
Received February 29, 2020, accepted March 11, 2020, date of publication March 23, 2020, date of current version April 2, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2982472

MusQ: A Multi-Store Query System for IoT
Data Using a Datalog-Like Language
HANI RAMADHAN 1, FITRI INDRA INDIKAWATI 2, JOONHO KWON 3, (Member, IEEE),
AND BONYONG KOO 4
1Department of Big Data, Pusan National University, Busan 46241, South Korea
2Department of Informatics Engineering, Ahmad Dahlan University, Yogyakarta 55166, Indonesia
3School of Computer Science and Engineering, Pusan National University, Busan 46241, South Korea
4School of Mechanical System Engineering, Kunsan National University, Gunsan 54150, South Korea

Corresponding author: Joonho Kwon (jhkwon@pusan.ac.kr)

This work was supported in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education under Grant NRF-2017R1D1A1A09000706, and in part by the National Research Foundation of
Korea (NRF) grant funded by the Korean Government (Ministry of Science and ICT) under Grant 2018R1A5A7059549.

ABSTRACT The growing number of connected Internet of Things (IoT) devices has increased the necessity
for processing IoT data from multiple heterogeneous data stores. IoT data integration is a challenging
problem owing to the heterogeneity of data stores in terms of their query language, data models, and schemas.
In this paper, we propose amulti-store query system for IoT data calledMusQ, where users can formulate join
operation queries for heterogeneous data sources. To reconcile the heterogeneity between source schemas
of IoT data stores, we extract a global schema from local source schemas semi-automatically by applying
schema-matching and schema-mapping steps. In order to minimize the burden on the user to understand
the finer details of various query languages, we define a unified query language called the multi-store
query language (MQL), which follows a subset of the Datalog grammar. Thus, users can easily retrieve
IoT data from multiple heterogeneous sources with MQL queries. As the three MQL query-processing
join algorithms are based on a mediator–wrapper approach, MusQ performs efficient data integration over
significant volumes of IoT data from multiple stores. We conduct extensive experiments to evaluate the
performance of the MusQ system using a synthetic and large real IoT data set for three different types of
data stores (RDBMS, NoSQL, and HDFS). The experimental results demonstrate that MusQ is suitable,
scalable, and efficient query processing for multiple heterogeneous IoT data stores. Those advantages of
MusQ are important in several areas that involve complex IoT systems, such as smart city, healthcare, and
energy management.

INDEX TERMS Data management and analytics, Internet of Things, multi-store system, query processing,
schema integration.

I. INTRODUCTION
The proliferation of Internet of Things (IoT) technology
has led to a rapid deployment of a massive number of IoT
devices [1]. The number of interconnected devices is still
increasing and is expected to reach 41.6 billion by 2025 [2].
As this number grows, the amount of IoT data will grow
accordingly. Thus, much of the effort in research and tech-
nology in this area [3], [4] focuses on gaining full value from
IoT by trying to efficiently manage the massive amounts of
IoT data.

The associate editor coordinating the review of this manuscript and

approving it for publication was Luigi de Russis .

However, complex IoT systems in areas such as smart
cities [5], healthcare [6], and energy management [7]
require processing IoT data frommultiple heterogeneous data
stores [8], [9]. However, the heterogeneity of data sources is
identified as a challenging problem in building IoT Big Data
frameworks [4]. In general, integrating data from multiple
data sources requires three steps: (1) retrieve data from each
individual data store, (2) determine the relationships between
the multiple data sources, and (3) merge the intermediate
results from each data source into a final result [10]. Thus,
if a user wants to access and combine IoT data from multiple
sources, the user should have in-depth knowledge about each
data store. Specifically, the user is required to write queries in

58032 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-1357-7469
https://orcid.org/0000-0002-2092-1056
https://orcid.org/0000-0002-8207-9415
https://orcid.org/0000-0002-7980-6140
https://orcid.org/0000-0001-7647-6652

H. Ramadhan et al.: MusQ: Multi-Store Query System for IoT Data Using a Datalog-Like Language

various languages and understand the mechanism of merging
intermediate results. Without sufficient knowledge, the user
may have difficulty finding the ad hoc relationship between
the data stores [4].

These problems in IoT data integration have motivated
many researchers to build multi-store systems [11]. Prior
work on multi-store systems can be divided into four cate-
gories: (1) the warehousing approach [12], (2) the federated
or virtual integration approach [13]–[16], (3) the specialized
approach [17], and (4) the schema-less approach [18], [19].
The warehousing approach integrates data by materializing
combined data into one storage repository called a ware-
house. This approach provides easy and fast access to the
integrated data because there is only one physical data store.
However, this approach is not suitable for IoT applications
because of the high cost of materializing and synchroniz-
ing massive volumes of IoT data. The federated approach
requires a global schema, which provides a unified view by
concealing the heterogeneity of the data sources. Existing
multi-store systems [13] require users to manually define the
global schema, which requires a deep understanding of the
relationships between local source schemas. The specialized
approach includes Cloud IoT [17], which provides integrated
access that hides the heterogeneity of the data stores using a
Data Access Component (DAC). This removes the burden of
defining different connections and query languages for each
data store. However, it lacks join operations over different
data stores, since it does not create a warehouse nor a global
schema. By contrast, the schema-less approach [18], [19]
provide access to heterogeneous multi-store systems without
schema. However, this approach requires the user to write the
details of the data stores in the query.

To build a useful multi-store system for IoT data, we inves-
tigate three key features by addressing three critical chal-
lenges: (1) constructing a global schema from local source
schemas by exploiting relationships, as in the federated
approach; (2) performing complex queries on multiple data
stores without knowing all the different query languages;
and (3) efficiently executing user queries, especially join
operations, to retrieve relevant data from local sources and
merging them into a final result.

To address these challenges, we propose a multi-store
query system called MusQ, which uses the federated
approach. First, we devise a process for the semi-automatic
construction of global schema from the local sources. The
global schema construction consists of two steps: schema
matching and schema mapping. The schema-matching step
computes all possible combinations of equivalence attributes
(semantic matches) by considering both the similarity and
the meanings of the attributes of the local schemas. The
schema-mapping step extracts a set of mapping definitions
by further refining the semanticmatches. Second, to provide a
unified query language, we propose a Datalog-like query lan-
guage called multi-store query language (MQL). We choose
the Datalog [20] language as the basis of MQL because
it is a simple and logical language, which allows for easy

translation into other query languages. MusQ can execute
complexMQL join queries by utilizing the constructed global
schema. Third, for efficient integrated access to multiple
heterogeneous data stores, we suggest three query-processing
methods that are focused on join operations, based on a
mediator–wrapper approach.

MusQ’s three main features are designed to assist users
whose tasks are related to querying in a multi-store IoT
system. A user may only have limited information about each
data store’s data model, query language, and schema. Since
MusQ supports different types of heterogeneous systems such
as relational databases (MySQL [21]), NoSQL databases
(Cassandra [22] and MongoDb [23]), and the Hadoop Dis-
tributed File System (HDFS), it aids the user by removing
the burden of manually defining the global schema from each
local source. In addition, the user of MusQ can simply use the
unified query language, MQL, to perform the query in the
multi-store system. This minimizes the necessity of a deep
understanding of different query languages when developing
IoT data applications.

The main contributions of this study are summarized as
follows:
• We propose a semi-automatic global schema construc-
tion method to replace the process of manually defining
the global schema, which is a tedious task in building IoT
data applications when different types of heterogeneous
IoT data stores are supported. This semi-automatic
construction incorporates correspondence between the
local schema relationships using two steps: (1) a
schema-matching step and (2) a schema-mapping step.

• For an easier representation under multiple heteroge-
neous data stores, we provide a formal unified query
language (MQL) that is extensible to each IoT data
store’s query language. The MQL language is also used
to define the elements of the global schema for confor-
mity and simplicity.

• To efficiently perform data integration over substantial
volumes of IoT data from multiple stores, we imple-
ment threeMQLquery-processing join algorithms based
on a mediator–wrapper approach: a nested-loop join
approach, a hash join approach, and a sort-merge join
approach. We also provide the proof of correctness and
the cost analysis of the proposed approaches.

• To evaluate the performance and suitability of the MusQ
system, we conduct extensive experiments using both a
synthesized and a large real IoT data set [24] with dif-
ferent scenarios. The experimental results demonstrate
that MusQ is scalable and effective for heterogeneous
IoT data stores.

The remainder of this paper is organized as fol-
lows. Section II provides an overview of related work.
In Section III, we discuss the overall architecture of the
proposed MusQ system. Section IV and Section V explain
how to construct a global schema from local schemas and
how to execute a user query specified in MQL, respectively.
We discuss the results of the performance evaluation of the

VOLUME 8, 2020 58033

H. Ramadhan et al.: MusQ: Multi-Store Query System for IoT Data Using a Datalog-Like Language

MusQ system in Section VI. Finally, Section VII concludes
the paper.

II. RELATED WORK
The growing necessity of accessing multiple data stores in
various applications has led to extensive research on IoT data
integration. The multi-store systems for IoT Big Data require
the capabilities of supporting various database systems, such
as relational and non-relational databases, and processing
queries seamlessly [4], [16]. In this section, we briefly survey
existing approaches and highlight how they differ from our
approach. We classify these approaches into two broad cate-
gories: (1) theoretical schema integration and (2) multi-store
query systems.

A. SCHEMA INTEGRATION
Conventional data integration requires both a global schema
and several local schemas. The schema integration is per-
formed in two steps: schema matching and schema map-
ping [25]. In the schema-matching step, equivalent attributes
between a local schema and a global schema are obtained
by a matcher. In the case of different levels of heterogeneity,
the schema matching can incorporate several matchers [26].
For example, a schema-level matcher can match attribute
names and data types, and an instance-level matcher can
perform pair-wise comparisons of instance values or data.
The schema-mapping step transforms a set of matches into
a mapping definition, which is a query expression that shows
the relation between local and global schemas.

The schema matching and mapping reduce the user’s effort
in understanding the relations between the local schemas.
When working with the structured data, such as in a Rela-
tional Database Management System (RDBMS), deriving a
schema can be a simple process. However, for unstructured
data, deriving a schema is more complicated as the unstruc-
tured data might not have a defined schema [14]. Manual
definition of a global schema requires the user to check each
local schema’s attribute and match it to another attribute
from the other local schemas. To guarantee this match is
appropriate, the user needs to check the data store’s structure
and contents. Thus, a user needs to deeply understand the
data store’s structure, content, and other features that support
data store matching. This problem can become even more
difficult if, while working with a multi-store system, a new
unstructured data store is introduced to the user. The user
is then required to gain more knowledge and build a global
schema for this new data store.

Several approaches have been developed for data inte-
gration using schema-level matching [27], [28]. For exam-
ple, Cupid [27] attempts multiple matching methods at the
schema level to produce mappings between schema elements
using attribute names, data types, constraints, and the schema
structure. Based on graph-like structure, Cupid performs
schema-mapping generation with various shortcomings, such
as missing elements, nested structure, non-matching data
types, and different element names. Furthermore, Cupid

still needs to perform the mapping of a local schema to a
larger (global) schema. In addition, Clio [28] uses an iterative
integration-by-examplemethod that allows the user to specify
and choose potential schema mappings. Clio provides the
mapping between two schemas: a source schema and a target
schema. However, the target schema in Clio is similar to a
global schema. This means that Clio needs a global schema
as prerequisite.

Data values can provide useful insights into the meanings
of schema elements. Thus, a number of approaches in data
integration exploit instance-level matching [16], [29], [30].
Falcon [29] and Coma 3.0 [30] are the latest works to com-
bine schema-level matching with instance-level matching.
Falcon’s matching exploits the linguistic similarity between
two values combined with the system’s ontology-based
structure. The linguistic similarity in Falcon immensely
impacts the correctness of the schema matching. Further-
more, COMA, in terms of ontology, provides an intuitive
visual interface for users to examine its generated schema
matches. Users can inspect the possible matches and then
verify them as a valid global schema. However, both systems
focus on ontology matching for web applications and still
require a pre-supplied global schema.

Another approach [16] focuses on the integration of a het-
erogeneous multi-store system of IoT. This approach models
the global schema of IoT using the contexts from Wikipedia
articles, local schemas, and data from the connected sensors.
As a result, it gives several mappings as an information fusion
architecture to support the heterogeneity and interoperability
of IoT data. However, this procedure requires external seman-
tic knowledge rather than information on the data stores.

All the previous works on schema integration require spec-
ifying a global schema manually and calculating matches
between local schemas and the global schema. Furthermore,
the existing multi-store system [13] does not implement mod-
ules for constructing the global schema. However, MusQ
avoids these prerequisites because it does not initially require
a global schema. To the best of our knowledge, there is
still no work on schema integration that recommends a
global schema using the definitions of local schemas only.
The global schema recommendation avoids the manual def-
inition of global schema in which the user is required to
check all possible matches of each local schema. There-
fore, we consider the global schema recommendation as the
semi-automatic way to build the global schema (which we
discuss in Section IV) because it can support heterogeneity
in multiple IoT data stores.

