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ABSTRACT With the formulation of United Nations Convention on the Law of the Sea, marine pollution
has received widespread attention from various countries. Green navigation is an important requirement for
route planning, in which energy consumption is its primary focus. Ships are affected by complex marine
meteorological environments, so it is difficult to plan a reasonable route. Some methods have been proposed
to solve this problem, but there are some shortcomings, such as no consideration of the effect of wind
direction, wind speed and wave. To solve this problem, we introduce a meta-heuristic whale optimization
algorithm (WOA), which helps ships find a low-energy-consumption and safe route in a large-scale complex
marine environment. The results of our simulation experiments indicate that WOA is more competitive than
other state-of-the-art algorithms for route planning.

INDEX TERMS Marine pollution, marine meteorological, meta-heuristic, whale optimization algorithm.

I. INTRODUCTION
Themovement of ships is affected by various marine environ-
mental disturbances, such as wind and waves. In particular,
due to the complexity and variability of marine meteorol-
ogy in oceantransportation, the ship’s navigation needs to be
adjusted in time according to different time and latitude and
longitude weather information. Therefore, when designing a
ship’s navigation path or a set of route points, it is necessary
to consider the impact of the marine climate and improve
navigation efficiency. There is a economically feasible path
to be generated when the navigation time is satisfied. In addi-
tion, the ship is an under-actuated system, and its degree of
freedom of movement is higher than the number of its driving
modes. The motion of an underdriven vehicle is limited by
the vehicle’s inherent motion constraints, so it is important
to generate a feasible path for a vehicle with these motion
characteristics [1].
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Marine meteorology is closely related to navigational
activities, especially wind speed and waves, which are
often in constant or even severe movements. The influence
of marine meteorological conditions on navigation is very
important. In addition to stalling or increasing thewind speed,
the ship drifted downwind on the one hand and deflected the
ship on the other. Due to the different wind characteristics
of the stable wind and the sudden wind, the wind direction
sometimes changes, and the relative wind direction of the
ship also changes when the ship turns. When the draft is
different, the wind receiving area will also be very differ-
ent [2]. Facing the harsh environment of strong winds and
waves, the operator needs to adjust the course in time, adjust
the ship’s trim, and choose the appropriate anchoring area.
This adds to the complexity of ship maneuvering. When a
ship sails in a high wind and wave area, the ship will expe-
rience more severe sway motion, speed reduction, unstable
course, and other manipulation difficulties caused by it [3].
The establishment of the route is mainly based on the latest
weather conditions and a large amount of sea state data. Wind
speed and wave height change dynamically along with time
and geographical location. In order to optimize the route, it is
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necessary to consider these dynamic changes and the sailing
conditions of the ship. According to the European Center for
Medium-Term Weather Forecasting, we can obtain marine
meteorological information at each latitude and longitude at
different times.Our purpose is to find the best path meeting
ship navigation constraints under complex marine weather,
that is, to find a route between the origin and destination,
which can ensure that the ship is the most economical under
certain constraints.

However, due to the limitation of current technology,
the latest ship path technology only considers the marine con-
ditions only in small-scale areas or fixed areas. In the face of
large-scale complex marine environment, it is difficult to use
traditional optimization methods, such as Newton’s method,
conjugate gradient method, Powell method, Lagrangian mul-
tiplier method, branch and bound method, and dynamic pro-
gramming method [4]. In the large-scale complex marine
environment, the wind speed and wave height for each lat-
itude and longitude are different, so it is difficult to give
a feasible solution in a reasonable time. Therefore, it is
extremely important to find a novel large-scale optimization
method to solve these real-world large-scale and complex
problems. In recent years, meta-heuristic algorithms have
received widespread attention from scholars [5]. The main
purpose of the development of meta-heuristic algorithms is
to quickly solve path planning problem and get satisfactory
solutions. The meta-heuristic algorithm has exhibited good
performance in solving most of the nonlinear and multi-
modal practical optimization problems [6]. At the same time,
it has also been widely used, such as dynamic optimization,
infinite impulse response filter design, image processing,
mechanical design issues, task scheduling, data mining and
other engineering issues. Its superior energy comes from
studying the laws of physical, social and biological phenom-
ena in nature, and imitating the best characteristics of natural
phenomena.

