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ABSTRACT Sleep stage classification, including wakefulness (W), rapid eye movement (REM), and non-
rapid eye movement (NREM) which includes three sleep stages that describe the depth of sleep, is one of the
most critical steps in effective diagnosis and treatment of sleep-related disorders. Clinically, sleep staging
is performed by domain experts through visual inspection of polysomnography (PSG) recordings, which is
time-consuming, labor-intensive and often subjective in nature. Therefore, this study develops an automatic
sleep staging system, which uses single channel electroencephalogram (EEG) signal, for convenience of
wearing and less interference in the sleep, to do automatic identification of various sleep stages. To achieve
the automatic sleep staging system, this study proposes a two-layer stacked ensemblemodel, which combines
the advantages of random forest (RF) and LightGBM (LGB), where RF focuses on reducing the variance of
the proposedmodel while LGB focuses on reducing the bias of the proposedmodel. Particularly, the proposed
model introduces a class balance strategy to improve the N1 stage recognition rate. In order to evaluate
the performance of the proposed model, experiments are performed on two datasets, including Sleep-EDF
database (SEDFDB) and Sleep-EDF Expanded database (SEDFEDB). In the SEDFDB, the overall accuracy
(ACC), weight F1-score (WF1), Cohen’s Kappa coefficient (Kappa), sensitivity of N1 (SEN-N1) obtained
by proposed model are 91.2%, 0.916, 0.864 and 72.52% respectively using subject-non-independent test
(SNT). In parallel, the ACC,WF1, Kappa, SEN-N1 obtained by proposed model are 82.4%, 0.751, 0.719 and
27.15% respectively using subject-independent test (SIT). Experimental results show that the performance
of the proposed model are competitive with the state-of-the-art methods and results, and the recognition rate
of N1 stage is significantly improved. Moreover, in the SEDFEDB, the experimental results indicate the
robustness and generality of the proposed model.

INDEX TERMS Sleep stage classification, single channel EEG signal, two-layer stacked ensemble model,
random forest, LightGBM.

I. INTRODUCTION
Sleep is one of the most important circadian rhythms of
human physiological activities [1]. The quality of sleep
impacts the performance of many basic activities, such as
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learning, memorization, and concentration [2]. Sustained
deprivation of sleep can induce the rising risk of hyper-
tension [3], sleep apnea syndrome [4], obesity [5], cardio-
vascular disease [6], Alzheimer’s disease [7], Parkinson’s
desease [8], heart disease [9], [10] and a decrease in the effi-
ciency in the immunitary system. Better understanding of the
above mentioned sleep-related diseases and disorders relies
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on accurate detection of sleep stages and the sleep cycle.
In sleep studies on clinical diagnosis and treatment of sleep
disturbances, polysomnography (PSG) is a gold standard
method for sleep evaluation, which requires the recording
of many physiological signals such as electroencephalogram
(EEG), electrocardiogram (ECG), electromyography (EMG),
electrooculogram (EOG), pulse oximetry and respiration.
PSG recordings are generally divided into 30 s epochs and
each epoch is assigned with a certain sleep stage by domain
experts using guidelines developed by Rechtschaffen and
Kales (R&K) [11]. Basing on the R&K rules, sleep recordings
can be classified into six sleep stages: wakefulness (W), non-
rapid eye movement (NREM) sleep stage 1 (N1), NREM
sleep stage 2 (N2), NREM sleep stage 3 (N3), NREM sleep
stage 4 (N4), and rapid eye movement (REM). A more recent
classification manual proposed by the American Academy
of Sleep Medicine (AASM) in 2007 (updated in 2017) [12],
combines N3 and N4 into a single stage of deep sleep to
be slow wave sleep (SWS). These distinct sleep stages are
associated with distinct physiological and neuronal features
which are generally used to identify the sleep stage a person is
in. This process can be called sleep scoring, or sleep staging.
However, manual stage scoring on PSG by domain experts
is time-consuming, labor-intensive and often subjective in
nature. Moreover, PSG is expensive and it may be uncomfort-
able for the patients as several adhesive electrodes and wires
are attached to them to acquire physiological during sleep.
Thus, developing a simple and reliable automatic sleep stage
scoring system could be of great help. Among all the PSG
signals, EEG signal plays a crucial role in recognizing sleep
stages no matter manual scoring by human experts or auto-
matic classification systems. In order to design a convenient
wearable system, this study only employs single channel EEG
signal, Pz-Oz channel, to classify sleep stages, since it has
been proved by previous studies [13], [14] with significant
advantages. The sleep stage classification methods, espe-
cially machine learning methods, based on single channel
EEG signal have been widely investigated so far.