B. QUERY PROCESSING IN MULTI-STORE SYSTEMS
Data integration on multiple databases is well documented in
the database research literature [25], [31]. Due to increasing
demand, especially from enterprises, it has begun to attract
increasing attention in recent years [32]. Existing multi-store
systems can be broadly categorized into four approaches:
(1) the warehousing approach [12], [33], (2) the feder-
ated or virtual integration approach [13]–[15], [34]–[37],

58034 VOLUME 8, 2020

H. Ramadhan et al.: MusQ: Multi-Store Query System for IoT Data Using a Datalog-Like Language

TABLE 1. Existing multi-store systems.

(3) the specialized approach [17], and (4) the schema-less
approach [18], [19].

In the warehousing approach, data residing in different
sources are combined and materialized into a single storage
repository, called a warehouse. This materialization process
focuses on the extraction-transformation-load (ETL) to the
warehouse, which may incur an enormous cost in proportion
to the level of data granularity and the summary level. Thus,
when performing updates, deletions, or insertions to the data
sources, the warehousing approach needs to synchronize the
data sources and the warehouse [38].

Liao et al. [12] propose three data-synchronization mecha-
nisms to overcome the problem of inconsistent data: blocking
transformation (BT), blocking dump (BD), and direct access
(DA). Odyssey [33] uses data life cycle management (DLM)
to perform data transformations, including type conversions,
file formatting, and data distribution on Hadoop. However,
these approaches incur a high cost in the materialization
and synchronization processeswhen thewarehousemaintains
large volumes of data and when data sources are frequently
updated.

In the second approach, federated systems provide a
unified query interface for data residing in different data
stores, and are based on a mediator–wrapper architec-
ture [13], [15], [18], [19], [35]. These systems can access
data directly from their original database through a unified
view, called a mediated schema or a global schema. The
federated approaches also facilitate a declarative mapping
language that explicitly specifies the relationship between
a global schema and local schemas. The correspondence
between local and global schemas can be expressed using two
basic approaches: global-as-view (GAV) [34]–[36] and local-
as-view (LAV) [13]. The GAV approach describes a global
schema as a combination of all local schemas, whereas the
LAV approach expresses local schemas as a function of the
global schema. Both approaches can retrieve results from
user queries specified in the global schema. Recently, a new
solution, CloudMdsQL [14], that does not follow themapping
approaches of GAV or LAV was proposed. CloudMdsQL
uses an ad hoc schema extracted from the table names in
subqueries.

In the specialized approach, Cloud IoT [17] provides a
heterogeneous integration access for IoT data stores using

a Data Access Component (DAC) to hide the complexity
of accessing heterogeneous local sources. However, it only
demonstrates its feasibility on a filter query and a limited
number of data store types (NoSQL or RDBMS) at a time.
Cloud IoT does not support join operations on different data
stores, and thus it can only can perform the query separately
on each data store. Hence, performing queries that include
join and/or aggregation operations under a heterogeneous
multi-store system is still of interest. Other specific heteroge-
nous data store integration systems using the specialized
approach can be found in [11].

The schema-less approaches [18], [19] do not necessarily
use schema to perform queries across multiple databases.
These approaches use an ANSI SQL-based language for the
heterogenous data stores. Drill [19] provides schema-less
integration with columnar execution, but does not support
Cassandra by default. Presto [18] is a distributed SQL query
engine and also supports querying on various data stores with
columnar execution. However, Drill and Presto require the
user to define the details of the tables in the query, as they
perform queries without global schema. Thus, the developers
are required to know the specific location, table name, and
mapping of each data store.

Table 1 compares our approach to several existing
multi-store systems according to the architecture, query
language, and supported data stores. MusQ exploits the
mediator–wrapper architecture, and supports integrated query
processing for RDBMS, NoSQL, and DFS data stores as well
as for IoT and non-IoT data. Unlike the other approaches,
MusQ uses a Datalog-like language that is easily translat-
able to another query language. Furthermore, MusQ sup-
ports three different data store types, which are traditional
RDBMS, NoSQL (MongoDB & Cassandra), and HDFS.

MusQ can execute join operations for different data stores
at the same time, unlike Cloud IoT, which can only execute
queries on one data store at a time. Although Drill and
Presto can solve similar tasks to MusQ, MusQ does not
use the columnar style execution that is used by Drill and
Presto. Also, MusQ does not concentrate on several concepts
of Presto such as data partitioning, spill-to-disk operation,
and interconnected stage operations. In addition, MusQ also
applies the GAV approach by providing the recommendations
of a global schema from the source schema.

VOLUME 8, 2020 58035

H. Ramadhan et al.: MusQ: Multi-Store Query System for IoT Data Using a Datalog-Like Language

III. THE DESIGN OF MusQ
In this section, we present the novel design of our multi-store
query processing system (MusQ).

A. SYSTEM ARCHITECTURE OVERVIEW
The overall architecture of MusQ is depicted in Figure 1.

FIGURE 1. Overview of MusQ.

MusQ consists of three key components: (1) the global
schema constructor module, (2) the mediator module, and
(3) the wrapper module. The global schema constructor
semi-automatically generates the global schema to hide the
heterogeneity of local source schemas and supports com-
plex join queries over multiple stores. The main goal of the
mediator module is to handle user queries written using the
Multistore Query Language (MQL). After parsing a user
query, the mediator splits the query into subqueries based
on the global schema. It also creates a logical query plan to
manage the flow of query executions for each subquery. The
wrapper module of each data store translates each subquery
into the respective query language, executes the translated
subquery, and retrieves an intermediate result. The result of
each wrapper is sent back to the mediator and then merged
into a final result in JSON (JavaScript Object Notation) [40]
format.

These features of MusQ effectively reduce the burden on
users to manually define the global schema and to remember
the details of various query languages.

This is particularly relevant for IoT, for which it is neces-
sary to handle the heterogeneity of multiple data stores with
various query languages and attributes.

We explain the detailed steps of the global schema con-
structor module and the mediator and wrapper modules in
Sections IV and V-A, respectively.

B. MULTI-STORE QUERY LANGUAGE
MusQ is designed to deal with user queries and to provide
integrated access to multiple heterogeneous stores. Thus,
we define a multi-store query language called MQL as a
unified query language, which conforms to a subset of the
grammar of the Datalog language [20]. Datalog is chosen as
the basis for MQL because of its logic-based language, which
provides easy conversion to each wrapper’s query language.
In MusQ, the MQL grammar is used to specify user queries
as well as global schema. During query processing, MQL

queries (user queries) are used by the mediator to commu-
nicate with the wrappers. The wrapper module then converts
the MQL queries to each data store’s query language.

FIGURE 2. Grammar of MQL queries.

Figure 2 shows the query syntax for MQL. The head of
MQL (the syntax before ‘‘:-’’) describes the query definition,
and the body (the syntax after ‘‘:-’’) explains the source
definition and query filters. The query definition describes the
user-specified query name and selected attributes or columns.
We can define an aggregate function, such as SUM, AVG,
MAX, MIN, and COUNT, in one of the query attributes. The
source definition in the query body provides the table and the
attributes defined in the global schema. Query filters specify a
search condition using a comparison operator (=, <,>, <=,

and >=), which returns tuples that meet the terms of the
search condition.

The MQL query is expressed using the table and attribute
definitions in the global schema. It uses an implicit join,
which aids users in focusing on what to query, rather than
how to perform the query. Thus, users do not need to provide
detailed information about joins, such as the locations of
tables, in an MQL query.

FIGURE 3. An example MQL query.

Example 1: Figure 3 shows an example of an MQL query.
The query Q1 combines data from the wearable and
empSensor schemas, which are defined in the global
schema shown in Figure 10. The query retrieves only wear-
able sensor data that reports a heart rate of more than
100 using a comparison operator on the heartrate and
type attributes.

MusQ supports various types of MQL queries, such
as (1) filter queries, (2) aggregation queries, and (3) join
queries. IoT analytics commonly use the combination of
these three query types. The aggregation and filter queries
are important for generating the summary of batch IoT data,
whereas the join query is necessary for merging results from
data stores.

IV. CONSTRUCTING THE GLOBAL SCHEMA
In this section, we explain how to construct a global schema
semi-automatically from disparate source schemas in order to

58036 VOLUME 8, 2020

H. Ramadhan et al.: MusQ: Multi-Store Query System for IoT Data Using a Datalog-Like Language

TABLE 2. Data source schemas.

perform schema integration. The construction consists of two
steps: (1) a schema-matching step and (2) a schema-mapping
step. The schema-matching step finds the correspondences,
or semantic matches, between source schemas. A semantic
match is accompanied with a similarity score, which mea-
sures the likelihood of a match to be included in the global
schema. MusQ recommends these semantic matches to the
user. Thus, the user needs to check only a small set of matches
with a high similarity score as the preferred global schema.
The schema-mapping step transforms semantic matches into
mapping definitions for constructing the global schema.
Hence, we define this process as the semi-automatic global
schema construction. This process eliminates the need for the
user to examine all possible matches, including the unlikely
ones. This is also useful when a new data store is suggested
because the user does not need to examine its structure and
contents to define the match from the new data store.

A. EXAMPLE SCHEMAS IN AN IoT ENVIRONMENT
Before describing how to construct our global schema,
we briefly describe an example of source schemas, which we
use to explain the schema integration in this paper.

We assume a scenario that combines sensor data stored in
Cassandra and HDFS with static data stored in MySQL. This
scenario is one of many possible applications in an IoT envi-
ronment. Table 2 depicts the local source schemas for multi-
ple data stores in this IoT case study. A readings table or
column family in Cassandra keeps sensor data from wearable
devices and the positions of employees for a given time and
date. In this case, a wearable device continuously measures
heart rate values. An employee table in the HR database
stores information about all employees, including employee
numbers, names, addresses, dates of birth, e-mail addresses,
and job levels. An inventory department stores informa-
tion from all sensor devices in tables such as sensor and
wearSensor. The sensor table maintains data on all sen-
sor devices, such as the sensor identification number, serial
number, model, date of purchase, and the type of sensor. The
wearSensor table keeps track of the owners of wearable
devices listed in the sensor table. A batchwearable
file in HDFS stores the daily batch-processed data from the
readings table, which consists of the average, minimum,
andmaximumheart rate values from each sensor for each day.

B. GLOBAL SCHEMA CONSTRUCTOR
As explained in Section III, the global schema constructor of
MusQ integrates disparate local source schemas to obtain a

FIGURE 4. Global schema constructor.

global schema. Figure 4 illustrates the two main components
of the global schema constructor: (1) schema matching and
(2) schema mapping.

1) SCHEMA MATCHING
Before describing the schema integration in greater detail,
we provide formal definitions of the crucial concepts used
in our global schema constructor module.

The formal definition of a source schema is as follows:
Definition 1: (Source Schema) A source schema S is a

collection of tables and is denoted by S = {T1,T2, · · · ,Tn}.
Each table T can have several attributes, represented by
T (a1, a2, · · · , am).
Example 2: Figure 5 shows an example of source schema

definitions using the scenario from Table 2. The data stores
of S1, S2, S3, and S4 are Cassandra, MySQL, MySQL, and
HDFS, respectively.

FIGURE 5. Example of source schemas.

The goal of schema matching is to find a correspondence
between source schemas, called a semantic match. A cor-
respondence specifies how some elements of two source
schemas are related to each other. This reduces the effort in
defining the global schema and understanding the relation-
ship between each element of two source schemas from the

VOLUME 8, 2020 58037

H. Ramadhan et al.: MusQ: Multi-Store Query System for IoT Data Using a Datalog-Like Language

available local schemas. For example, the correspondence
between the empID column in employee from the local
schema S1 and the employeeID of the wearSensor table
from the local schema S2 could be found from multiple data
sources.
Definition 2: (Similarity Score) A similarity score is

denoted by scij = (S1.ai, S2.bj, simScore), where ai and bj
are matching candidates from the source schemas S1 and S2,
respectively, and simScore is the similarity score between
attributes ai and bj (0 <= simScore <= 1).
Example 3: Given the pair of schemas in Figure 5,

the schema matcher calculates a similarity score for each
combination of attributes from schemas S1 and S2. Figure 6
shows a sample of the similarity scores for the attributes of
S1 and S2.

FIGURE 6. Similarity scores for the attributes of S1 and S2.

The next step is to define a semantic match from the
aggregated similarity score. A semantic match is defined as
follows:
Definition 3: (Semantic Match) A semantic match is a

one-to-one match between an attribute of Si and an attribute
of Sj, so that Si.ax ≈ Sj.by. A semantic match has the highest
similarity score, which means that attribute ax from Si is very
likely to be related to attribute by from Sj.
We have the highest similarity score for empID

and employeeID using the previous example. Thus,
employee.empID ≈ wearSensor .employeeID is a seman-
tic match for S1 and S2. In other words, the empID and
employeeID attributes are likely to be related, and we can
perform a join operation between the two schemas using these
attributes as the join condition. We can identify other schema
semantic matches using the same schema-matching process.
The result of the semantic matching is shown in Figure 7.