Whale Optimization Algorithm (WOA) is a new swarm
intelligence optimization method proposed by Mirjalili [7].
This idea is derived from the special predatory behavior
unique to humpback whales in the ocean. The whale opti-
mization algorithm achieves the optimization goal through
the simulation of whale rounding, bubble attack and search
behavior. The algorithm has the characteristics of simple prin-
ciple, simple operation, easy implementation, few parameters
to be adjusted and strong robustness. In terms of function
optimization, theWOA is significantly superior to algorithms
such as particle swarm optimization (PSO) [8], differential
evolution (DE) [9] and gravitational search (GSA) [10] in
terms of accuracy and stability. At the same time, the WOA
has been widely used in many fields, such as economic
dispatch, photovoltaic MPP system, capacitor location and
image segmentation.

In recent years, many scholars have proposed some swarm
intelligence algorithms to solve path planning problems.
Wei proposed swarm hyper-heuristic algorithm to solve
path planning of AUV [6]. Ma proposed an improved ant

TABLE 1. Ship parameters.

colony algorithm based on particle swarm algorithm for path
planning of autonomous underwater vehicles [11]. Zamuda
proposed difference algorithm for underwater glider path
planning [12]. Zhou and Wang proposed an improved flower
pollination algorithm (FPA) for path planning of underwater
vehicles [13]. Dewangan used gray wolf optimization algo-
rithm to solve 3D path planning [14]. However,no whale
optimization algorithm has been proposed to solve the prob-
lem of ship path planning under large-scale complex marine
weather.

The rest of our paper is structured as follows. In section 2,
the path planning of ship model under complicated marine
weather is introduced in detail. In section 3, we mainly dis-
cuss the principles of whale optimization algorithm in route
planning. In section 4, we analysis the simulation experi-
ments. Finally, we summarizes the full paper and proposes
future research directions in section 5.

II. THE PATH PLANNING OF SHIP MODEL UNDER
COMPLICATED MARINE WEATHER
Different types of ships have different sailing conditions such
as drainage and steering. In this paper, the value of drainage
is 50250.8. The range of steering is 0◦ to 35◦. Other detailed
parameters are given in Table 1. In a large-scale and com-
plicated marine meteorological environment, the ship’s path
planning model not only needs to meet the constraints of the
ship’s own conditions, but also needs to consider the impact
of marine meteorology on the ship’s navigation [15]. We will
constrain the ship from the following aspects.

In large-scale and complicated marine weather, many fac-
tors affect the navigation route of ships, the most important
of which are the resistance of water, the resistance of wind
and the influence of waves. This section details the ship
path model for a given case under the influence of complex
weather.

A. HYDROSTATIC RESISTANCE MODEL
During navigation, the greater the resistance, the greater
the power required to meet a certain speed [16]. Similarly,
the greater the resistance of the still water during the sailing
of a ship, the more power the ship needs, which leads to an
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FIGURE 1. Selection of calculation map.

increase in fuel consumption. In the calculation of hydrostatic
resistance Rtotal , the total hydrostatic resistance of the ship
is composed of frictional resistance Rf and residual resis-
tance Rr .

Cf =
0.4621
lgRe2.6

(1)

Re =
v1LWL

9.224× 10−7
(2)

1Cf = [105× (
Ks
LWL

)
1
3 − 0.64]× 10−3 (3)

Rf =
ρV12S(1Cf + Cf )

2000
(4)

The remaining resistance (Rr ) needs to be obtained through
a series of calculations. The calculation model of Rr is given
by Eq.(19). Initially, give some variables that need to be
calculated.We need to determine whether the length modi-
fication is needed based on the value of LWL/B. We need to
determine whether the length modification is needed based
on the value of LWL/B. If the value is equal to 6.5, length and
width correction is not required; otherwise, length and width
correction is required [17].

