with the Wuhu station in middle, and
the three stations located at Anqing, Wuhu and Nanjing form
the other group with the Anqing station in middle.

Figure 7 shows the prediction test results of two water
stations, located at the Wuhu and Anqing city respectively,
with GRU-based prediction model of single water station.
Figure 8 shows the test results of the GRU-based prediction
model with three water stations. And Figure 9 shows the test
results of the CNN-GRU-based prediction model with three
water stations. In the figures, interval of the vertical dotted
line is 5, indicating the water level was predicted 5 days by
5 days (from the data of previous 20 days).

VII. COMPARATIVE ANALYSES OF PRACTICAL
EXPERIMENTAL RESULTS
A. THE EVALUATION FACTORS
In order to test the performance of different water level
prediction models, three factors are selected to evaluate
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FIGURE 7. Test results of the prediction model of single water station.

the accuracy including Nash-Sutcliffe efficiency coef-
ficient (NSE), average relative error (MRE) and root
mean square error (RMSE) which can be computed
as the following formulas where yi is the observed
value, ŷi is the predicted value and ȳ is the observed

average.

NSE = 1−

n∑
i=1

(y(i) − ŷ(i))2

n∑
i=1

(y(i) − ȳ)2
(3)
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FIGURE 8. Test results of GRU-based prediction model with three water stations.

MRE =
100%
n

n∑
i=1

∣∣y(i) − ŷ(i)
y(i)

∣∣ (4)

RMSE =

√√√√1
n

n∑
i=1

(y(i) − ŷ(i))2 (5)

The NSE is a factor usually used to evaluate the predictive
power of hydrological models [36]. The value range of NSE is
(−∞, 1]. The closer the NSE is to 1, the better the prediction
result, the closer the NSE is to 0, the closer the simulation
result is to the average value of the measured values. When
the NSE is less than 0, it indicates that the simulation results

60096 VOLUME 8, 2020



M. Pan et al.: Water Level Prediction Model Based on GRU and CNN

FIGURE 9. Test results of CNN-GRU-based prediction model with three water stations.

of the model are unreliable (not even the average of the
measurements).

MRE and RMSE can reflect the difference between
the observed value and the predicted value, their value

range is [0, +∞). The perfect fit between the observed
value and the predicted value will make RMSE and
MRE 0, and the larger the value, the worse the prediction
effect.
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TABLE 2. Comparison of NSE (5-day average) of different models.

TABLE 3. Comparison of MRE (5-day average) of different models.

TABLE 4. Comparison of RMSE (5-day average) of different models.

B. COMPARATIVE ANALYSES
Table 2, Table 3 and Table 4 compare respectively the NSE,
MRE and RMSE factors of the above prediction models and
other state-of-the-art methods includingARIMA,WANNand
LSTM models.

In the tables, ‘‘Model1’’ represents the GRU-based pre-
diction model of single water station, ‘‘Model2’’ represents
the GRU-based prediction model with three water stations,
and ‘‘Model3’’ represents the CNN-GRU-based prediction
model with three water stations. Figure 10 further shows
the comparison of RMSE (5-day average) in the form of a
histogram.

From the above comparisons, the following results can be
observed:

1) In most cases, all three evaluation factors of the models
based on GRU and LSTM are better than that of the classical
ARIMA andWANNmodel, reflecting the advantages of deep
learning.

2) In most cases, all three evaluation factors of ‘‘Model1’’
which based on GRU are nearly the same as the model
based LSTM. However, with fewer parameters and faster
convergence speed, GRU is chosen to construct the prediction
models rather than LSTM.

FIGURE 10. Histogram of RMSE of the different models.

3) In all seasons, the three all evaluation factors of
‘‘Model2’’ and ‘‘Model3’’ which based on three water sta-
tions are better than ‘‘Model1’’ which based single water
station. Especially, the ‘‘Model3’’ based on CNN-GRU has
the highest accuracy.