FIGURE 7. Examples of semantic matches.

Algorithm 1 outlines the steps in the schema-matching
process. The schema-level matcher checks for similarities in
the attribute names and data types in line 5. Attribute-name
similarity is calculated using a string similarity function (such
as Jaccard similarity) and semantic similarity by utilizing the

Algorithm 1 Schema Matching
Input: Schema List S
Output: Similarity Score sc
procedure SchemaMatching(S)

1: Initialize a set of SimilarityScore SC ;
2: for i from 0 to |S| − 1 do
3: for j from i+ 1 to |S| do

// Calculate schema-level
similarity score

4: Initialize new SimilarityScore ss as a tuple of
(si, sj, simScore);

5: ss ← SchemaLevelMatch(si, sj);
// Calculate instance-level

similarity score
6: Initialize new SimilarityScore is as a tuple of

(si, sj, simScore);
7: is ← InstanceLevelMatch(si, sj);

// Calculate weighted average of
schema level and instance
level score

8: avgscore ← GetWeightedAverage(ss, is);
9: Initialize new SimilarityScore score as a tuple of

(si, sj, avgscore);
10: SC .Add(score);

end for
end for

11: SC .SortDesc();

WordNet lexical database [41]. In line 7, the instance-level
matcher checks for similarities in the sample data from
schemas S1 and S2 using the schema definition in Table 2.
Subsequently, in line 8, the similarity scores from bothmatch-
ers are aggregated using a weighted average calculated by the
score aggregator.

To prove the correctness of Algorithm 1, we use the loop
invariant technique [42]. This approach examines the correct-
ness of the algorithm in three loop stages: (1) initialization,
(2) maintenance, and (3) termination.
Theorem 1: With the schema list S as input, algorithm

Schema Matching (Algorithm 1) is correct with these loop
invariants: for any step in the outer loop, we apply this step:
0 ≤ i < |S| − 1, otherwise i = |S| − 1; for any step in the
inner loop, we apply this step: i < j < |S|, otherwise j = |S|.

Proof 1 (Proof of Schema Matching) The algorithm
generates a set SC of tuples (si, sj)|si, sj ∈ S × S, i < j from
schema S with their corresponding weighted average similar-
ity score. The weighted average similarity score is a function
that computes the similarity score from the schema-level and
instance-levelmatching as described by line 5 and line 7. Both
matching processes also take the same input pair of schema
(si, sj), and theweighted average similarity computation takes
the output of bothmatching processes as input. Hence, we can
simply denote the weighted average similarity computation
as favgscore : (si, sj) → (si, sj, avgscore). Then the algorithm

58038 VOLUME 8, 2020

H. Ramadhan et al.: MusQ: Multi-Store Query System for IoT Data Using a Datalog-Like Language

sorts the tuples in descending order according to the weighted
average similarity score.
(Outer Loop) Initialization: The similarity score result set

is initialized as SC = ∅ and i = 0. No value for j is declared
yet. Thus, the result set should be empty.
(Outer Loop) Maintenance: Suppose at the beginning of

the iteration, the invariant holds at a particular value i < |S|−
1 and the SC contains the result set from the beginning until
i − 1, as described in Equation 1. Let SC ′ and i′ denote the
content of SC and i at the end of the iteration, as described in
Equation 2 below:

SC = {(sk , sj, avgscore)|0 ≤ k < i ∧ k < j < |S|

∧favgscore(sk , sj) = (sk , sj, avgscore)} (1)

SC ′ = SC ∪ {(si, sj, avgscore)|i < j < |S|

∧favgscore(si, sj) = (si, sj, avgscore)};

i′ = i+ 1. (2)

At the end of the iteration, SC ′ must contain the set of
tuples computed by favgscore from S, from the beginning
until i, and it must hold the invariant. We prove this invariant
in Equation 3:

SC ′ = SC ∪ {(si, sj, avgscore)|i < j < |S|

∧favgscore(si, sj) = (si, sj, avgscore)}

SC ′ = {(sk , sj, avgscore)|0 ≤ k < i ∧ k < j < |S|

∧favgscore((sk , sj)) = (sk , sj, avgscore)} ∪

{(si, sj, avgscore)|i < j < |S| ∧ favgscore(si, sj)

= (si, sj, avgscore)}

SC ′ = {(sk , sj, avgscore)|0 ≤ k < i+ 1 ∧ k < j < |S|

∧favgscore((sk , sj)) = (sk , sj, avgscore)}

SC ′ = {(sk , sj, avgscore)|0 ≤ k < i′ ∧ k < j < |S|

∧favgscore((sk , sj)) = (sk , sj, avgscore)}

(proved). (3)

Next, we prove the invariant in the inner loop of Algo-
rithm 1 to find the match between si with the elements of S
after i until the end.
(Inner Loop) Initialization: At the beginning of the inner

loop iteration, si and SC from the outer loop are given. The
similarity score set of the loop is denoted as SC i. Then the
value of j is initialized as j = i+ 1. This invariant still holds
because the similarity score favgscore(si, sj) is not computed
yet.
(Inner Loop) Maintenance: Suppose at the beginning of

the iteration, the invariant holds a particular value of j < |S|,
and SC i contains the union of SC and the result of favgscore
from i + 1 to j − 1, as defined in Equation 4. Let SC i′ and
j′ denote the content of SC i and j at the end of the iteration.
Equation 5 describes SC i′ and j′, and this invariant is proven
in Equation 6:

SC i
= SC ∪ {(si, sl, avgscore)|i < l < j

∧favgscore(si, sl) = (si, sl, avgscore)} (4)

SC i′
= SC i

∪ {(si, sj, avgscore)|favgscore(si, sj)

= (si, sj, avgscore)};

j′ = j+ 1 (5)

SC i′
= SC i

∪ {(si, sj, avgscore)|favgscore(si, sj)

= (si, sj, avgscore)}

SC i′
= {(si, sl, avgscore)|i < l < j ∧ favgscore(si, sl)

= (si, sl, avgscore) ∪ {(si, sj, avgscore)|

sfavgscore(si, sj) = (si, sj, avgscore)}

SC i′
= {(si, sl, avgscore)|i < l < j+ 1

∧favgscore((si, sl)) = (si, sl, avgscore)

SC i′
= {(si, sl, avgscore)|i < l < j′

∧favgscore((si, sl)) = (si, sl, avgscore)

(proved). (6)

(Inner Loop) Termination: Because the loop is a for loop,
it clearly terminates.
(Inner Loop) Correctness: The loop exits when j = |S|.

The invariant shows that SC i contains the favgscore result
with the inputs from si, si+1 until si, s|S|−1 when the loop
terminates.
(Outer Loop) Termination: Because the loop is a for loop,

it clearly terminates.
(Outer Loop) Correctness: The loop exits when i = |S|.

The invariant shows that SC contains the join between the
favgscore result with the inputs from the pairs (si, sj)|si, sj ∈
S × S, i < j when the loop terminates.

The schema-matching process, as described before, may
benefit from using one or more types of matchers to generate
semantic scores, which are then aggregated as a similarity
score of a single combination of corresponding attributes.
Multiple matchers may be used because elements of a source
schema are limited and cannot always represent real data
exactly. Thus, they may provide more accurate schema inte-
gration results. Therefore, we implement two differentmatch-
ers to calculate several similarity scores: a schema-level
matcher and an instance-level matcher. The score aggregator
module aggregates these two similarity scores as a value in
the range [0,1]. The schema matcher calculates a similarity
score for each combination of attributes. Therefore, it is
possible to have more than one match. The match with the
highest similarity score is called a semanticmatch. The higher
the similarity score, the more likely a match is to be selected
as the preferred global schema. The semantic match is used
in the schema-mapping process for the mapping definition.
Example 4: Figure 8 shows an example of schema match-

ing. First, we calculate the attribute similarities of two source
schemas,employee andwearSensor from the Cassandra
and MySQL data stores, respectively, using a schema-level
matcher. Second, we calculate the data-instance similarity
score using the instance-level matcher. Because employee
has six attributes and wearSensor has two attributes, both
matchers produce 12 similarity scores from the attribute com-
binations. Thus, we need to examine only a small subset

VOLUME 8, 2020 58039

H. Ramadhan et al.: MusQ: Multi-Store Query System for IoT Data Using a Datalog-Like Language

FIGURE 8. Example of schema matching.

of a set of similarity scores. Next, we aggregate and sort
the similarity scores from the matchers into an aggregated
similarity score.

This example demonstrates that our approach simplifies
the process of schema matching from heterogeneous data
stores. The similarity scores provide the likelihood of a match
to be a global schema. Therefore, the user needs only to focus
on the matches with a high similarity score rather than on all
matches.

2) SCHEMA MAPPING
The schema-mapping process produces a mapping definition
or global schema candidates. The schema mapper transforms
the semantic matches from the schema matching and inputs a
pair of local schemas into the mapping definition. By defini-
tion, the semantic match is very likely to be related, meaning
that we can perform a join operation on the two schemas. The
join concept is similar to that of a relational database, where
we can join two tables using a join condition, such as a foreign
key.
Definition 4 (Mapping Definition): A mapping definition

is schema mapping expressed using a Datalog-like language
that shows the relation between Si and Sj by the semantic
match Si.ax ≈ Sj.by.

FIGURE 9. Mapping definition.

We can define a mapping definition from a pair of source
schemas and a semantic match, as shown in Figure 9. The
mapping definition consists of three sections: the head section
is the schema definition for the global schema, and the body
section describes the source schemas used to construct the
global schema and the semantic matches between the two
schemas. The global schema constructor module generates
a default name for the global schema, such as M1, M2, and
M3. We can edit the name of the global schema as part of the
user validation step, (e.g., rename M1 to empSensor).

The attributes of the global schema are constructed from
the attributes in the source schemas. In the employee
schema, the attributes consist of empID, jobID,
address,DoB,name, andemail, and thewearSensor
schema has attributes employeeID and sensorID.
We have the semantic match employee.empID ≈ wearSen-
sor.employeeID, which describes how empID in the
employee schema is similar to employeeID in the
wearSensor schema. Thus, we can choose either empID
oremployeeID as an attribute in the global schema.We fol-
low a rule that chooses the first attribute from the first schema
as the attribute for the global schema, which is empID from
the employee schema. Thus, we have the following global
schema: empSensor(empID,jobID,address,DoB,
name, email,sensorID).

We can define several mapping definitions with the seman-
tic matches shown in Figure 7 using the same mapping
process. We use these mapping definitions to define our
global schema. Figure 10 shows the global schema definition,
which is constructed from several mapping definitions. The
final global schema consists of four schemas: empSensor,
wearable, batch, and sensorWear. The global
schema also stores information on which data sources are
used and the relations between them. Therefore, if a query
is posed to MusQ, it is performed using the global schema,
and the query processor module splits the query based on the
data source definition in the global schema.

FIGURE 10. Global schema using several mapping definitions.

Because the global schema is built for data integration,
it does not necessarily have to contain all the information
from the local source schemas. We can omit several attributes
that are not relevant to our system. In the above example,
email, address, and DoB might be sensitive informa-
tion from HR and considered irrelevant for our IoT appli-
cation. Here, the user can omit these attributes from the
empSensor schema. This attribute removal process is also
considered a user validation step. Thus, the empSensor
schema is given as follows:

empSensor(empID,name,jobID,sensorID).

58040 VOLUME 8, 2020

H. Ramadhan et al.: MusQ: Multi-Store Query System for IoT Data Using a Datalog-Like Language

The email, address, and DoB attributes have been
removed from the empSensor schema, so that only
attributes that are relevant to the IoT application, such as
empID, name, jobID, and sensorID are used in the global
schema.
Example 5: We demonstrate the construction of the global

schema from local schemas and the sample data of multiple
data stores using a GUI, as depicted in Figure 11.

FIGURE 11. Global schema construction process using MusQ.

1) In the Local Schema Explorer area, we choose several
local schemas (a minimum of two) that exist in one or
more sources.

2) We execute global schema construction in the Schema
Selection area, without manually choosing attributes
to match. MusQ performs the schema matching and
mapping at this step.

3) In the Schema Editor area, the similarity score of the
constructed global schema is visible in Table Editor
View and the raw constructed schema is visible in Text
View (the global schema properties are similar to those
in Figure 10). Thus, we can remove irrelevant global
schemas and attributes.

4) Finally, we save the global schema in MQL for later
usage.

From 2) and 3) above, the construction is clearly semi-
automatic. MusQ shows all constructed schemas. However,
the users can remove the irrelevant ones, including the
attribute.

V. QUERY PROCESSING
In this section, we present our multi-store query processing
system using the mediator–wrapper approach.