α = 0.674× sin(LWL × 0.024+ 2.559)

+ 0.1644× sin(LWL × 0.09254− 2.719) (5)

ξ = 557.1801− 134.06849× g− 3.31675× g2

+ 2.71624× g3 − 0.16318× g4 (6)

The residual resistance correction factor α and the length
and width correction percentage ξ are given by Eq.(5) and
Eq.(6) respectively.

The residual resistance coefficient Cr is read from the map
data.The five calculation graph formulas are shown Eq.(7) to
Eq.(11).

A = 13.496× Cp − 8.4998− Lbp (7)

B = 13.28212× Cp − 8.81098− Lbp (8)

C = 13.23043× Cp − 9.15623− Lbp (9)

D = 13.51808× Cp − 9.77031− Lbp (10)

E = 13.32314× Cp − 9.98179− Lbp (11)

Figure 1 presents the schematic diagram of five curves.
If given CP of the ship, two adjacent ordinates ya, yb can

be obtained in the selected calculation map to obtain the
remaining resistance coefficient. The remaining resistance is
obtained according to the remaining resistance coefficient.
If CP can be read directly on the map, the resistance value
can be obtained according to the correction curve. When CP
is not on the curve, interpolation is needed for calculation.

The interpolation graph is shown in Figure 2. In actual
operation, we convert five kinds of graphs into five data files.
According to the five formulas A, B, C, D and E, if the
data calculated by A is smaller than B, C, D and E, then we
select the data file converted by A as the file for interpolation
calculation [18]. The difference between the two calculation
results is d . The interpolation calculation formula is shown
by Eq.(12) to Eq.(17).

x =
V1√
CpLWL

(12)

Cm =
Cb
Cp

(13)

Am = Cm × B× T1 (14)

Cra =
yaAm
S
× 10−3 (15)

Crb =
ybAm
S
× 10−3 (16)

CR = Cra+ (Crb− Cra)× d (17)

From the variables obtained above, the formula of Cr can
be obtained by Eq.(18), and we can also get the formula for
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FIGURE 2. Five calculation maps.

calculating total water resistance (Rtotal1) in Eq.(20).

Cr =
CRAmd
1000S

(18)

Rr =
( 4100 + 1)αCrρV12S

2000
(19)

After sorting and simplifying the formulas Rf and Rr ,
we can get the formula for calculating the total static water

TABLE 2. The stall direction factor Cβ .

TABLE 3. The stall size factor Cµ.

resistance Rtotal1.

Rtotal1 =
[Cf +1Cf + ( 4100 + 1)αCr ]ρV12S

2000
(20)

B. SPEED LOSS OF SHIP
Except the Rtotal1, the total additional resistance is another
major factor that causes the ship’s total resistance to sail at
sea due to marine weather [19]. The effects of waves and
wind are mainly discussed here. Therefore, the approximate
method established by Kwon is used to estimate the impact
of waves and wind [20]. Kwon method is shown by Eq.(21)
to Eq.(24). Figure 3 presents the wind direction angle in the
Kwon method.

Fr =
V1√
gLpp

(21)

1V
V1
=

CβCµCF
100

(22)

1V = V1 − Vship (23)

g = 9.8(
m
s2
) (24)

Here,Cβ is the stall direction factor. It is related to the wind
direction and the Beaufort Wind Scale, Cµ is the stall size
factor, which varies with the square coefficient of the ship,
the load, and the Fourud number, CF is the factor of ship
type, which related to the type of ship, Beaufort Wind Scale,
and the displacement of the ship, Vship is the vessel speed in
current marine weather.

Table 2, Table 3 and Table 4 show the calculation formulas
of Cβ ,Cµ and CF under different constraints, respectively.

C. SHIP HOST POWER CALCULATION
The fuel consumption of a ship is closely related to the power
of the main engine (Pe). Therefore, a calculation model of the
host power needs to be given [4]. The main engine power is
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FIGURE 3. Wind direction angle in Kwon method.

TABLE 4. The stall size factor CF .

obtained by total resistance, ship speed and other parameters.
The main engine power is also composed of the still water
main engine power (Pe1) and the additional power (1Pe). The
calculation for Pe1 and 1Pe are given by Eq.(25) to Eq.(31).