Machine learning methods follow the typical path of data
preprocessing, feature extraction and feature selection before
feeding the data into a classifier. Normally, EEG signals are
composed of alpha (α), beta (β), theta (θ), delta (δ), sawtooth,
sigma (σ ) and K-complex characteristic waves. For different
sleep stages, EEG are characterized by different waves. The
characteristic waves of EEG signals for the 5 stages and
the frequency range of each characteristic wave are shown
in Table 2. Clearly, Table 2 suggests that σ wave and δ
wave are dominant during N2 and SWS, respectively. In addi-
tion, α and β waves are dominant in W and REM, while θ
wave is dominant in N1. Therefore, for EEG preprocessing,
most studies [16]–[18] divided EEG signals into different
frequency bands. Lsu et al. [19] used six finite impulse
response band-pass filter in δ wave (0.5-2 Hz), sawtooth
wave (2-6 Hz), θ wave (4-8 Hz), α wave (8-13 Hz), σ wave
(12-14 Hz) and β wave (12-30 Hz), to separate the character-
istic waves of EEG signals, respectively. Moreover, Memar

TABLE 1. Relationship between wave frequencies and ages.

and Faradji [17] claimed that the gamma (γ , 30-49.5 Hz)
wave has a significant effect on sleep stage classification
and the evidence that not using γ wave results in significant
degradation in performance. However, these studies have
ignored the effect of age on EEG signals. In fact, the fre-
quency of α wave is closely related to age. Generally, α wave
is formed at about 3 years old and the frequency is about
8 Hz, while the main frequency band of α wave for adults
is 9-11 Hz, and the α wave slows down after 60 years old
[20]–[22]. In addition, β wave increases with age, but
decreases after 60 years old. The relationship between wave
frequencies and ages can be summarized in Table 1.

For feature extraction of EEG signals, the existing stud-
ies have been discussed in detail by many studies [15],
[17], [18], [23]–[30], including statistical features (standard
deviation, mean, maximum, minimum, skewness, kurtosis,
etc.), entropy features (kraskov entropy, spectral entropy,
renyi entropy, etc. ), dimension features (fractal dimension,
katz fractal dimension, petrosian fractal dimension, higuchi
fractal dimension, etc.), hjorth parameters (hjorth mobility,
hjorth complexity, hjorth mobility) and etc. However, EEG
physicians make judgments when interpreting EEG signals
based on age, lead position and other factors including genetic
factor, consciousness state, mental activity, drug and etc.,
because the same pattern may differ due to other factors.
Therefore, this study includes the age of subject in the fea-
ture selection scheme. For feature selection, several feature
selection techniques, including recursive feature elimination
(RFE) [31], ReliefF [32], minimum redundancy maximum
relevance (mRMR) [33] and information gain (IG) [34], have
been discussed. In this study, mRMR is employed since it can
achieve the best performance in the final sleep stage. Beyond
the specific electrophysiological features used, existing clas-
sification methods mainly include support vector machine
(SVM) [30], decision tree (DT) [35], random forest (RF)
[18] and adaptive boosting [23], etc. Moreover, in order to
improve the performance of staging results, some works have
paid attention to correcting the results after classification,
including smoothing rules [36], path probability rules [37]
and hidden markov model (HMM)-based strategy [18]. How-
ever, in the benchmark dataset, the proportion ofW stage data
reaches up to 50%. Therefore, this study is an unbalanced
classification problem. Unfortunately, the existing studies
rarely consider this problem. In addition, most of existing
studies use a single algorithm for sleep staging, but do not
integrate these algorithms and then combine the advantages
of each algorithm to predict sleep staging. For RF, it can
improve the variance of the model prediction results through
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TABLE 2. Characteristic waves of EEG signals for each sleep stage.

bootstrap sampling and random selection of features, while
the boosting-type algorithm can improve the bias of themodel
prediction results through optimizing the residual. Therefore,
this study will combine the advantages of these two types of
algorithms through stacking method to further improve the
predictive performance of the model.

Although the current sleep staging algorithms have
achieved promising results with machine learning, there is
still room and need for improvement, especially the sensi-
tivity of N1 (SEN-N1) stage due to imbalanced data. Hence,
the aim of the present study is to develop an automatic sleep
staging system based on single channel EEG signal which
can be realized in a portable device and improve the SEN-N1.
In order to improve the SEN-N1, this study proposes a two-
layer stacked ensemble model, which can effectively deal
with the class imbalance in sleep staging, and thus improve
the performance of the proposed model, especially the SEN-
N1.Moreover, the existing studies most focused on analyzing
EEG signal features without considering the features of the
subject, such as age. Therefore, this study first attempt to
apply age information to sleep staging. In order to verify the
performance of the proposed model and the effectiveness of
introducing age information into the subjects, the paper con-
ducted experiments in two published sleep staging databases,
including Sleep-EDF database (SEDFDB) and Sleep-EDF
Expanded database (SEDFEDB), and the test schemes use
subject-non-independent test (SNT) and subject-independent
test (SIT), respectively. The SEDFDB is designed to compare
with existing studies of sleep staging, while the SEDFEDB is
used to verify the robustness and versatility of the proposed
model.

The rest of this paper is structured as follows. Mate-
rials and proposed methods are explained in full detail
in Section II. Experimental results with comparison are
described in Section III. Discussion is given in Sections IV,
and Section V is the conclusion.

II. MATERIALS AND METHODS
This paper develops a simple and reliable automatic sleep
staging system based on single channel EEG signal. Fig-
ure 1 shows the steps of proposed method and the following
subsections describe the details of each step. Particularly,
the orange box in Figure 1 highlights some innovative mea-
sures taken in this study in order to distinguish between var-
ious stages of sleep. For the step of ‘‘Extracting feature from
subject’’, this study is the first to include age in the feature

extraction scheme of sleep staging, taking into account that
α wave and β wave show a large difference with age. For
the step of ‘‘class balance strategy’’, this study introduces
class balance strategy to address the unbalanced classifica-
tion problem. Moreover, this study uses stacking method to
integrate RF algorithm and lightGBM (LGB) [38] algorithm
to further improve sleep staging performance.