Figure 12 illustrates the query processing flow of MusQ,
which consists of query decomposition, subquery processing,
and the result finalizer. The mediator is responsible for the
query decomposition and the result finalizer, whereas the
wrapper performs the subquery processing.

FIGURE 12. The flow of query processing in MusQ.

A. QUERY DECOMPOSITION IN A MEDIATOR
In the mediator, MusQ decomposes an input query into sub-
queries using the help of the global schema. To perform the
decomposition, the mediator uses two modules: the Query
Parser and theQuery Plan Generator, as shown in Figure 13.
The Query Parser is responsible for parsing the input MQL
query into a grammar tree and performing schema validation
using the global schema definition.

FIGURE 13. Mediator module.

Then the Query Plan Generator decomposes the validated
input query into multiple subqueries for each local data store
in thewrapper. Next, after thewrapper finishes the local query
processing, the mediator receives each wrapper’s intermedi-
ate results. The result finalizermerges all intermediate results
from the wrappers into a final result.

We explain the result finalizer in Section V-C.

1) QUERY PARSER
A user specifies an input MQL query in the mediator and the
Lexical Analyzer parses the input query into a grammar tree.
We implement the Lexical Analyzer using ANTLR [43] as the
parser generator for the MQL grammar. The Schema Valida-
tor checks the query using the grammar tree and validates the
query using the global schema definition.

2) QUERY PLAN GENERATOR
After validation, the mediator sends the validated input
queries to the Query Plan Generator Module. The Query
Splitter decomposes the query into several subqueries based
on the global schema. It looks for the schema mapping in the
global schema that corresponds to the query. Then it splits
the query into subqueries for each data store according to the
schema mapping. The query planner also generates the query
execution order for each subquery. The query execution order
is important to optimize themerging of the intermediate result
in the mediator.

VOLUME 8, 2020 58041

H. Ramadhan et al.: MusQ: Multi-Store Query System for IoT Data Using a Datalog-Like Language

FIGURE 14. Subqueries for Q1.

Example 6: Consider the example in Figure 3 again. The
Query Splitter decomposes an input MQL query into four
subqueries, as illustrated in Figure 14. Since the wearable
schema consists of two local source schemas, such as
sensor and readings, the input query is split into
SQ1 and SQ2. In the same way, since the empSensor
schema consists of employee schema and wearSensor
schema, the second part of the query is decomposed into
SQ3 and SQ4.
After this, the Query Planner generates the query plan for

every subquery from the query splitter. We describe the query
plan generation algorithm in Algorithm 2. First, we initialize
an empty query plan set QPs. The query plan generator
examines every source s defined in the query Q in line 2.
Then we find a global schema gs that is associated with
the source s. Next, we assign the parent of the query plan
qp as source s (line 6). First, we assign the parent of the
query plan qp as source s (line 8). The parent defines the
source of the subquery in the query plan. Then we assign
the subquery qs, where qs has the same source as the local
schema ls (line 9).We initially set the query plan as unmerged
(line 11) to indicate that it is necessary to merge the subresults
from the subqueries based on the matches. The matches later
determine the merging pairs of the subquery results in the
result finalizer. Then we add the query plan qp to the setQPs.
Thus, at the end of the algorithm, we acquire the query plan
for all subqueries.

After the query planner generates the query plan for each
subquery, the mediator of MusQ pushes each subquery to the
corresponding data store’s wrapper.
Example 7: Figure 15 depicts a query plan corresponding

to the input query in Figure 3. Based on the local schema
definition in Table 2, SQ1 and SQ4 are sent to the inventory
data store, SQ2 is sent to the sensor data store, and SQ3
is sent to the HR data store. We can perform a selection
or filter operation on sensor and readings using the
type and heartrate attributes, respectively. In the sub-
queries SQ3 and SQ4, we do not perform any filter opera-
tions, but directly perform a join operation using the seman-
tic match employee.empID ≈ wearSensor .employeeID.
The order of the join operation is based on the global
schema in Figure 10. The results of subqueries SQ3 and
SQ4 are joined first using the empSensor schema, then the
results of subqueries of SQ1 and SQ2 are joined using the

Algorithm 2 Query Plan Generation
Input: MQL query Q, subqueries SQ
Output: Query plan set QPs

1: Initialize QueryPlan set QPs;
2: foreach Source s ∈ Q do
3: GlobalSchema gs← NULL;
4: Set gs as the global schema associated with s.table;
5: MatchesM ← gs.getMatches();
6: foreach LocalSchema ls ∈ gs.getLocalSchema() do
7: Initialize QueryPlan qp;
8: Set qp.parent as s.table;
9: Set qp.subquery as qs ∈ QS|qs.source = ls;
10: Set qp.match as M ;
11: Set qp.merged as FALSE ;
12: QPs.Add(qp);

end foreach
end foreach

FIGURE 15. Query plan for Q1’s subqueries.

wearable schema. Next, both join results are joined
together, using sensorWear schema, as the final result.

B. SUBQUERY PROCESSING IN THE WRAPPER
As described in the previous section, the wrapper receives an
MQL subquery from the mediator during the query process-
ing. The role of the wrapper is to perform schema validation
of the subquery over the local schema, translate it into the
local data store’s query language, retrieve the intermediate
results by executing it, and send those results back to the
mediator module. Thus, as depicted in Figure 16, the wrapper
has twomain components: (1) a schema driver and (2) a query
driver. The schema driver extracts the schema definition from
each local data store in the global schema construction pro-
cess, whereas the query driver handles the subquery process-
ing phase.

Because each data store has its own wrapper, the imple-
mentation of the Query Converter function is different for
each data store. For example, the MySQL wrapper has an
MQL to SQL query converter function, Cassandra has an
MQL to CQL (Cassandra Query Language) query converter
function, and MongoDB has an MQL to MongoDB query
converter function.

58042 VOLUME 8, 2020

H. Ramadhan et al.: MusQ: Multi-Store Query System for IoT Data Using a Datalog-Like Language

FIGURE 16. Wrapper module.

C. RESULT FINALIZER IN MEDIATOR
The result finalizer merges the intermediate results from each
wrapper and stores them in a JSON object.

Algorithm 4 Merging the Subquery Result Using a
Nested-Loop Join
Input: JSON subresults SR1, JSON subresults SR2,

MatchesM
Output: Merged Result R
procedure LoopJoin(S)

1: Initialize JSON result R;
2: for i from 0 to |SR1| do

sri = SR1.Get(i);
3: for j from 0 to |SR2| do

srj = SR2.Get(j);
4: if sri.Get(M .col1).Equals(srj.Get(M .col2))

then
Initialize JSONObject o;

5: o.AddAll(sri);
6: o.AddAll(srj);
7: R.Add(o);

end if
end for

end for

As a merging option, we implemented three join algorithm
approaches: nested-loop join, hash join, and sort-merge join.
The detailed mechanisms of these techniques are described
in Algorithm 4, Algorithm 5, and Algorithm 6, respectively.
Due to the matches provided by the global schema, these join
algorithms are able to merge the subresults from heteroge-
neous data stores.

The three algorithms use the same join approach by iter-
ating the result set of two corresponding data stores SR1
and SR2 using the semantic match M defined in the global
schema, which are used as input. According to semantic
matchM , if there is a record from the first data store subresult
SR1 that has a matching attribute to a record from the second
data store subresult SR2, both records are joined as a single
record in JSON format. Thus, after all records that have the
samematching attribute values are joined, each algorithmwill
return themerged resultR as a list of JSONobjects. In the case
of the aggregation function, we can consider themerge results
as a single table after executing partial queries, as mentioned
in Section III.

Algorithm 5 Hash Join on Subquery Results
Input: JSON subresults SR1, JSON subresults SR2,

MatchesM
Output: Merged Result R
procedure HashJoin(S)

1: Initialize JSON result R;
H ← new Hash(key:string,
value:< JSONObject List >);

2: for i from 0 to |SR1| do
sri = SR1.Get(i);
H .Add(sri.Get(M .col1),sri);

end for
3: for j from 0 to |SR2| do

srj = SR2.Get(j);
HashList← H .Get(srj.Get(M .col2));
foreach h in HashList do

4: if h.Get(M .col1).Equals(srj.Get(M .col2))
then

Initialize JSONObject o;
5: o.AddAll(h);
6: o.AddAll(srj);
7: R.Add(o);

end if
end foreach

end for

The nested-loop join approach in Algorithm 4 merges the
subresult sets SR1 and SR2 according to the schema matches
M in a naive way. It iterates through all the records in SR1
(line 2), checking whether each match satisfies sri ∈ SR1 and
srj ∈ SR2 (line 3). A match occurs when the attribute value
of M .col1 of sri equals the attribute value of M .col2 of srj
(line 4). If so, it stores the matching record of SR1 and SR2 as
a JSON object in the result set R (lines 5-7). Thus, R contains
the joined records of SR1 and SR2.
The hash join approach in Algorithm 5 merges the sub-

result sets SR1 and SR2 according to the schema matches M
with the help of the hash tableH . First, the algorithm creates a
hash tableH that maps all the records of SR1 as values, where
each value is paired with a key (line 2). The key for the hash
table comes from the hash function result h(x1), where x1 is
the value of theM .col1 attribute of a record in SR1. After the
hash table H creation finishes, the hash join attempts to find
the records of SR2 that match the records of SR1 inH (line 3).
The hash join looks for the matching record of a single record
srj ∈ SR2 with the subset HashList ⊆ SR1. The HashList
contains all the records of SR1, where their keys are equal to
the hash function result h(x2), where x2 is the value ofM .col2
attribute of srj. Next, the hash join finds the matching records
of srj with h, where h ∈ HashList given the condition that
the attribute value of M .col1 of h should equal the attribute
value of M .col2 of srj (line 4). Then it stores the matching
records of SR1 and SR2 as a list of JSON objects in the

VOLUME 8, 2020 58043

H. Ramadhan et al.: MusQ: Multi-Store Query System for IoT Data Using a Datalog-Like Language

Algorithm 6 Sort-Merge Join on Subquery Results
Input: JSON subresults SR1, JSON subresults SR2,

MatchesM
Output: Merged Result R
procedure SortMergeJoin(S)

1: Initialize JSON result R;
i← 0, j← 0;
while i < |SR1| and j < |SR2| do

2: if SR1.Get(i).Get(M .col1) < SR2.Get(j).(M .col2)
then

i← i+ 1;
3: else if SR1.Get(i).Get(M .col1) >

SR2.Get(j).(M .col2) then
j← j+ 1;

4: else
5: while i < |SR1| AND

SR1.Get(i).Get(M .col1).Equals(SR2.Get(j)
.(M .col2)) do

k ← j;
sri = SR1.Get(i);
srk = SR2.Get(k);

6: while k < |SR2| AND
sri.Get(M .col1).Equals(srk .Get(M .col2)
do

Initialize JSONObject o;
7: o.AddAll(sri);
8: o.AddAll(srk);
9: R.Add(o);

k ← k + 1;
srk = SR2.Get(k);

end while
i← i+ 1;

end while
end if

end while

result set R (lines 5-7). Thus, R contains the joined records of
SR1 and SR2.
The sort-merge join approach in Algorithm 6 merges the

initially sorted subresult sets SR1 and SR2 according to the
schema matches M . The subresult sets SR1 and SR2 have
their records sorted in non-descending order with respect to
the attribute values of M .col1 and M .col2, respectively. The
sort-merge join iterates the records of SR1 and SR2 by com-
paring the matching attributes (M .col1 and M .col2). If the
algorithm finds that a record’s sri ∈ SR1 has a matching
attribute value that is smaller than the matching attribute of
a record srj ∈ SR2, the algorithm skips the records of SR1
until sri has a value larger than or equal to srj (line 2). The
mechanism also works for SR2 (line 3). Then, if sri and srj
have an equal matching attribute value (4), this means the
sort-merge join has found the start of the matching records
of SR1 and SR2. Because the subresults are sorted, this guar-
antees that the i-th through the i+a-th records of SR1, where

TABLE 3. The notations and corresponding descriptions for the proof of
the nested-loop join.

a ≥ 0, hold the same value of attributeM .col1. This guarantee
also holds for SR2. Thus, in lines 5-6, the algorithm joins the
matching records while also checking for their equality and
the termination of the loop. Then it stores the joined records as
a list of JSON objects in the result set R (lines 7-9). Therefore,
R contains the joined records of SR1 and SR2.

Next, we provide the proof of correctness for those
algorithms.

1) CORRECTNESS OF THE NESTED-LOOP JOIN APPROACH
In this subsection, we prove the correctness of the proposed
merging algorithms of the nested-loop join by applying the
loop invariant technique [42] again. The loop invariant tech-
nique consists of three parts: (1) initialization, (2) mainte-
nance, and (3) termination. Table 3 displays the notations
used in this proof. The proofs for the hash join and sort-merge
join algorithms are provided in the Appendix.
Theorem 2: With the two subresults SR1 and SR2 from the

subqueries and the match M from the matching schema as
input, the algorithm for the nested-loop join is correct with
these loop invariants: for any step in the outer loop, this step
is applied: 0 ≤ i < |SR1|, otherwise i = |SR1|; for any step in
the inner loop, this step is applied: 0 ≤ j < |SR2|, otherwise
j = |SR2|.