The advantage of the CNN-GRU-based prediction model
includes that the GRU part can learn the changing trend of the
water level, and the CNN part can learn the spatial correlation
amongwater level data from the adjacent water stations. From
the visualization analysis of the water level data, some extent
delay of values can be found from an upper station to an adja-
cent lower station, and the closer water stations are, the higher
their water level value are correlative. By the one-dimensional
convolution, the CNN network part can learn kernels to cap-
ture relationship features among adjacent water stations, and
utilize the water level value of the adjacent water stations with
different weights. Therefore, the interference of abnormal
value of a single water station can be weaken to some extent,
and the generalization ability and robustness of the prediction
model will be improved thereby.

4) The accuracy with the factor of NSE or RMSE of each
model increases in order flood, dry, middle water season.
It may reflect that the water level data in middle water season
has smoother trend, and that in flood season is more fluctuat-
ing. However, when using MRE, accuracy increases in order
dry, middle water, flood season. That is mainly because the
MRE is a relative error whichwould obtain smaller evaluation
value when the observe value is larger.

5) Regardless of which period, no matter which model, for
Anqingwater station, all three evaluation factors of prediction
result are slightly better than that of the Wuhu water station.
This is mainly because theWuhu water station is closer to the
estuary, and its water level is affected by tidesmore obviously.
So, under the joint action of the water flow from upstream
and the counter flow of tidal water, the change of water level
is more complicated, which may lead to lower prediction
accuracy.

6) Figure 11 shows the further detail of the RMSE of
every day in the dry season. It can be observed that the error
increases and the accuracy decreases gradually as the pre-
diction time increases. The water level is affected by various
uncertain factors, the change does not always follow a certain
regularity, but has a certain degree of randomness. The longer
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FIGURE 11. Comparison of daily RMSE of different models in dry season.

the prediction time, the harder it is for the model to capture
the interference caused by randomness. And, from Figure 11,
it can also be observed that the multi-day prediction accuracy
of the all GRU-based models are higher than that of the
ARIMA andWANNmodels. It reflects that the GRU network
is less affected by randomness due to its consideration of
long-term water lever states.

VIII. CONCLUSION AND FUTURE WORK
In this paper, deep neural networks are used to investigate
water level prediction of inland rivers. The GRU-based pre-
diction model is used to extract the time series wave shape
features of water level changes, and a prediction model based
CNN-GRUwith multiple water stations is proposed for water
level prediction. Practical experiments based on a 30-years
water level dataset of the Yangtze River were performed
to evaluate the proposed model. From the evaluation and
comparison results, the following conclusions can be drawn:

1) The proposed CNN-GRU-based prediction model is
superior to the classical ARIMA and WANN models. It has
higher prediction accuracy, as it considers more data from
multiple water stations with spatial correlation to predict the
water level of a middle station, which is helpful for it to
decrease the affection of the data randomness of a single
water station to some extent.

2) For GRU-based models, the better the smoothness of
time series data of water level, the higher prediction accuracy.
In the Yangtze River, the accuracy of prediction increases
in the order of flood, dry and middle water season. And,
the farther the water station is away from the sea, the less
affected by tides, and the higher prediction accuracy. In the
next step of the study, the influence of tides on the water level
prediction accuracy in the lower tidal water section of the
Yangtze River will be investigated in detail, the observation
data of water level and tide information will be combined to
improve the prediction model.

3) Even the CNN-GRU-based model, its prediction errors
increase with the forecasting days. Therefore, in practice, the
long-term prediction more than 5 days is not very efficient.

The researched models of this paper have been used on a
public service platform of the Yangtze River Nanjing Water-
way Bureau, to provide intelligent water level prediction
services in the form of REST interfaces. The intelligent

prediction service can be integrated in many other application
systems to aid vessels to navigate more safely or develop
voyage plan more reasonably.

In the future, cluster methods can be used to analyze
the water levels of different river segments for clustering
and extracting important environmental factors. Furthermore,
the clustered datasets can be adopted to train the CNN-GRU-
based prediction model for the improvement of water level
prediction.
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