A. SLEEP DATASETS
In this study, the first experimental data come from the
SEDFDB [39] provided by Physionet, which is an open-
source, benchmark, and extensively utilized database in
sleep scoring literature [17], [18], [37]. The second dataset,
SEDFEDB [39], is the extended version of the SEDFDB,
which was updated to version 2 in March 2018. The two most
common public sleep datasets for this study can be found in
[40] and [41].

1) SLEEP-EDF DATABASE
In this dataset, 8 full sleep PSG recordings from Caucasian
(4 males and 4 females), aged from 21 to 35, who were not
on any medication at the time of the data collection. Theses
recordings were grouped into 2 subsets (marked as sc* and
st*). The sc* includes 4 recordings (sc4002e0, sc4012e0,
sc4102e0, and sc4112e0) from ambulatory healthy subjects,
which were collected during a typical 24h period of daily life.
The st* includes 4 recordings (st7022j0, st7052j0, st7121j0,
and st7132j0) from the subjects with mild difficultly in falling
asleep but were otherwise healthy, which were collected dur-
ing a night stay in a hospital. For both of the subsets, data of 2
EEG channels (EEG Pz-Oz, EEG Fpz-Cz) and 1 horizontal
EOG signal have been collected. These signals were obtained
with a sampling rate of 100 Hz, and then manually annotated
by domain experts into different stages based on the R&K
manual, which are named as W, N1, N2, N3, N4 and REM.
More details about the database is described in [42].

2) SLEEP-EDF EXPANDED DATABASE
This dataset is the extended version of the SEDFDB with
197 whole-night sleep PSG recordings which contain EEG
(from Pz-Oz and Fpz-Cz electrode locations), EOG (hori-
zontal), submental chin EMG, and an event marker. These
recordings are divided into 2 different groups, including
153 files marked as sc* and 44 files marked as st*. sc* files
were obtained in a 1987-1991 study of age effects on sleep
in 78 healthy subjects (34 males and 44 females) aged from
25 to 101, without any sleep-related medication [43]. PSG
recordings of 2 subsequent day-night periods were available
for each subject, except for subject 13, 36 and 52. st* files
were obtained in a 1994 study of temazepam effects on sleep
in 22 Caucasian males and females without other medication
but had mild difficulty falling asleep. The PSGs of about 9 h
were recorded in the hospital during 2 nights, one of which
was after temazepam intake, and the other of which was after
placebo intake [44]. Same as SEDFDB, these signals were
obtained with a sampling rate of 100 Hz, and then manually
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FIGURE 1. Block diagram of the automatic sleep stage classification.

annotated by domain experts into different stages based on
the R&K manual, which are named as W, N1, N2, N3, N4
and REM.

B. EEG PREPROCESSING
In this study, the single channel EEG Pz-Oz signal is used.
EEG Pz-Oz signal is obtained by recording electrode Pz and
recording electrode Oz, which are located in the back of
the brain. Therefore, the eye movement artifacts common
in EEG signals almost does not interfere with the collected
signals. Moreover, some studies [45], [46] have shown the
existence of γ wave during waking and sleep, and the study
of Memar and Faradji [17] also has shown that γ wave has
a significant effect on sleep stage classification. Therefore,
the single channel EEG signal is filtered with a band-pass
filter with cutoff frequencies of 0.5 Hz and 49.5 Hz. In
this study, the lower pass-band edge selection of 0.5 Hz is
used to filter out some DC components, which are widely
used in sleep staging [19], [29], [30], [47]. The upper pass-
band edge selection of 49.5 Hz is based on the results of
research by Memar and Faradji [17]. Then, all EEG signals
are segmented into 30 s epochs with no overlap in accordance
with the stage annotation of PSG recordings. The number of
epochs of various sleep stages used in this study are shown
in Table 3. Clearly, when both sc* files and st* files exist,
the proportion of N1 is quite low while the proportion of W is
quite high.When the sc* files exist alone, the proportion ofW
is quite high while the other stages are relatively low. When
the st* files exist alone, the proportion of N2 is quite high
while the other stages are relatively low. Therefore, there is a
serious data imbalance problem in sleep staging, and should
be noticed fully in model design.

According to Table 2, EEG signals contain several char-
acteristic patterns with different frequency ranges, which

TABLE 3. The number of epochs of various sleep stages.

are highly correlated to sleep states. Therefore, these dis-
criminative information extracted from different sub-bands
(rhythms) can be included in the scheme for developing
an automatic sleep staging methods. In fact, the subject in
SEDFDB and SEDFEDB are all adults, so in this study,
the α wave of 8-13 Hz is modified to 9-11 Hz, because the
dominant frequency ofα rhythm in adults is between 9-11Hz.
Moreover, the β wave of different brain parts has different
characteristics. The β wave in the posterior head usually
ranges from 13 Hz to 20 Hz, but in the REM stage, the β wave
of 20 Hz to 30 Hz gradually increases. Therefore, in order to
better distinguish the W stage and REM stage, the β wave is
divided into β1 wave (13-20 Hz) and β2 wave (20-30 Hz).
As for the γ wave, since the study of Memar and Faradji
[17] has shown that the γ wave has a significant effect on the
classification of sleep stages, this study also divides it into γ1
(30-40 Hz) wave and γ2 (40-49.5 Hz) wave according to the
processing method in their paper. For the rest of waves, this
study is consistent with previous studies [17]–[19], that is,
the boundary between different waves is defined as follows:
δ wave: 0.5-4 Hz, θ wave: 4-8 Hz, σ wave: 12-15 Hz and
K-complex wave: 0.5-1 Hz. Next, 9 Finite Impulse Response
(FIR) band-pass filters are used in 0.5-4 Hz, 4-8 Hz, 9-11 Hz,
12-15 Hz, 14-20 Hz, 20-30 Hz, 30-40 Hz, 40-49.5 Hz and
0.5-1 Hz to separate the δ, θ , α, σ , β1, β2, γ1, γ2 and
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TABLE 4. Extracted features.