Proof 2 (Proof. Nested-Loop Join) The algorithm finds
the result set R of the join between SR1 and SR2 with the
matching attributes provided by the match M , denoted as
SR1 FGM .col1=M .col2 SR2.
(Outer Loop) Initialization: The join result set is initialized

as R = ∅ and i = 0. No value for j is declared yet. Thus,
the result set should be empty.
(Outer Loop) Maintenance: Suppose at the beginning of

the iteration, the invariant holds at a particular value i < |SR1|
andR contains the join result set from the beginning until i−1,
as described in Equation 7. Let R′ and i′ denote the content of
R and i at the end of the iteration, as described in Equation 8:

R = {sr1,k ∪ sr2,j|0 ≤ k < i ∧ 0 ≤ j < |SR2|

∧sr1,k [M .col1] = sr2,j[M .col2]} (7)

R′ = R ∪ {sr1,i ∪ sr2,j|0 ≤ j < |SR2|

∧sr1,i[M .col1] = sr2,j[M .col2]}

i′ = i+ 1. (8)

At the end of the iteration, R′ must contain the set of join
results of the records of SR1 from the beginning until i and

58044 VOLUME 8, 2020

H. Ramadhan et al.: MusQ: Multi-Store Query System for IoT Data Using a Datalog-Like Language

the entire SR2, and must hold the invariant. We prove this
invariant in Equation 9:

R′ = R ∪ {sr1,i ∪ sr2,j|0 ≤ j < |SR2| ∧ sr1,i[M .col1]

= sr2,j[M .col2]}

R′ = {sr1,k ∪ sr2,j|0 ≤ k < i ∧ 0 ≤ j < |SR2|

∧sr1,k [M .col1] = sr2,j[M .col2]} ∪

{sr1,i ∪ sr2,j|0 ≤ j < |SR2| ∧ sr1,i[M .col1]

= sr2,j[M .col2]}

R′ = {sr1,k ∪ sr2,j|0 ≤ k ≤ i ∧ 0 ≤ j < |SR2|

∧sr1,k [M .col1] = sr2,j[M .col2]}

R′ = {sr1,k ∪ sr2,j|0 ≤ k < i′ ∧ 0 ≤ j < |SR2|

∧sr1,k [M .col1] = sr2,j[M .col2]}

(proved). (9)

Next, we prove the invariant in the inner loop of
Algorithm 4 to find the match between sr1,i with the
whole SR2.
(Inner Loop) Initialization: At the beginning of the inner

loop iteration, sr1,i and R from the outer loop are given. The
result set of the loop is denoted as Ri. Then the value of j is
initialized as j = 0. This invariant still holds because sr1,i is
not joined with anything from SR2 yet.
(Inner Loop)Maintenance: Suppose at the beginning of the

iteration, the invariant holds a particular value of j < |SR2|,
and Ri contains the union of R and the joint records of sr1,i
with the records of SR2[0 . . . j−1], as defined in Equation 10.
Let Ri

′

and j′ denote the content of Ri and j at the end of the
iteration, as described in Equation 11. We prove this invariant
in Equation 12:

Ri = R ∪ {sr1,i ∪ sr2,l |0 ≤ l < j ∧ sr1,k [M .col1]

= sr2,l[M .col2]} (10)

Ri
′

= Ri ∪ {sr1,i ∪ sr2,j|sr1,i[M .col1] = sr2,j[M .col2]};

j′ = j+ 1 (11)

Ri
′

= Ri ∪ {sr1,i ∪ sr2,j|sr1,i[M .col1] = sr2,j[M .col2]}

Ri
′

= R ∪ {sr1,i ∪ sr2,l |0 ≤ l < j ∧ sr1,i[M .col1]

sr2,l[M .col2]} ∪ {sr1,i ∪ sr2,j|sr1,i[M .col1]

= sr2,j[M .col2]}

Ri
′

= R ∪ {sr1,i ∪ sr2,l |0 ≤ l ≤ j ∧ sr1,i[M .col1]

= sr2,l[M .col2]}

Ri
′

= R ∪ {sr1,i ∪ sr2,l |0 ≤ l < j′ ∧ sr1,i[M .col1]

= sr2,l[M .col2]}

(proved). (12)

(Inner Loop) Termination: As the loop is a for loop,
it clearly terminates.
(Inner Loop) Correctness: The loop exits when j = |SR2|.

The invariant shows that Ri contains the join between sr1,i
and SR2[0 . . . |SR2| − 1] with the match M when the loop
terminates.

(Outer Loop) Termination: As the loop is a for loop,
it clearly terminates.
(Outer Loop) Correctness: The loop exits when

i = |SR1|. The invariant shows that R contains the join
between SR1[0 . . . |SR1|−1] and SR2 with the matchM when
the loop terminates.
Thus, we can perform the aggregation after the join opera-

tion finishes according to the previously produced query plan.

D. COMPLEXITY ANALYSIS OF QUERY PROCESSING
In this subsection, we discuss the cost model ofMusQ’s query
processing to show the complexity analysis of our approach.
We modified the cost model in [44] to suit our mediator–
wrapper-based heterogeneous multi-store system. Our cost
model C is defined as the sum of the query processing costs
at the mediator Cmediator and at the wrapper Cwrapper and the
network transfer costs Ctransfer , as described in the equation
below:

C = Cmediator + Cwrapper + Ctransfer . (13)

1) MEDIATOR COST
First, we describe the cost model of the mediator of
a query, Cmediator , according to Sections V-A and V-C.
In SectionV-A,we decomposed a singleMQLquery into sub-
queries by two processes: parsing and query plan generation.
Suppose, for a single query, the time to perform the parsing
and query plan generation are tparse and tplan, respectively.
After the wrappers finish their work, the mediator merges

the intermediate results and convert them into JSON objects.
MusQ performs these two steps a number of times equal to
the number of intermediate result join operations as decided
in the generated query plan. We define the set of those join
operations as J . In the j-th join operation, suppose we have
two different sets of intermediate results SRj1 and SRj2. The
time to merge the intermediate results depends on the sizes
of the result sets (|SRj1|, |SR

j
2|) and the choice of merging

algorithmm. Thus, the merging time of the j-th join operation
is tmerge−m,j(|SR

j
1|, |SR

j
2|), where m ∈ {nested − loop −

join, hash − join,merge − join}. Therefore, we can define
the cost of the mediator Cmediator as

Cmediator = tparse + tplan +
∑
j∈J

tmerge−m,j(|SR
j
1|, |SR

j
2|).

(14)

We now describe the merging time of each algorithm.
Suppose MusQ is processing the j-th join operation to
merge |SRj1| and |SR

j
2|. We describe the merging time

of the nested-loop join tmerge−nested−loop−join(|SR
j
1|, |SR

j
2|),

hash join tmerge−hash−join(|SR
j
1|, |SR

j
2|), and sort-merge join

tmerge−sort−merge−join(|SR
j
1|, |SR

j
2|) in Equations 15, 16,

and 17, respectively. The nested-loop join (Algorithm 4)
naively joins the intermediate result set SRj1 and SR

j
2 directly.

We denote the time of this merging style as tnested−loop−join.
Next, the hash join (Algorithm 5) maps the SRj1 first as H ,

VOLUME 8, 2020 58045

H. Ramadhan et al.: MusQ: Multi-Store Query System for IoT Data Using a Datalog-Like Language

then joins H and SRj2. We denote the time of the map and the
merging of hash join as thash−map and thash−join, respectively.
Finally, the sort-merge join (Algorithm 6) first sorts the
intermediate result sets SRj1 and SRj2 as SRsj1 and SRsj2,
respectively, and then joins SRsj1 and SRsj2. We denote the
time of the sorting and the merging of sort merge join as tsort
and tsort−merge−join, respectively:

tmerge−nested−loop−join = tnested−loop−join(|SR
j
1|, |SR

j
2|) (15)

tmerge−hash−join = thash−map(|SR
j
1|)

+ thash−join(|H |, |SR
j
2|) (16)

tmerge−sort−merge−join = tsort (|SR
j
1|)+ tsort (|SR

j
2|)

+ tsort−merge−join(|SRs
j
1|, |SRs

j
2|).

(17)

Due to the merging process (tmerge), the mediator cost
is highly dependent on the size of the intermediate results.
By contrast, the other components, which are tparse and tplan,
do not depend on the size of the intermediate results. Next,
we discuss the wrapper cost.

2) WRAPPER COST
We define the cost model of the wrapper’s query processing
using the explanation in Section V-B. First, we suppose there
are a set of wrappers W that process the subqueries from the
mediator. Then, a single wrapper w ∈ W validates a sub-
query input. The wrapper w translates this subquery into the
wrapper’s query language. We denote the required times for
the validation and the translation as tvalidate,w and ttranslate,w,
respectively. The wrapper w then executes the subquery on a
data store D. The execution time is highly dependent on the
data set size |D| and the wrapper’s data store type. We denote
the execution time as texec,w. Therefore, we can write the cost
model of the wrapper as

Cwrapper =
∑
w∈W

tvalidate,w + ttranslate,w + texec,w(|D|)). (18)

The wrapper cost consists of three components: tvalidate,w,
ttranslate,w, and texec,w. The original data size in each cor-
responding data store wrapper in texec,w heavily affects the
wrapper cost. The wrapper cost also significantly depends
on the performance of the wrappers that process the sub-
queriesW . This applies to all components of the wrapper cost
(tvalidate,w, ttranslate,w, and texec,w).We now discuss the transfer
cost that covers the communication-related problems.

3) TRANSFER COST
The transfer costCtransfer consists of the communication time
required to send and receive data between the system and the
user, and between the mediator and the wrapper. We define
the communication time of the transfers from system to user
as tq−s and from user to system as ts−q. Suppose the query
processing involves a set of wrappers W . We define the data
transfer time from mediator to wrapper as tmed−w and from
wrapper to mediator as tw−med , where w ∈ W . The transfer

time from the wrapper to the mediator tw−med also depends
on the result set of the subqueries RSw in each wrapper. How-
ever, the mediator only sends the query plan to the wrapper.
Therefore, the transfer time from the mediator to the wrapper
tmed−w is independent of the size of the data. Thus, we can
write the transfer cost model as

Ctransfer= ts−q+
∑
w∈W

tmed−w + tw−med (|RSw|)+ tq−s. (19)

The transfer cost Ctransfer consists of four different costs,
including the interaction between the system and the user
(ts−q, ts−q) and between the mediator and the wrapper
(tmed−w, tw−med). All of these transfer costs are independent
of the intermediate result size |RSw|, except for the transfer
from the wrapper to the mediator tw−med .

VI. EXPERIMENT AND EVALUATION
In this section, we describe a comprehensive performance
evaluation of MusQ’s query processing using a synthetic and
a real IoT data set, where each data set is more than 1 GB
in size. We also provide queries that closely resemble IoT
analytics queries to show that our system is suitable for IoT
applications.

A. EXPERIMENT SETUP
1) HARDWARE AND ENVIRONMENT SETUP
We implemented MusQ1 in Java using the Java Development
Kit version 1.8, which sets the maximum JVM memory to
1024 MB. All experiments were conducted on commodity
machines equipped with an Intel Core i3-6100 3.7 GHz CPU
and 8 GB of memory on the 64-bit Ubuntu 16.04 operating
system. Four data stores were used to store the data set:
Cassandra version 3.10, MySQL version 5.7, MongoDB ver-
sion 3.2.13, and HDFS from Hadoop 2.6.0.

2) EXPERIMENT SCENARIOS
The experiments were developed within several categories:
global schema construction, pre-experiment for query pro-
cessing, and query processing. We performed the global
schema construction experiment to show the capability of
MusQ to build a global schema from local schemas. We con-
ducted the preliminary experiment using a small data set
to provide perspective on data store combination configura-
tions before using the large data set. Then we executed the
query-processing experiment for several narrower purposes,
including the effects of the global schema in the multi-store
system, performance of different data store combinations,
and performance of different merging algorithms. To obtain
sound and reliable experimental results, we repeated every
test 10 times and averaged the results over all repetitions.
We also examined the performance of Apache Drill on

some of the experiments as a comparison to the performance
of our system

1Source code available at: https://gitlab.com/dslab/MusQ.

58046 VOLUME 8, 2020

H. Ramadhan et al.: MusQ: Multi-Store Query System for IoT Data Using a Datalog-Like Language

3) DATA SET
We used two different IoT data sets: a synthetic and a real data
set. The synthetic data can be classified into two categories:
static data and sensor data. Static data are non-device data
that do not contain streamed sensor data, such as HR data or
inventory data. The sensor data are device data that contain
streamed sensor data, such as heartbeat readings of the device
wearer. For the real data set, we used the CityPulse road traffic
data set [24], which stores data on vehicle traffic.