Pd1 =
Rtotal1V1
η0

(25)

Pe1 =
Pd1
ηs

(26)

Rtotal2 =
[Cf +1Cf + ( 4100 + 1)αCr ]ρV 2

shipS

2000
(27)

1Rtotal = Rtotal1 − Rtotal2 (28)

1Pd =
1Rtotal1V1

η0
(29)

1Pe =
1Pd
ηs

(30)

Pe = Pe1 +1Pe (31)

D. FUEL CONSUMPTION
Through the above calculation of resistance and power,
a model of fuel consumption can be obtained, which is the
required objective function [21].

sfoc = 0.20198− 1.06628× 10−5 × Pe + 1.59045× 10−9

×Pe2 − 1.35961× 10−13 × Pe3

+ 5.67084× 10−18 × Pe4 (32)

The value of sfoc in Eq.(32) is the fuel consumption rate
(kg/kw.h), and Pe in Eq.(31) is the power of the host (Kw).
So, the fuel consumption spef is given by Eq.(33).

spef = sfoc× Pe (33)

Assuming the voyage is divided into K , given the coordi-
nates of the starting point (x1, y1) and the next point(x2, y2),
the distance (Di) between the two points can be obtained by
Eq.(34), and the time for voyage can be obtained according to
the distance (D) in Eq.(35) and each speed in Eq.(36), the total
fuel consumption of the route (F) in Eq.(39) can be obtained
from each sailing time and fuel consumption per hour.

Di =
arccos sin y1 sin y2 + cos y1 cos y2 cos x2 − x1

5× 180× 60
(34)

D =
K∑
i=1

Di (35)

ti =
Di

3600Vship
(36)

T =
K∑
i=1

ti (37)

Fi =
spef ti
1000

(38)

F =
K∑
i=1

Fi (39)

In summary, the objective function (F) of the ship sailing in
marine weather is obtained by Eq.(39). Next, the mentioned
whale optimization algorithm is used to optimize the objec-
tive function to obtain the desired fuel consumption.
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FIGURE 4. Bubble-net feeding behavior of humpback whales.

III. WHALE OPTIMIZATION ALGORITHM
Whales usually live in groups, and in the process of predation,
they surround prey (fish and shrimp) on the surface of the
sea and spit out spiral-shaped bubbles to prey. This predation
behavior is called bubble predation. The bubble predatory
method is specifically that the whale first dives into the
water at a depth of about 15 meters and moves upwards in a
spiral posture toward the water surface. During the swimming
process, many bubbles of different sizes are spit out, so that
the last spit and the first spit at the same time. It rises to the
surface of the water, simultaneously, the spit air bubbles form
a cylindrical or tubular bubble web, like a web woven by a
spider, which encloses the prey tightly and presses towards
the center of the web. Then, the whale opens themouth almost
upright in the bubble circle and swallowed the prey in the net.
The bubble predation behavior is shown in Figure 4 [22].

Inspired by this special predator behavior, the swarm intel-
ligence optimization algorithm WOA simulates the preda-
tion behavior of whales in the ocean, and achieves the pur-
pose of optimizing search by whale enveloping and bub-
ble attacking prey [23]. Consistent with the classic particle
swarm algorithm, ant colony algorithm [24], and artificial
bee colony algorithm, the essence is the process of statistical
optimization. Because of its advantages of simple operation,
few parameters, and excellent performance, the WOA has
received extensive attention from many scholars, and it has
been applied to different practical problems [25].

A. MATHEMATICAL MODEL OF WHALE OPTIMIZATION
ALGORITHM
Thewhale optimization algorithm includes three main stages:
random search for food, surround predation and bubble

predation. Assume that the size of the whale population is
N and the dimension of the problem space is D. Then the
position of the i-th whale in D-dimensional space is Xi =
(x11 , x

2
2 , . . . , x

D
N , i = 1 to N ), and the position of the optimal

whale (predatory prey) corresponds to the global optimal
solution.