K-complex waves of each 30 s epochs EEG signals, and this
process is accomplished using package MNE-python [48],
wherein the optimal results were obtained by using an FIR
filter with blackman window.

C. FEATURE EXTRACTION
Feature extraction extracts the characteristic patterns of EEG
signals corresponding to different sleep stages, which is an
important step for automatic classification of different sleep
stages. However, the existing studies on sleep staging most
focused on analyzing signal features without considering the
feature of the subject, such as age. Therefore, this study
not only extracts the signal features that already reported in
previous studies [17], [18], [49], but also extracts the age
information of the subjects. The features extracted from sub-
bands epoch are presented in Table 4.

In this study, x(n) represents a characteristic wave (sub-
band) in 30 s epoch, which contains a total of 3000 samples
since the sampling rate of EEG signals equals to 100 Hz.
In Table 4:

• SD is used to quantify the amount of variation or disper-
sion of the sub-bands EEG data, where xi represents the
i-th sample of x(n), and x̄ represents the mean of x(n)
and N equals to 3000.

• SE is widely used to evaluate the flatness of the acoustic
spectrum shape, and it was suggested by Inouye et al.
[50]. This study firstly uses N-point Fast Fourier Trans-
form (FFT) to calculate the frequency spectrum of each
frame, then normalize the spectrum of each frame and let
ft (i) be the normalized magnitude of the i-th frequency
bin in the spectrum of frame ft .

• KE is an unbiased estimator of Shannon entropy of a
d-dimensional random sample x(n) using the k-nearest
neighbors sample, where ϕ represents the digamma

function,Cd represents the volume of the d-dimensional
until ball, and εki is the distance between sample xi
and its k-NN sample (in this paper, k = 3) points in
d-dimensional sample space, and more detailed infor-
mation of KE can be found in [51]. In the formula of
RE, where pi is the probability of xi belong to possible
outcome.

• The Hjorth parameters, including HA, HM and HC, pro-
vide dynamic temporal information of the EEG signal
[52], where x ′(n) and x ′′(n) are the first and second
derivatives of x(n), σx , σ ′x and σ ′′x are the SD of x(n),
x ′(n) and x ′′(n), respectively.

• KFD and PFD measure the complexity of a EEG sig-
nal, where L refers to the sum of distances between
two successive data samples, d represents the maximum
Euclidean distance between the first sample and any
other sample on the waveform, and M is the number of
the sign changes in the signal derivative.

• MMD is to find the distance between the maximum
and minimum samples in each subwindow, where 1xk
and 1yk refer to the x-axis difference and the y-axis
difference of the maximum andminimum samples in the
k-th window.

• LRSSV is proposed in [17], which is used to measure
the sequential variations between the samples of the
signal.

• GHE computes long memory in a given signal at differ-
ent scales [53], where d is a time lag, 〈.〉 is the sample
average operator,H (m) is the GHE of x(n). In this study,
5 ≤ d ≤ 19, m = 1, and more detailed information on
GHE can be found in [53], [54].

• In fact, age specifically affects the neurophysilogical
slow-wave-generating mechanism [43]. Therefore, age
is also included in the feature extraction scheme of this
study.

VOLUME 8, 2020 57287



J. Zhou et al.: Automatic Sleep Stage Classification With Single Channel EEG Signal Based on Two-Layer Stacked Ensemble Model

By this feature extraction, each 30 s epoch in a sub-band
is represented by 12-dimensional vector. Therefore, 108 fea-
tures are extracted from the 9 sub-bands, and together with
age feature of the subject, a 109-dimensional feature vector
is obtained for each EEG signal epoch.

D. FEATURE SELECTION
Since the overall performance of the classifier was deeply
affected by the process of feature selection, several feature
selection techniques, including recursive feature elimination
(RFE) [31], ReliefF [32], minimum redundancy maximum
relevance (mRMR) [33] and information gain (IG) [34], were
tested to find an optimum subset of features with superior
classification, and finally mRMR is employed.

mRMR is proposed by Peng et al. [33] for dealing with
the redundancy problem. It selects a subset of features by
maximizing the relevance of each feature to the target class
and minimizes the redundancy between the selected features.
The redundancy and relevance are calculated using mutual
information. For more information about mRMR can be
found in [55] and [33].

E. PROPOSED MODEL
As shown in Table 2, W stage accounts for up to 50% while
N1 stage accounts for less than 4% in SEDFDB. Clearly,
there is an unbalanced classification problem in sleep staging,
which will mislead the classification algorithm to produce
biased results, especially for N1 stage. Therefore, this study
introduces a class balance strategy to deal with this situation,
which can improve the prediction performance of sleep stag-
ing, especially the recall rate of N1 stage, without increasing
computing resources and it is inspired by the study of cost
sensitive [56]–[58]. Specifically, the class balance strategy
punishes W stage by adjusting the weight, i.e. givingW stage
a lowerweight while givingN1 a higher weight. Eq. (1) shows
the formula of the weight of various classes. In particular,
in order to further improve the performance of sleep staging
prediction, the grid search method is employed to adjust the
balance coefficient pi.

wi = pi
NT
NCi

, (i = 1, 2, .., 5) (1)

where NT represents the number of all epochs in the dataset,
NCi represents the number of epoch which belongs to i-th
class, and pi represents the balance coefficient which belongs
to the i-th class and calculated by grid search and cross
validation method based on sleep datasets which is described
in Part III in detail.