As mentioned before, several combinations of static
and sensor data stores were required to perform the
query-processing experiments. These combinations consisted
of two and three data stores. The combination of two data
stores is composed of static and sensor data stores, whereas
the combination of three data stores is composed of either
two static and one sensor data stores or one static and two
sensor data stores. The static data were stored in both a
relational database (MySQL) and in a non-relational database
(MongoDB, Cassandra, and HDFS), whereas the sensor data
were stored in a non-relational database only. This option
was chosen because a relational database is not built to store
massive amounts of sensor data.

B. EXPERIMENTAL RESULT ON SYNTHESIZED DATA SET
1) GLOBAL SCHEMA CONSTRUCTION
We performed a global schema construction based on two dif-
ferent data stores, DB1 (unstructured) and DB3 (structured).
We redisplay the data store information in Table 4.

TABLE 4. Local schemas used in global schema construction
demonstration.

FIGURE 17. Result of semi-automatic global schema construction
experiment.

The global schema in Figure 17 incorporates the properties
of both local schemas. The structure of the global schema is
defined as follows. The first term (‘‘wearable’’) describes the
name of the global schema and the remainder of the term
contains the extracted and user-selected attributes from the
local schemas. After the colon and hyphen (‘‘:-’’), the defi-
nitions of the local schemas are similar to the < name:(set
of attributes)> style, but followed by ‘‘@< data store ID>.’’
The global schema process concluded when we obtained the
join conditions of both local schemas.

2) EXPERIMENT USING A SMALL DATA SET
We conducted this experiment as a preliminary to identify
data store technical problems that may be related to the size
of the data set when performing a query, such as a memory
limit or a long execution time. We addressed these problems
from the query processing experiment, as they may hinder the
execution of the experiment. In addition to identifying the
limitations specific to the data stores, we also examined
the performance of the mediator–wrapper query processing
approach on a small data set.

FIGURE 18. Query example for the small synthetic data set.

FIGURE 19. Query plan for the small synthetic data set.

We detail the small data set’s query and query plan
in Figures 18 and 19, respectively. The query shows filter
operations and the query plan displays join operations for
merging the results from each data store. Thus, this query
resembles an IoT analytics application because it deals with
heterogeneous data stores simultaneously. In further experi-
ments, we used this data set and varied the size according to
our needs. We controlled the size of the data set by removing
or changing the selection criteria of some attributes, such as
sid, sensorID dt, or heartrate.

We provide the query of MusQ and that of Apache Drill
in Figure 18(a) and (b), respectively. With our global schema
definition of MusQ, we only need to describe our desired
query with selected columns and filters. By contrast, in the

VOLUME 8, 2020 58047

H. Ramadhan et al.: MusQ: Multi-Store Query System for IoT Data Using a Datalog-Like Language

query of Apache Drill, it is obvious that the table names are
necessary in the filter and join definition. The global schema
of MusQ already provides the match, thus the users do not
need to rewrite them in the query.

For the small data set of 2,000 tuples, we performed
the MQL queries using a combination of two data stores
(static + sensor). We considered only MySQL as static
data storage because it represents RDBMS, whereas the oth-
ers represent non-relational databases (NoSQL and HDFS).
This consideration demonstrates the ability of MusQ to
work on both relational and non-relational databases when
processing a single query. We used three different com-
binations of two data stores (static + sensor) for the
experiment: MySQL+Cassandra, MySQL+MongoDB, and
MySQL+HDFS.

TABLE 5. Query performance of static + sensor data stores using
2,000 tuples.

Table 5 shows the results of this preliminary task. The com-
binations of MySQL+Cassandra and MySQL+MongoDB
showed similar performance, whereas the combination of
MySQL+HDFS exhibited the worst performance.

This experimental result is consistent with ourwrapper cost
model, as described in Equation 18. The query processing
time of the wrapper was highly dependent on the data store
type of each involved wrapper. Thus, each data store combi-
nation had a different query processing time.

The inferior performance of MySQL+HDFS occurred
because HDFS does not support indexes. The absence of
indexes required MusQ to access all the files, which greatly
reduced the performance of query processing. The perfor-
mance of MySQL+HDFS in terms of query time was also
consistent in both the mediator and the wrapper of each
combination.

The execution times of the wrappers were much slower
than those of the mediators. This indicates that processes
in a wrapper, such as subquery translation and local query
processing in each data store, are more exhaustive than the
processes in themediator (e.g., query parsing and themerging
of intermediate results in a small data set).

Based on these results, we do not further report any combi-
nation of data stores using HDFS because, even for the small
data set, it took up to 1.5 times longer to process a query than
the other combinations did.

3) QUERY-PROCESSING EXPERIMENT
In this section, we show the performance of MusQ when
processing a larger synthesized data set. We conducted this
experiment to investigate the following questions: (1) Does
a global schema affect the performance of a query in a

FIGURE 20. Comparison between the Cartesian product and nested-loop
(NL) joins with global schema mapping when processing a small number
of join tuples.

multi-store system? (2)How well does the mediator–wrapper
approach of MusQ perform? (3) How do different merging
algorithms influence the query processing for different data
store combinations? (4) Is MusQ robust enough to process a
large data set?

Thus, the experiments were performed on a large data set
using approaches that provide a global schema, different data
store configurations, and different intermediate result merg-
ing algorithms. In all the experiments, we used the execution
times to compare performances.

In addition, we examined the performance of Apache Drill
starting with the large data set query as a comparison to the
performance of MusQ.
Effects of a Global Schema:
To see the effects of a global schema, we compare the

query execution times with and without a global schema
using a small data set. The execution without a global schema
uses two distinct approaches: the Cartesian product and
the naive simple nested-loop join. This experiment used
four static + sensor data store combinations: MySQL+
Cassandra, MySQL+MongoDB, MongoDB+Cassandra,
and Cassandra+MongoDB.

As explained in Section V, MusQ utilizes the global
schema to decompose an MQL query into subqueries, and
performs join-style algorithms to merge all intermediate
results from the subqueries. Even though the global schema
does not exist, a query in a multi-store system can still be
executed, especially the merging of the intermediate results.
We can combine the intermediate results using a Cartesian
product operation, which is the most naive approach (this
also called the baseline approach). Similarly to the Cartesian
product, the naive simple nested loop (simple NL) can be used
to merge these results without mapping. Both approaches can
be explainedmore clearly when comparing their performance
to that of the MusQ system. We select one merging algorithm
as MusQ’s merging algorithm (nested loop or NL) to make
the comparison easier.

Figure 20 shows the results from two combinations of data
stores with a small set of join tuples between two different
joins. We omit the results for the MySQL+Cassandra and
Cassandra+MongoDB combinations because they show the
same trend as the combinations of MySQL+MongoDB and
of MongoDB+Cassandra, respectively.

58048 VOLUME 8, 2020

H. Ramadhan et al.: MusQ: Multi-Store Query System for IoT Data Using a Datalog-Like Language

The execution time of the Cartesian product approach
increased significantly as the number of tuples increased,
whereas the execution time for our query processing
system (NL with mapping) increased only slightly. The
Cartesian product approach’s worst performance occurred
for MySQL+MongoDB when processing 10,000 tuples.
It needed approximately 40 s, which is 30 times longer than
our nested-loop approach using the global schema. This is
problematic because 10,000 is a relatively small number of
tuples.

The Cartesian product approach is inefficient and wastes
memory because of its naive approach. For example, a sen-
sor relation with 2,000 tuples and a static relation with
1,000 tuples create 2 million tuples as a result of the Cartesian
product. Therefore, due to the main memory limitation of
the Cartesian product, we varied the number of tuples of the
sensor relation from 2,000 to 10,000 in steps of 2,000 tuples
and fixed the number of tuples in the static relation to 1,000 in
this experiment.

FIGURE 21. Comparison between the NL join without and with the global
schema.

We show the difference between the join performance of
merging the intermediate subquery results with and without
global schema in Figure 21. For this experiment, we varied
the number of tuples in a sensor relation from 20,000 to
100,000 in steps of 20,000 and joined them with the same
number of tuples in a static relation. Again, we omit the
result from the combinations of MySQL+MongoDB and
Cassandra+MongoDB for the same reason as the previ-
ous result. The execution time of the simple naive NL join
approach increased significantly as the number of tuples
increased, whereas the execution time of the NL join with the
global schema showed only a slight increase. This is mainly
because the simple NL join still tries to find join conditions
from two tuples by checking values of all attributes, whereas
the join with the global schema exploits join conditions pro-
vided by the global schema.

Because the performance of our system was always supe-
rior to the baseline approach, henceforth we only report the
experimental performance of our MusQ system.

4) EFFECTS OF MERGE ALGORITHMS WITH
A LARGE DATA SET
As explained in Section V-B, we devise three join approaches
to merge intermediate results from wrappers: (1) nested-loop
join, (2) sort-merge join, and (3) hash join.

In this set of experiments, we evaluated the query-
processing performance of these three approaches when
MusQ handled a large data set using two different data stores.
We investigated how each merging algorithm affects the
query processing of MusQ. Similar to the previous exper-
iment, we used four data store combinations: MySQL+
Cassandra, MySQL+MongoDB, MongoDB+Cassandra,
and Cassandra+MongoDB.

We only used the MySQL+MongoDB combination for
querying in Apache Drill because it does not support Cas-
sandra by default. In addition, Drill uses hash join by default
to merge intermediate results.

FIGURE 22. Query processing with two data stores using different
merging algorithms.

Figure 22 depicts the results of this experiment for dif-
ferent combinations of data stores. We placed the default
performance of Drill using hash join in each result. The query
execution times for all four data store combinations were sim-
ilar, with only slight differences proportional to the provided
number of tuples. These slight differences were due to the
wrapper performance of each data store. The combination of
MySQL+MongoDB showed the best performance because
it had the lowest network communication time and query
execution. On the other hand, the four data store combinations
were similar because of the uniformity of the subquery results
in the form of JSON objects from each data store wrapper.
The query execution time of the NL join with the global
schema was approximately 10 s when 100,000 tuples were
utilized during the merge process, whereas the other two
merging algorithms showed lower execution times.

Furthermore, MusQ using hash join and sort-merge join
outperformed Drill with the MySQL+MongoDB data stores.
The performance of Drill was approximately linear with the
number of tuples, but it exhibited an additional 2 s compared
to the hash join and sort-merge join ofMusQ for each number
of tuples.

VOLUME 8, 2020 58049

H. Ramadhan et al.: MusQ: Multi-Store Query System for IoT Data Using a Datalog-Like Language

FIGURE 23. Performance of MusQ query processing in the
MySQL+MongoDB combination, separated into mediator and wrapper
processes.

Figure 23 shows the same experimental result, but
divided into the mediator and the wrapper to better grasp
the comparison using three different join algorithms in
MusQ’s mediator–wrapper architecture. The combination of
MySQL and MongoDB as static and sensor data stores
were used because they performed best in this experiment
(see Figure 22). The wrapper performance for all results was
similar for the same number of tuples and any data store
combination. However, significant differences in mediator
performance are visible in the join algorithms.

The mediator in the nested-loop join performed poorly
compared with the hash join and sort-merge join approaches.
This finding is consistent with our mediator cost model in
Equation 14, as the choice of the merging algorithm affects
the mediator cost. The wrapper cost model in Equation 18
also holds true because the processing time of a wrapper
depends on the size of the data set. Thus, in further direction,
it is necessary to determine the join style to merge the inter-
mediate results based on the cost models estimation. A pre-
cise estimation of the cost model, especially the mediator cost
model, provides an efficient join strategy for MusQ.

Similar to the previous result, the nested-loop join took the
longest among the other joins. When performing a join oper-
ation on 100,000 tuples, the nested-loop join method required
more than 8 s, whereas the hash join and sort-merge join
approaches took less than 1 s. Thus, the choice of join algo-
rithm has a significant effect on the mediator performance.
The nested-loop join looks for all possible matches from a
single record by iterating over all records in a pairing relation.
Thus, the mediator takes significantly longer than the hash
join and the sort-merge join, which minimize the matching
process using a hashing function and sorting, respectively.

Moreover, the wrapper execution time for each join algo-
rithm increased with the number of result tuples. In contrast
tomediator, the choice of algorithm does not affect the perfor-
mance of the wrapper. The wrapper performed similarly for
each number of tuples, with a difference of less than 0.2 s.

5) COMBINATIONS OF THREE DATA STORES
In this subsection, we evaluate the query processing perfor-
mance using combinations of three data stores. In this case,
we use MySQL plus an additional NoSQL data store type
as static data storage, and the NoSQL data store for the

sensor data store. Thus, we used three data store combinations
(which we denote as (static, static) + sensor) for this exper-
iment: (1) (MySQL, Cassandra) +MongoDB, (2) (MySQL,
MongoDB) + Cassandra, and (3) (MySQL, MongoDB) +
MongoDB. The third combination serves as a comparison to
Apache Drill, which does not support Cassandra by default.