1) WHALE PREDATION
During the predation process, the whale first observes the
location of the prey and then surrounds it. In the whale algo-
rithm, it is assumed the solution and the problem variables
are also the position of the lead whale (prey). After defining
the position of the best whale, other whale will swim towards
the position of the whale to update its position. In contrast,the
distance between the individual and the optimal whale posi-
tion (prey) needs to be solved based on Eq.(40) in the WOA.

ED = | EC EX∗(t)− EX (t)| (40)

where EX∗(t) represents the position of the best whale in the t
generation (position of prey), EX (t) represents the the position
of the whale in the t generation, EX∗(t) updates its position
with each iteration, and constant EC is the swing factor in
Eq.(40).

The whale is updated according to the position of the lead
whale. The position update formula is given by Eq.(41) to
Eq.(43).

EX∗(t + 1) = EX∗(t)− EA ED (41)
EC = 2Er (42)
EA = 2EaEr − Ea (43)

where Er is a random number between [1, 0], and Ea decreases
linearly from 2 to 0, as the number of iterations increases.
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2) BUBBLE PREDATOR BY WHALE(LOCAL SEARCH PHASE)
To simulate the bubble predation behavior of a whale, two
strategies can be described as follows:

a: SWING SURROUNDED BY PREDATOR
The position of the whale at this stage is obtained by updating.
The convergence factor EA at this stage is achievedwith a linear
decrease of α from 2 to 0. A is a random value between [−α,
α]. When the random value A is between [−1,1], the next
position of the whale may be any position between the current
position of the whale and the position of the prey.

b: SPIRAL BUBBLE PREDATOR
At this stage, the whale first calculates the distance between
itself and its prey (the best position so far), and then the
whale moves upstream in a spiral posture and spit out bubbles
of varying sizes to hunt fish and shrimp. The mathematical
model of this behavior is given by Eq.(44) to Eq.(45).

ED′ = |EX∗(t)− EX (t)| (44)
EX ′(t + 1) = ED′%bl cos (25l)+ EX∗(t) (45)

where ED′ is the distance from the i-th whale to the food, l is
a random value between [−1,1], and b is a spiral constant.
In the process of whale predation, there are two mech-

anisms: sway encircling predation and bubble predation.
Therefore, it is assumed that the probability that the whale
performs two predatory behaviors is 50%, that is, the whale
updates its position every time with 50% probability.The
mathematical model is given by Eq.(46):

EX (t + 1) =

{
EX∗(t)− EA ED, if p < 0.5
ED′%bl cos (25l)+ EX∗(t), if p ≥ 0.5

(46)

3) WHALE SEARCHING FOR PREY RANDOMLY(GLOBAL
SEARCH PHASE)
Researchers have discovered that during the predation pro-
cess, the whale will follow its partner’s position and change
to update its position. In other words, the whale at this stage
will no longer update its position following the position of
the best whale, but it will perform a random large-scale
search for prey to determine the next position where needed
to update. Therefore, in this algorithm, the whale performs
a larger range search at this stage according to the change
of the value of the convergence factor |EA|. When |EA| > 1,
the whale will perform a random search for prey and perform
a global search to avoid falling into a local optimum. The
mathematical formula at this stage is presents by Eq.(47) to
Eq.(48)

ED = | EC EXrand (t)− EX (t)| (47)
EX (t + 1) = EXrand (t)− EA ED (48)

where EXrand is the position of a random whale (or prey) in the
current population.

This section details the basic principles and mathematical
models of the whale optimization algorithm. In the following

FIGURE 5. The flow chart of WOA.

subsection B, we discuss the whale optimization algorithm in
detail to solve route planning under complex marine weather.

B. ALGORITHM WOA FOR SHIP PATH PLANNING
The whale optimization algorithm is applied to the ship path
planning problem. The optimization space of the algorithm
represents the ship path optimization space. Each whale rep-
resents a route from the starting point to the end point. The
mathematical model of the ship path planning is the objective
function of the whale optimization algorithm [22]. A good
whale position represents the best path, and the flow chart is
given by Figure 5.

IV. SIMULATION EXPERIMENTS
A. SIMULATION PLATFORM
The test environment is set up on a computer with Intel Core
i5-6500 CPU, 3.20 GHz, 8GB RAM, running on Windows 7.