In addition to the innovative introduction of class balance
strategy to improve the recall rate of N1 stage, this study pro-
poses a 2-layer stacked ensemble model to further improve
the prediction performance of sleep staging.

Figure 2 shows the framework of the proposed 2-layer
stacked ensemble model. In the first layer, the improved RF
and the improved LGB by class balance strategy are fit to the
training set that is used to prepare the inputs for the second

layer classifier. RF is an ensemble method of bagging type,
which has shown good performance in sleep staging [18],
[37]. In this study, it mainly deals with the impact of data
perturbation on the performance of the proposed model. LGB
is an ensemble method of boosting type, which is a gradient
boosting framework that uses tree-based learning algorithm.
Considering a large number of comparison experiments on
public datasets have shown that LGB can outperform existing
boosting frameworks on both efficiency and accuracy, with
significantly lower memory consumption, this study employs
the LGB to handle sleep staging task and it mainly focuses
on reducing the bias of the proposed model. To the best
knowledge of authors, this study is the first to apply LGB to
sleep stage task. In order to avoid overfitting, the first layer
introduces the cross validation (this study uses 5-fold cross
validation). As shown in Figure 2, the training set is split
randomly into 5 equal-size folds, 4 folds are used to fit the
improved RF algorithm and the improved LGB algorithm,
and then uses the remaining 1 fold that is not used for the
improved RF algorithm and the improved LGB algorithm
fitting to validating. At the same time, the improved RF algo-
rithm and the improved LGB algorithm are trained by 4 folds
EEG data to predict the testing set. This process is repeated
5 times with each fold used exactly once for validating. In
the second layer, the improved LGB is employed again. This
study uses the combination of the validation results obtained
from the first layer as the new training dataset and the com-
bination of test results obtained from the first layer as the
new testing set. Finally, the improved LGB in second layer
first uses the new training set to train, then uses testing set as
the input to the LGB algorithm to get the final sleep stages
results.

In summary, the proposed model first introduces a class
balance strategy to deal with imbalance in sleep staging, and
then integrates the RF algorithm and LGB algorithm in a
stacking manner to further improve the prediction perfor-
mance of sleep staging.

F. EVALUATION METRICS
In order to evaluate and compare the performance of differ-
ent methods, this study uses sensitivity (SEN), precision (P)
and F1-score (F1) to evaluate the classification performance
for each individual sleep stage, and uses Accuracy (ACC),
Weighted F1-score (WF1) and Kappa to evaluate the overall
performance for all the classes according to the study of [18].
Eq. (2) to Eq. (7) show the calculation methods for these
evaluation metrics.

SEN =
TP

TP+ FN
(2)

P =
TP

TP+ FP
(3)

F1 =
2× R× P
R+ P

(4)

ACC =
TP+ TN

TP+ FP+ TN + FN
(5)
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FIGURE 2. Two-layer stacked ensemble model.

where TP, TN , FP and FN represent the number of true pos-
itive, true negative, false positive and false negative samples,
respectively.

WF1 =
5∑
i=1

wi × F1i (6)

Kappa =
ACC − Pe
1− Pe

(7)

where wi and F1i represent the weight and F1-score of the
i-th class, respectively. Pe is the hypothetical probability of
agreement by chance.

All the above evaluation metrics are obtained on the
SEDFDB and the SEDFEDB because this can quantify the
performance of the proposed model and it is easy to compare
the performance of different sleep staging models on the
public database. Certainly, the proposed model in this study
can also be compared with existing devices commercially
available in the market, but this will face a knotty problem,
that is, the existing devices commercially available in the
market cannot obtain the raw EEG signals or ECG signals,
so that the performance of sleep staging of each product
cannot be quantified.

G. TEST SCHEMES
According to the study of [18], this study also employs
2 kinds of test schemes, including SNT and SIT, to evaluate
the performance of the proposed model.

1) SUBJECT-NON-INDEPENDENT TEST
In this test scheme, a 5-fold cross validation that uses all
mixed together to evaluate the performance of proposed

model. For this test scheme, testing data and training data
could come from the same subject, so the performance may
be overly-optimistic compared to SIT.

2) SUBJECT-INDEPENDENT TEST
In this test scheme, a k-fold cross validation based on k
subjects is used to evaluate the performance of proposed
model. For k subjects, this test scheme is repeated k times
where the data of each subject is used to test in turn when
the data of the other k − 1 subjects are used for training
the proposed model. Particularly, for the experiments on the
SEDFEDB, considering the large amount of data, the paper
uses 2-fold cross validation to evaluate the performance of
proposed model.

III. EXPERIMENTS AND RESULTS
This study performs 9 groups of experiments according to
different purposes. Table 5 shows the different settings for
all experiments and all experiments focus on the 5-class
classification. Experiment 1 to Experiment 4 use 5-fold cross
validation, Experiment 5 and Experiment 6 use 8-fold cross
validation based on 8 subjects, and the remaining experi-
ments, including Experiment 7, Experiment 8 and Experi-
ment 9, all use 2-fold cross validation based on 153 files,
44 files and 88 files, respectively.