Similarly to the previous experiment, we varied the
number of sensor data from 20,000 to 100,000 in steps
of 20,000 tuples and used all three merging algorithms to
combine the intermediate results from the wrappers.We com-
pare the results of the experiment with the performance of
Apache Drill using hash join as its default merging algorithm.

FIGURE 24. Query processing of three data store combinations using
different merging algorithms.

Figure 24 depicts the results of query processing in three
data stores. Similar to the experiment that used two data
store combinations, the execution time was proportional to
the number of result tuples. However, we also found that
(MySQL, MongoDB) + MongoDB, as a combination of
two static data stores and one sensor data store, performed
best. Similar to the previous experiment, the performance of
Apache Drill using the (MySQL, MongoDB) + MongoDB
data store combination also was outperformed by the hash
join and sort-merge join of MusQ. This result is consistent
with the MySQL+MongoDB combination as a static and
sensor data store in the previous experiment, which also
performed slightly better than the other combinations. Both
results are caused by less network communication than the
other combinations.

Table 6 summarizes the same experiment on 100,000 tuples
of intermediate results, divided into mediator and wrapper
execution times for each algorithm and data store combi-
nation. Table 6 also includes the breakdown of the Apache
Drill performance. The performance of Drill consists of two
stages: planning and execution. These two terms have dif-
ferent meanings compared to MusQ’s mediator and wrapper.
The execution time of Drill includes the merging process of

58050 VOLUME 8, 2020

H. Ramadhan et al.: MusQ: Multi-Store Query System for IoT Data Using a Datalog-Like Language

TABLE 6. Query performance of three data stores combination using
100,000 tuples.

the mediator of MusQ and the execution time of the wrapper,
whereas the planning time only focuses on the query planning
stage.

Consistent with the previous experiment using two data
store combinations, the nested loop performed the worst in
the mediator stage, whereas in the wrapper stage, all three
algorithms worked similarly. We also found that the hash
join worked better than the sort-merge join in the mediator
stage, because the sort-merge join sorts all tuple values first
rather than matching records first. On average, the (MySQL,
MongoDB) + Cassandra data store combination outper-
formed the (MySQL, Cassandra) + MongoDB combina-
tion. This is supported by the lower communication cost of
MySQL as a static data store and MongoDB as a sensor data
store. It is clear that, compared to the hash join and sort-merge
join of MusQ, Drill is not as efficient as MusQ in performing
the queries. The execution time of Drill is longer than the sum
of the mediator time, which includes the merging time, and
wrapper time of MusQ.

C. EXPERIMENTAL RESULT USING A REAL IoT DATA SET
In this experiment, we evaluated the query processing of
MusQ using the CityPulse data set [24], which stores static
and sensor data. The static data consists of traffic report
metadata, whereas the sensor data consists of vehicle road
traffic and pollution reports. The total size of the CityPulse
data set is 1.3 GB, which is spread into heterogeneous data
stores. We compared the performance results of MusQ to
Apache Drill using MySQL+MongoDB on two data store
combinations and MySQL + (MongoDB, MongoDB) on
three data store combinations.We also performed a query that
represents an IoT analytics query in a smart city application.

We used a slightly different data store combination setup
from the previous experiment and only used the hash join
merging algorithm, as it is the best of the three merging
algorithms. We tested various use cases, such as monitor-
ing the frequency of passing vehicles in slightly polluted
areas and checking the speed of passing vehicles in several
polluted streets. The example query in Figure 25 reports
carbon monoxide rates, the average speed of passing vehi-
cles, and the street IDs. We only include reports where the
average speed of the passing vehicles is higher than 70 km/h
and report IDs in a certain interval (between 158,324 and
158,600).We also use our construction of global schema from

FIGURE 25. Query for CityPulse data set experiment with 100,000 tuples.

FIGURE 26. The query plan for CityPulse dataset experiment.

the data stores. Similar to the synthetic data set experiment,
we can change the result size of the CityPulse data set by
altering the selection criteria for some attributes, such as
REPORT_ID or avgSpeed. We performed the filter and
join operation to represent the IoT analytics query. A query
plan example for the CityPulse data set is shown in Figure 26.
The result shows which data store combination is suitable for
storing the CityPulse data set.

FIGURE 27. Two data stores performance of the CityPulse dataset.

1) TWO DATA STORE COMBINATION
Figure 27 shows that the performance trend of each data
store combination can be identified more clearly, espe-
cially when choosing MongoDB or Cassandra as the sensor
data store. The wrapper times of both MySQL+MongoDB

VOLUME 8, 2020 58051

H. Ramadhan et al.: MusQ: Multi-Store Query System for IoT Data Using a Datalog-Like Language

and Cassandra+MongoDB, which are similar in terms
of query time, are significantly different to those of
MySQL+Cassandra and MongoDB+Cassandra in the wrap-
per. Thus, we can conclude that MongoDB, as a sensor data
store, plays a significant role in the MusQ query performance
due to its minimum communication cost. The performance
of Apache Drill is consistent with the previous experiments.
The query time of Apache Drill is approximately 2 s longer
than that of MusQ. In turn, the query time of MusQ is slightly
longer than the synthetic data store, especially in the wrapper.
This significant change occurred because the CityPulse data
set has more rows and attributes than the synthetic data set.

2) THREE DATA STORE COMBINATION
The three data store combination experiment using the City-
Pulse data set was slightly different to the synthetic data
set experiment. For this experiment, we denote the data set
combination as static+ [sensor, sensor]. Figure 28 shows that
the MySQL + [MongoDB, MongoDB] combination using
MusQ had the best performance among all the combinations.
This finding is supported by the fact that in the two data
store experiment with the CityPulse data set, the usage of
MongoDB as the sensor data set gave the best performance.
Consistent with the previous experiment, the execution times
of Apache Drill were worse than those of MusQ for the same
data store combination.

FIGURE 28. Three data stores performance of the CityPulse data set.

The superior performance of MusQ compared to Apache
Drill is the result of several factors. Despite the provision of
relevant matches to Drill’s queries, it still requires a long time
to plan the queries. Drill optimizes for columnar storage as
well as columnar execution through an in-memory hierarchi-
cal columnar data model. Therefore, this style of execution
appears to be insufficient for general queries.

VII. CONCLUSION
In this paper, we have presented the design of MusQ for
building a multi-store query processing system. MusQ semi-
automatically constructs the global schema from local source
schemas using schema-matching and schema-mapping steps
to provide integrated access to multiple data sources.

The users of MusQ utilize a Datalog-like language for
retrieving IoT data. The semi-automatic schema construction

process reduces the burden on users to manually define the
global schema, while the easily translatable MQL query
removes the necessity of remembering the details of vari-
ous query languages. Three join operations-focused query
processing methods based on a mediator–wrapper approach
enable efficient integrated access to multiple heterogeneous
data stores. We conducted extensive experiments with a
synthetic IoT data set and a real IoT data set. The per-
formance evaluations indicate that MusQ provides scalable
and efficient query processing across multiple combinations
of MySQL, Cassandra, MongoDB, and HDFS. This perfor-
mance is comparable to a state-of-the-art multi-store system.
Our experimental results confirm the suitability of MusQ for
the IoT environment. Thus, based on these results, MusQ
offers a more efficient data integration in several areas that
involve complex IoT systems, such as smart cities, healthcare,
and energy management.

In future work, we will extend the capability of MusQ to
account for broader support for other data stores and IoT
security problems. The current MusQ data store support is
limited toMySQL, Cassandra, MongoDB, and HDFS. On the
next development, MusQ will cover more data store types,
e.g. Hive, HBase. In addition, the cost model estimations of
MusQ mediators will be provided to improve the efficiency
of the query processing. On the other hand, accessing IoT
data store requires a secure protocol because an IoT data store
may contain private and sensitive data. As an IoT multi-store
query system, MusQ should protect users’ private IoT data.
As an example, to protect the private IoT data, such as body
temperature and heart rate, the query processing ofMusQ can
be augmented with better authentication and authorization
mechanisms.

APPENDIX A
CORRECTNESS PROOF
A. HASH JOIN
Theorem 3: With two subresults SR1 and SR2 from the

subqueries and the match M from the matching schema as
input, and the hash table H as intermediate property, the hash
join algorithm is correct with these loop invariants:

1) for any step in the first loop, this step is applied:
0 ≤ i < |SR1|, otherwise i = |SR1|;

2) for any step in the second loop (outer), this step is
applied: 0 ≤ j < |SR2|, otherwise j = |SR2|; and

3) for any step in the second loop (inner), we iterate
through all members of a bucket inH with correspond-
ing key k: h ∈ H (k), otherwise h is NULL.
Proof 3 (Proof of Hash Join Approach)

The algorithm finds the result set R of the join between
SR1 and SR2 with the matching attributes provided by the
match M , which is denoted as SR1 FGM .col1=M .col2 SR2.
The algorithm supplies a hash table H as a support to
yield the final result set R. The hash table maps SR1 with
each record’s corresponding key of h(sr1,i[M .col1]), 0 ≤
i < |SR1| and hash function h(x) → key. Then the algo-
rithm joins each record of SR2 with the members of H

58052 VOLUME 8, 2020

H. Ramadhan et al.: MusQ: Multi-Store Query System for IoT Data Using a Datalog-Like Language

that are paired with the key that satisfies h(sr2,j[M .col2]),
0 ≤ j < |SR2|. Thus, the algorithm finishes with R that
contains SR1 FGM .col1=M .col2 SR2.
(First Loop) Initialization: A supporting hash table is ini-

tialized as H = ∅ with < key, value : (record) > structure
and i = 0. Thus, the hash table should not contain any
key-value pair yet.
(First Loop) Maintenance: Suppose at the beginning of the

iteration, the invariant holds at a particular value i < |SR1|
and H contains the key-value pairs from the beginning until
i − 1, as described in Equation 20. Let H ′ and i′ denote the
content of H and i at the end of the iteration, as described in
Equation 21:

H = {< key, sr1,k > |0 ≤ k < i ∧ key = h(sr1,k [M .col1]}

(20)

H ′ = H ∪ {< key, sr1,i > |key = h(sr1,i[M .col1]};

i′ = i+ 1. (21)

At the end of iteration, H ′ must map the records of SR1
from the beginning until i and hold the invariant. We prove
this invariant in Equation 22. (First Loop) Termination:
Because the loop is a for loop, it clearly terminates.
(First Loop) Correctness: The loop exits when

i = |SR1|. The invariant shows that H maps the records of
SR1[0..|SR1| − 1] when the loop terminates.
(Second Loop (Outer)) Initialization:A result set is initial-

ized as R = ∅ and j = 0. The hash table H is given from the
first loop. Thus, the result set should be empty.
(Second Loop (Outer))Maintenance: Suppose at the begin-

ning of the iteration, the invariant holds at a particular value
j < |SR2| and R contains the joint records from the beginning
until j − 1, as described in Equation 23. Let R′ and j′ denote
the content of R and j at the end of the iteration, as described
in Equation 24.

At the end of iteration, R′ must contain the joint records
of SR2 with corresponding records in H from the beginning
until j, and R′ must hold the invariant. We prove this invariant
in Equation 25:

H ′ = H ∪ {< key, sr1,i > |key = h(sr1,i[M .col1]}

H ′ = {< key, sr1,k > |0 ≤ k < i ∧ key = h(sr1,k [M .col1]}

∪{< key, sr1,i > |key = h(sr1,i[M .col1]}

H ′ = {< key, sr1,k > |0 ≤ k < i+ 1 ∧ key

= h(sr1,k [M .col1]}

H ′ = {< key, sr1,k > |0 ≤ k < i′ ∧ key = h(sr1,k [M .col1]}

(proved) (22)

R = {sr2,k ∪ srh,l |0 ≤ k < j ∧ srh,l ∈ SRH
∧SRH = H (key) ∧ key = h(sr2,k [M .col2])} (23)

R′ = R ∪ {srh,l ∪ sr2,j|srh,l ∈ SRH ∧ SRH = H (key)

∧key = h(sr2,j[M .col2])}; j′ = j+ 1 (24)

R′ = R ∪ {sr2,j ∪ srh,l |srh ∈ SRH ∧ SRH = H (key)

∧key = h(sr2,j[M .col2])}

R′ = {sr2,k ∪ srh,l |0 ≤ k < j ∧ srh ∈ SRH ∧ SRH
= H (key) ∧ key = h(sr2,k [M .col2])}

∪{sr2,j ∪ srh,l |srh ∈ SRH ∧ SRH = H (key)

∧key = h(sr2,j[M .col2])}

R′ = {sr2,k ∪ srh,l |0 ≤ k ≤ j ∧ srh ∈ SRH ∧ SRH
= H (key) ∧ key = h(sr2,k [M .col2])}

R′ = {sr2,k ∪ srh,l |0 ≤ k < j′ ∧ srh ∈ SRH ∧ SRH
= H (key) ∧ key = h(sr2,k [M .col2])}