B. EXPERIMENTAL SETUP
In this section, WOA is benchmarked in two simulation
cases.In the first case, it is a route from Tokyo to Oakland,
where the starting point and the terminal point described by
latitude and longitude are (35,139) and (38,-127) respectively.
Similarly, the starting point and the terminal point of the route
from Keelung to Rabaul in the second case are (25,121) and
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FIGURE 6. The convergence curves for case 1.

FIGURE 7. The convergence curves for case 2.

(4,152) respectively. These latitudes and longitudes are inte-
gerized for calculation. To verify our method, we compared
theWOAwith PSO and GWO, the corresponding parameters
of which are given in Table 5. Such values represent the
best parameter sets for these algorithms. In all the three
experiments, the swarm population is 30 and the maximum
iteration number is set to 100.

C. EXPERIMENTAL RESULTS AND ANALYSIS
The experimental results are shown in Table 6. In the table,
Best, Worst, Mean, and Std represent the best fitness value,
the worst fitness value, the average fitness value, and the

TABLE 5. The initial parameters of algorithms.

standard deviation, respectively. The best results are denoted
in bold type.The results are averaged over 30 independent
runs. It is clearly that, to settle theminimum fuel consumption
problem of route planning, the performance of WOA is better
than PSO and GWO. The best fitness value of WOA is lower
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FIGURE 8. The actual route for case 1.

FIGURE 9. The actual route for case 2.

than the competing algorithms, which indicates that theWOA
is more suitable for such route planning. In the comparison
of the test results of the three algorithms, the variance value
of the GWO is the smallest, indicating that the test results
which produced by the algorithm running independently for
30 times have little fluctuation. Figures 6 and Figure 7 show
the convergence of the three algorithms. The convergence
curve is the result of 30 independent runs of the three algo-
rithms, where all the convergence curves are drawn as mean
values.

It can be obtained from the convergence curve that the
convergence performance of theWOA is better than the other
two algorithms. The objective function value obtained by the

WOA is always lower than the other two algorithms. It can be
concluded that the WOA has a strong approximation ability
of the optimal value.

According to the experimental results of the algo-
rithm operation, the actual routes of the two cases
obtained through simulation are shown in Figure 8 and
Figure 9.

The variance reflects the stability of the algorithm.
Figures 10 and Figures 11 show the variance diagram of the
three algorithms.The smaller the variance, the smaller the
data fluctuation. In the case 1, the variance of the PSO is
the smallest. But in the case 2, the variance of the WOA is
the smallest.
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FIGURE 10. The variance diagram for case 1.

FIGURE 11. The variance diagram for case 2.

TABLE 6. Experimental results for the two test case.

In order to verify the validity of the test results, a p-value
Wicoxon rank-sum test is performed in Table 7. p > 0.05
indicates that there is no significant difference between the
algorithms, and p < 0.05 indicates that there is a significant
difference. The data is not obtained by accident and has
reference value.

TABLE 7. p-value Wicoxon rank-sum test.

In summary, it can be concluded that fuel consumption is
very important in the problem of ship path planning. When
using a population-based algorithm to solve ship routing
problems, low fuel consumption is our goal. This study shows
that WOA is very suitable for solving this problem.

V. CONCLUSIONS AND FUTURE WORKS
In this paper, the WOA is used to find the optimal path for
the ship path planning problem under the complicated large
amount of marine meteorological. The high exploration and
development of this algorithm is the motivation of this paper.
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The algorithm is applied to two test cases. For verification,
the results of WOA are compared with two stochastic opti-
mization algorithms of PSO and GWO. The results show that
this method can effectively solve the problem of ship path
planning. Because the WOA has a very high local optimal
avoidance, which increases the probability of finding the opti-
mal weighting of the path and the appropriate approximation
of the cost. In addition, due to the high exploitation of WOA,
the accuracy of the weighted and cost optimal values obtained
is very high. The next work will focus on these two issues.
On the one hand, WOA will be used to solve the problem of
ships avoiding obstacles such as islands and shallow waters.
On the other hand, we will try to use other better algorithms
to solve the same problem.
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