In order to make a fair comparison with previous stud-
ies on the SEDFDB, the conditions are set as similar as
possible, including dataset sizes, EEG channels and test
schemes. Experiment 1 and Experiment 2 perform SNT on
the SEDFDB (4 sc* files and 4 st* files, 15,170 samples with
109-dimensional features) using the EEG Pz-Oz channel and
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TABLE 5. Experiments under different conditions.

EEG Fpz-Cz channel, respectively. Particularly, in order to
illustrate the effect of the age of the subject on the classi-
fication performance, Experiment 3 and Experiment 4 per-
form SNT on the SEDFDB (4 sc* files and 4 st* files,
15,170 samples with 108-dimensional features that removing
age) using the EEG Pz-Oz channel and EEG Fpz-Cz channel,
respectively. In fact, SIT is more in line with medical sce-
narios, using existing subject data to predict the sleep stages
of unknown individual subject. Hence, Experiment 5 and
Experiment 6 also perform SIT on the SEDFDB (4 sc* files
and 4 st* files, 15,170 samples with 108-dimensional features
that removing age) using the EEG Pz-Oz channel and EEG
Fpz-Cz channel, respectively. Experiment 7 and Experiment
8 perform SIT using 153 sc* files and 44 st* files in the
SEDFEDB to explore the performance of the proposed model
in different subgroups. Moreover, in order to further test the
robustness and generality of the proposed model, Experi-
ment 9 uses a mixture of 44 st* files and 44 sc* files from
SEDFEDB to perform SIT. The 9 groups of experiments are
implemented using python 3.5 with a workstation: Intel(R)
Core (TM) i5-8400 CPU @ 2.58 GHz and 8 GB of RAM.

A. EXPERIMENTS AND RESULTS OF SLEEP STAGING ON
SLEEP-EDF DATABASE
Experiment 1 to Experiment 6 are performed in this section
to make a fair comparison with previous studies.

1) SUBJECT-NON-INDEPENDENT TEST OF SLEEP STAGING
ON SLEEP-EDF DATABASE
For Experiment 1 and Experiment 2, Firstly, mRMR is used
to perform feature selection on 15,170 samples with 109-
dimensional features. Next, 5-fold cross validation combined
with grid search method are employed for tuning parameter.
In order to find the optimal number of the features from
the 109-dimensional features, Figure 3 shows the change
of classification performance when features sorted by score
according to mRMR. It can be found that the evaluation
metrics, including ACC,WF1 andKappa, reach their maxima
when the number of feature is close to 25 while the SEN-
N1 reach its maximum when the number of feature is close
to 45. Therefore, the top-45 features are employed in the
proposed model. Finally, in the proposed two-layer stacked
ensemble model, the number of trees in RF algorithm is set
to be 100, the weight of W, N1, N2, SWS and REM are set to
be 1, and the other parameters in RF algorithm use the default
values in the scikit-learn package. The number of trees in

FIGURE 3. The performance versus the number of sorted features by
mRMR.

LGB algorithm is set to be 200, the weight of W, N1, N2,
SWS and REM are set to be 1, 115, 1, 1 and 1, respectively.
The learning rate is set to be 0.09, and the other parameters in
LGB algorithm are set to the default values in the scikit-learn
package.

Table 6 and Table 7 show the confusematrix and evaluation
metrics for Experiment 1 and Experiment 2, respectively. For
the EEG Pz-Oz channel, the ACC, WF1 and Kappa of the
proposed model are 91.2%, 0.916 and 0.864, respectively.
In parallel, For the EEG Fpz-Cz channel, the ACC, WF1 and
Kappa of the proposed model are 91.8%, 0.919 and 0.872,
respectively. In general, the value of Kappa from 0 to 0.20 is
considered bad, the value from 0.21 to 0.40 is poor, the value
from 0.41 to 0.60 is reasonable, the value form 0.61 to 0.80 is
good, and the value overs 0.80 is outstanding. The Kappa
value of both channels exceed 0.80, indicating that the agree-
ment between manual and automatic scoring is outstanding.
Moreover, ACC and WF1 also achieves an outstanding per-
formance. Hence, the proposedmodel achieved excellent per-
formance on two individual EEG channel signals. Especially,
it is worth noticing the SEN-N1 stage for both channels has
improved significantly, reaching 72.52% on the EEG Pz-Oz
channel and 63.74% on the EEG Fpz-Cz channel.

2) COMPARISON OF THE PROPOSED MODEL WITH AND
WITHOUT AGE ON SLEEP-EDF DATABASE
In order to illustrate the effect of the age of the subject
on sleep staging task, the parameters of proposed model in
Experiment 3 and Experiment 4 are consistent with Experi-
ment 1 and Experiment 2. The performance of the proposed
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TABLE 6. Confuse matrix and classification performance for Experiment 1 on SEDFDB using EEG Pz-Oz channel.

TABLE 7. Confuse matrix and classification performance for Experiment 2 on SEDFDB using EEG Fpz-Cz channel.

TABLE 8. Confuse matrix and classification performance for Experiment 3 on SEDFDB using EEG Pz-Oz channel.

TABLE 9. Confuse matrix and classification performance for Experiment 4 on SEDFDB using EEG Fpz-Cz channel.

model without age on SEDFDB using the EEG Pz-Oz chan-
nel and EEG Fpz-Cz channel is reported in Table 8 and
Table 9. Comparing Table 6 and Table 8, it can be found that
the ACC increases from 90.4% to 91.2%, the WF1 increases
from 0.908 to 0.916, the Kappa increases from 0.851 to 0.864,
and the SEN-N1 increases from 66.56% to 72.52% for the
EEG Pz-Oz channel when using age. Similarly, comparing
Table 7 and Table 9, it can be found that the ACC increases
from 91.3% to 91.8%, the WF1 increases from 0.912 to
0.919, the Kappa increases from 0.863 to 0.872, and the SEN-
N1 increases from 51.34% to 63.74% for the EEG Fpz-Cz
channel when using age. Clearly, the difference in classifica-
tion performance between using and not using age shows that
the age of subject plays an important role in sleep staging.

For Experiment 8, according to the experimental steps of
Experiment 1, mRMR is used to determine the number of
features as 76, 2-fold cross validation based on 44 st* files and
grid searchmethod are used to determine the hyperparameters
of proposed model, where the weight of W, N1, N2, SWS and
REM in LGB are set to be 1, 200, 1, 1 and 150, respectively,

and the other parameters in proposed model are consistent
with the Experiment 1. Table 14 shows the confuse matrix
and evaluation metrics for Experiment 8.

3) SUBJECT-INDEPENDENT TEST OF SLEEP STAGING ON
SLEEP-EDF DATABASE
Considering the differences in sc* files and st* files, this
study separately performs the SIT for sc* files and st* files.
For Experiment 5, firstly, 4 sc* files are used for the SIT,
mRMR is used to determine the number of features as 71,
4-fold cross validation based on 4 sc* files and grid search
method are used to determine the hyperparameters of pro-
posed model, where the weight of W, N1, N2, SWS and
REM in LGB are set to be 1, 120, 1, 1 and 1, respectively,
and the other parameters in proposed model are consistent
with the Experiment 1. Next, 4 st* files are used for the SIT,
the number of features is set to be 66, the weight of W, N1,
N2, SWS and REM in LGB are set to be 1, 220, 1, 1 and
220, respectively, and the other parameters in proposedmodel
are consistent with the Experiment 1. Finally, the confusion
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TABLE 10. Confuse matrix and classification performance for Experiment 5 on SEDFDB using EEG Pz-Oz channel.

TABLE 11. Confuse matrix and classification performance for Experiment 6 on SEDFDB using EEG Fpz-Cz channel.

TABLE 12. The performance for 5-class classification compared with state-of-the-art works on SEDFDB.

TABLE 13. Confuse matrix and classification performance for Experiment 7 on SEDFEDB using EEG Pz-Oz channel.

matrix of the sc* files and st* files is added together, as shown
in Table 10. Similarly, for Experiment 6, the parameters
in proposed model are consistent with the Experiment 5,
the confuse matrix is shown in Table 11.
For the EEG Pz-Oz channel, the ACC, WF1 and Kappa of

the proposed model are 82.4%, 0.751 and 0.719, respectively.
In parallel, For the EEG Fpz-Cz channel, the ACC, WF1 and
Kappa of the proposed model are 81.6%, 0.727 and 0.706,
respectively. Comparing Table 6 and Table 10 or Table 7
and Table 11, it reveals that the performance of using the
SIT is worse than the SNT, which may be due to the
large differences between the subjects and the testing data
not trained in the proposed model. Furthermore, it can

be found that the proposed model is likely to mislabel
N1 stage as W stage or N2 stage, especially REM stage
from Table 10 or Table 11, and more detailed information is
discussed in section IV.

4) COMPARISON OF THE PROPOSED MODEL WITH OTHER
EXISTING METHODS ON SLEEP-EDF DATABASE
The performance of some of the existing sleep stage clas-
sification systems are given and compared with the perfor-
mance of the proposed model in Table 12. As illustrated
in Table 12, the proposed model has the best performance in
SEN-N1 under SNT or SIT. For SNT,Memar and Faradji [17]
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TABLE 14. Confuse matrix and classification performance for Experiment 8 on SEDFEDB using EEG Pz-Oz channel.

TABLE 15. Confuse matrix and classification performance for Experiment 9 on SEDFEDB using EEG Pz-Oz channel.

achieved the best ACC for 98.4%, which is much better than
other studies. However, by observing the confusion matrix in
the study of Memar and Faradji it can be found that the ACC
has been wrongly reported. Furthermore, the study employed
a nested k-fold cross validation to evaluate the system per-
formance, which may be overly-optimistic for sleep staging.
Compared with the rest of the existing sleep stage classi-
fication systems in SNT, the evaluation metrics (including
ACC, WF1 and Kappa) obtained by the proposed model are
competitive with the state-of-the-art results, and the proposed
method significantly improves the SEN-N1, reaching 72.52%
and 63.74% by using EEG Pz-Oz channel and EEG Fpz-Cz
channel, respectively. For SIT, this study still has significant
advantages in SEN-N1, but ACC, WF1 and Kappa have no
advantage over the state-of-the-art results, which is left for
future work.

B. EXPERIMENTS AND RESULTS OF SLEEP STAGING ON
SLEEP-EDF EXPANDED DATABASE
Experiment 7, Experiment 8 and Experiment 9 are performed
in this section to explore the performance of the proposed
model in different subgroups and test the robustness and
generality of the proposed model. Since the EEG signals of
different age are quite different and the number of subjects
is little, which in turn affects the performance of the pro-
posed model in SIT. Hence, the 108-dimensional features that
removing age are used to represent EEG signals.

For Experiment 7, according to the experimental steps of
Experiment 1, mRMR is used to determine the number of fea-
tures as 71, 2-fold cross validation based on 153 sc* files and
grid searchmethod are used to determine the hyperparameters
of proposed model, where the weight of W, N1, N2, SWS and
REM in LGB are set to be 1, 200, 1, 1 and 1, respectively,
and the other parameters in proposed model are consistent
with the Experiment 1. Table 13 shows the confuse matrix
and evaluation metrics for Experiment 7.

For Experiment 9, according to the experimental steps of
Experiment 3, for 44 st* files, the parameters in proposed

model are consistent with the Experiment 8. For 44 sc*
files, mRMR is used to determine the number of features
as 51, 2-fold cross validation based on 44 sc* files and grid
search method are used to determine the hyperparameters of
proposed model, where the weight of W, N1, N2, SWS and
REM in LGB are set to be 1, 200, 1, 1 and 1, respectively,
and the other parameters in proposed model are consistent
with the Experiment 1. Table 15 shows the confuse matrix
and evaluation metrics for Experiment 9.

Comparing Table 13 and Table 14, it can be found that
ACC, WF1 and Kappa on sc* subgroup are better than
st* subgroup, but SEN-N1 is worse, which may be due to
the smaller proportion of N1 in sc* subgroup. Furthermore,
Table 13, Table 14 and Table 15 again show that the pro-
posed model is prone to misidentify N1 stage as W stage,
N2 stage or REM stage, which may imply that the features
extracted in this study are insufficient, and the performance
of sleep stages in SIT can not be improved by themodel alone,
which is the focus of future research. In fact, Experiment
7, Experiment 8 and Experiment 9 achieved Kappa values
of 0.686, 0.564 and 0.740, respectively. It indicates that the
agreement between manual and automatic scoring is reason-
able in sc* subgroup, good in st* subgroup and good in mix
group.

IV. DISCUSSION
To achieve a simple and more accurate automatic sleep stag-
ing system, this study proposes a two-layer stacked ensemble
model to distinguish between different sleep stages using a
single EEG channel. The two-layer stacked ensemble model
combines the advantages of RF and LGB, where RF focuses
on reducing the variance of the proposed model while LGB
focuses on reducing the bias of the proposed model. Com-
pared with existing studies on the SEDFDB, the proposed
model can provide a promising performance. Particularly,
the proposed model introduces a balance strategy to improve
the N1 stage recognition rate, which is a common challenge
for automatic sleep staging system. There are two main
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reasons for the difficulty of N1 stage recognition. Firstly,
considering that the N1 stage is the transitional stage between
the W stage and N2 stage, the automatic sleep staging sys-
tem is likely to mislabel it as W stage or N2 stage. More-
over, there exists strong similarity between the N1 stage and
the REM stage, making them hard to differentiate even by
domain experts without other information [18]. Secondly,
since human sleep is composed of several stages with uneven
distribution, the number of N1 epochs are much less than that
of the other 4 stages, making the sleep staging an unbalanced
classification problem, which seriously affects the SEN-N1.

In this study, a class balance strategy by adjusting the
weights of each class is proposed, which significantly
improves the N1 stage recognition rate and keeps the overall
performance of proposed model. Moreover, the age informa-
tion, a new feature that the existing studies on sleep staging
has not included in their feature extraction scheme, plays an
important role in proposed sleep staging, and the comparison
of Table 6 and Table 8, or Table 7 and Table 9 has confirmed
that it has a positive effect on the classification of sleep stages.
Furthermore, the results shown in Table 13 to Table 15 reveal
that the proposed model also achieves good performance in
SIT, which is more in line with the real world medical scene.
In addition, the single channel EEG signal greatly simplifies
the automatic sleep staging system. In fact, all 9 groups
of experiments performed in different conditions show the
robustness and generality of the proposed model.

However, in the present case of study, there are several
limitations of the current study that need to be recognized.
Firstly, the experimental data are derived from healthy sub-
jects and the performance of the proposed model is not
tested by those who had a sleep-breathing disorders, which
reduced the persuasiveness of the robustness and generality
of proposed model. Secondly, this study does not analyze
EEG signals in detail and in depth to extract more rep-
resentative or distinctive signal features. This study only
decomposes a single channel EEG signal into 9 sub-bands
to extract some common features in literature. Particularly,
for the difficulty of N1 stage recognition, researchers may be
able to extract some representative signal features by deep
analysis of the differences between N1 and REM, which may
further improve the recognition rate of N1. Thirdly, for the
performance of SIT, there have been some studies that have
paid attention to correct the classification results, including
smoothing rules [36], path probability rules [37], and HMM-
based refinement [18]. However, this study does not make
further research on it, so future work can focus on improving
the performance of SIT.

V. CONCLUSION
This study undertakes to develop an automatic sleep stage
classification system using a single EEG channel, which can
provide a wearable home sleep monitoring system. In order
to improve the ACC, WF1, Kappa and SEN-N1 of the
proposed method, a two-layer stacked ensemble model is
proposed. The performance of the model is evaluated in

two datasets. Particularly, the SEN-N1 reaches 72.52% in
SEDFDB dataset.
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