(proved). (25)

Now we prove the invariant in the inner part of the sec-
ond loop of the algorithm to find the match between sr2,j
and SRH , SRH = H (key) ∧ key = h(sr2,j[M .col2]), where
SRH ⊆ SR1.
(Second Loop(Inner)) Initialization: At the beginning of

the inner loop iteration, sr2,j, R, and SRh are given from the
outer loop. The result set of the loop is denoted as Ri. The
value of h is initialized as h = NULL. This invariant still
holds as we do not join srj with any record from SRh yet.
(Second Loop(Inner)) Maintenance: Suppose at the begin-

ning of the iteration, the invariant holds a particular value of
h ∈ SRH , and Ri contains the union of R and the joint records
of sr2,j with the records in SRH from the beginning until just
before h, as defined in Equation 26. Let Ri

′

and h′ denote the
content of Ri and h at the end of the iteration, as described in
Equation 27. We prove this invariant in Equation 28:

Ri = R ∪ {srH ,l ∪ sr2,j|0 ≤ l < k ∧ srH ,k = h ∧

srH ,l[M .col1] = sr2,j[M .col2]} (26)

Ri
′

= Ri ∪ {h ∪ sr2,j|h[M .col1] = sr2,j[M .col2]};

h′ = h.next (27)

Ri
′

= Ri ∪ {h ∪ sr2,j|h[M .col1] = sr2,j[M .col2]}

Ri
′

= R ∪ {srH ,l ∪ sr2,j|0 ≤ l < k ∧ srH ,k = h ∧

srH ,l[M .col1] = sr2,j[M .col2]} ∪

{h ∪ sr2,j|h[M .col1] = sr2,j[M .col2]}

Ri
′

= R ∪ {srH ,l ∪ sr2,j|0 ≤ l < k ∧ srH ,k = h.next

∧srH ,l[M .col1] = sr2,j[M .col2]}

Ri
′

= R ∪ {srH ,l ∪ sr2,j|0 ≤ l < k ∧ srH ,k = h′

∧srH ,l[M .col1] = sr2,j[M .col2]}

(proved). (28)

(Second Loop (Inner)) Termination: Because the loop is a
for each loop, it clearly terminates.
(Second Loop (Inner)) Correctness: The loop exits when

h = NULL, where srH ,l .next = h|srH ,l 6= NULL or
SRH = ∅. The invariant shows that Ri contains the join
between sr2,j and SRH [0 . . . |SRH |−1] ⊆ SR1 with the match
M when the loop terminates.
(Second Loop (Outer)) Termination: Because the loop is a

for loop, it clearly terminates.
(Second Loop (Outer)) Correctness: The loop exits when

j = |SR2|. The invariant shows that R contains the join

VOLUME 8, 2020 58053

H. Ramadhan et al.: MusQ: Multi-Store Query System for IoT Data Using a Datalog-Like Language

between SR1 and SR2[0..|SR2| − 1] in the matchM when the
loop terminates, with the support of H as the hash table that
maps SR1 entirely (first loop’s proof).

B. SORT MERGE JOIN
Theorem 4: With two subresults SR1 and SR2 from the

subqueries and the match M from the matching schema as
input, the sort-merge join algorithm is correct with these loop
invariants:

1) for any step in the outer loop, this step is applied: 0 ≤
i < |SR1| and 0 ≤ j < |SR2|, otherwise i = |SR1| or
j = |SR2|;

2) for any step in the middle loop, this step is applied: i <
|SR1| and sr1,i[M .col1] = sr2,j[M .col2], otherwise i =
|SR1| or sr1,i[M .col1] > sr2,j[M .col2]; and

3) for any step in the inner loop, this step is applied:
j ≤ k < |SR2| and sr1,i[M .col1] = sr2,k [M .col2],
otherwise k = |SR2| or sr1,i[M .col1] < sr2,k [M .col2].
Proof 4 (Proof of Sort Merge Join Approach)

The algorithm finds the result set R of the join between
the sorted SR1 and SR2 with the matching attributes provided
by the match M , which is denoted as SR1 FGM .col1=M .col2
SR2. The algorithm presorts SR1 and SR2 according to
the matching attributes M .col1 and M .col2, respectively,
in non-descending order. Then, the algorithm joins the
SR1 and SR2 in a way that it joins the matching sub-
sets SR1[a1..b1] FGM .col1=M .col2 SR2[a2..b2], where there
exists a∗, b∗ such that sr∗,a∗−1[M .col∗] > sr∗,a∗ [M .col∗],
sr∗,b∗ [M .col∗] < sr∗,b∗+1[M .col∗], sr∗,a∗ [M .col∗] = sr∗,b∗
[M .col∗], sr1,c1 [M .col1] = sr2,c2 [M .col2], and a∗ ≤
c∗ ≤ b∗. Thus, the algorithm finishes with R containing
SR1 FGM .col1=M .col2 SR2.
(Outer Loop) Initialization: A result set is initialized as

R = ∅, i = 0 and j = 0. Thus, the result set should be
empty.
(Outer Loop) Maintenance: The algorithm has three cases

to execute the loop.
1) i′ = i+ 1, SR1,i[M .col1] < SR2,j[M .col2]
2) j′ = j+ 1, SR1,i[M .col1] > SR2,j[M .col2]
3) i′ = i + a, j′ = j + b, a > 0, b > 0|SR1,i[M .col1] =

SR2,j[M .col2]
We now briefly prove the invariant of the first and second
cases. The invariant maintenance of the first and second
cases, i′ = i + 1 and j′ = j + 1, respectively, are true
as they are the only changes happening in the loop. The
purpose of the first and second cases is to find the pair
of earliest records sr1,i− and sr2,j− that have the match-
ing value of attributes defined in M , such that (i = 0
OR sr1,i− [M .col1] > sr1,i−−1[M .col1]) AND (j = 0 OR
sr2,j− [M .col2] > sr2,j−−1[M .col2]) AND SR1,i−[M .col1] =
SR2,j−[M .col2]. We now move onto the third case’s invariant.
Suppose at the beginning of the iteration, the invariant

holds at a particular value i < |SR1|,j < |SR2| and R contains
the result set of the joint records from the beginning until
i − 1 and j − 1, as described in Equation 29. Let R′, i′, and
j′ denote the contents of R, i, and j at the end of the iteration,

respectively. We describe R′, i′, and j′ in Equation 30. At the
end of iteration, R′ must contain the joint result set from the
beginning until just before i′ and j′, and R′ must hold the
invariant. We prove this invariant in Equation 31.

R = SR1[0..i− 1] FGM .col1=M .col2 SR2[0..j− 1] (29)

R′ = R

∪SR1[i..i+ a− 1] FGM .col1=M .col2 SR2[j..j+ b− 1];

i′ = i+ a;

j′ = j+ b;

such that sr1,i+a−1[M .col1] < sr1,i+a[M .col1]

∧sr2,j+b−1[M .col2] < sr2,j+b[M .col2]

∧sr1,i+a[M .col1] = sr2,j+b[M .col2] (30)

R′ = R ∪ SR1[i..i+ a− 1] FGM .col1=M .col2 SR2[j..j+ b− 1]

R′ = SR1[0..i− 1] FGM .col1=M .col2 SR2[0..j− 1]

∪SR1[i..i+ a− 1] FGM .col1=M .col2 SR2[j..j+ b− 1]

R′ = SR1[0..i+ a− 1] FGM .col1=M .col2 SR2[0..j+ b− 1]

R′ = SR1[0..i′ − 1] FGM .col1=M .col2 SR2[0..j′ − 1]

(proved). (31)

We now prove the invariant in the middle loop of Algo-
rithm 6 to find the match between SR1[i..i + a − 1] and
SR2[j..j+ b− 1].
(Middle Loop) Initialization: At the beginning of the mid-

dle loop iteration, SR1[i..i + a − 1], SR2[j..j + b − 1], i,
j, j + b, and R are given from the outer loop. The result set
of the middle loop is denoted as Rm. As the i in this loop is
changed, i− is set to store the initial value of i in this proof.
This invariant still holds as none of SR1[i..i+ a− 1] is joined
with SR2[j..j+ b− 1] yet.
(Middle Loop) Maintenance: Suppose at the beginning of

the iteration, the invariant holds at a particular value i < |SR1|
and sr1,i[M .col1] = sr2,j[M .col2], and Rm contains the joint
records until before i, as described in Equation 32. LetRm

′

and
i′ denote the content of Rm and i at the end of the iteration,
as described in Equation 33:

Rm = R ∪ {sr1,p ∪ sr2,q|i− ≤ p < i ∧ j ≤ q ≤ j+ b− 1

∧sr1,p[M .col1] = sr2,q[M .col2]} (32)

Rm
′

= Rm ∪ {sr1,i ∪ sr2,q|j ≤ q ≤ j+ b− 1

∧sr1,i[M .col1] = sr2,q[M .col2]};

i′ = i+ 1. (33)

At the end of iteration, Rm
′

must contain the joint records
of SR1 from i− until i with SR2[j . . . j+ b− 1], and Rm

′

must
hold the invariant. We prove this invariant in Equation 34:

Rm
′

= Rm ∪ {sr1,i ∪ sr2,q|j ≤ q ≤ j+ b− 1 ∧

sr1,i[M .col1]

= sr2,q[M .col2]}

Rm
′

= R ∪ {sr1,p ∪ sr2,q|i− ≤ p < i ∧ j ≤ q ≤ j+ b− 1

∧sr1,p[M .col1]

58054 VOLUME 8, 2020

H. Ramadhan et al.: MusQ: Multi-Store Query System for IoT Data Using a Datalog-Like Language

= sr2,q[M .col2]}

∪{sr1,i ∪ sr2,q|j ≤ q ≤ j+ b− 1 ∧ sr1,i[M .col1]

= sr2,q[M .col2]}

Rm
′

= R ∪ {sr1,k ∪ sr2,j|0 ≤ k ≤ i ∧ j ≤ q ≤ j+ b− 1

∧sr1,p[M .col1] = sr2,q[M .col2]}

Rm
′

= R ∪ {sr1,k ∪ sr2,j|0 ≤ k < i′ ∧ j ≤ q ≤ j+ b− 1

∧sr1,p[M .col1] = sr2,q[M .col2]}

(proved). (34)

Nowwe prove the invariant in the inner loop ofAlgorithm 6
to find the match between sr1,i with SR2.
(Inner Loop) Initialization: At the beginning of the inner

loop iteration, sr1,i and Rm from the middle loop and
SR2[j..j + b − 1], j, and j + b from the outer loop are given.
The result set of the loop is denoted as Ri. Then the value of
k is initialized as k = j. This invariant still holds sr1,i is not
joined with anything from SR2[j..j+ b− 1] yet.
(Inner Loop)Maintenance: Suppose at the beginning of the

iteration, the invariant holds a particular value of k < |SR2|,
and Ri contains the union of Rm and the joint records of sr1,i
with the records of SR2[j . . . k−1], as defined in Equation 35.
Let Ri

′

and k ′ denote the content of Ri and k at the end of the
iteration. We describe Ri

′

and k ′ in Equation 36, and we prove
this invariant in Equation 37:

Ri = Rm ∪ {sr1,i ∪ sr2,l |j ≤ l < k − 1 ∧ sr1,i[M .col1]

= sr2,l[M .col2]} (35)

Ri
′

= Ri ∪ {sr1,i ∪ sr2,k |sr1,i[M .col1] = sr2,k [M .col2]};

k ′ = k + 1 (36)

Ri
′

= Ri ∪ {sr1,i ∪ sr2,k |sr1,i[M .col1] = sr2,k [M .col2]}

Ri
′

= R ∪ {sr1,i ∪ sr2,l |j ≤ l < k ∧ sr1,i[M .col1]

= sr2,l[M .col2]}

∪{sr1,i ∪ sr2,k |sr1,i[M .col1] = ∧sr2,k [M .col2]}

Ri
′

= R ∪ {sr1,i ∪ sr2,l |j ≤ l ≤ k ∧ sr1,i[M .col1]

= sr2,l[M .col2]}

Ri
′

= R ∪ {sr1,i ∪ sr2,l |j ≤ l < k ′ ∧ sr1,i[M .col1]

= sr2,l[M .col2]}

(proved). (37)

(Inner Loop) Termination:Thewhile loop terminates when
k = |SR2| or sr1,i[M .col1] < sr2,k [M .col2].
(Inner Loop) Correctness: The loop exits when k = |SR2|

or sr1,i[M .col1] < sr2,k [M .col2] (or when k = j + b). The
invariant shows that Ri contains the join between sr1,i and
SR2[0..j+ b− 1] in the matchM when the loop terminates.
(Middle Loop) Termination: The while loop terminates

when i = |SR1| or sr1,i[M .col1] > sr2,j[M .col2].
(Middle Loop) Correctness: The loop exits when i = |SR1|

or sr1,i[M .col1] > sr2,j[M .colj] (or when i = i− + a). The
invariant shows that Rm contains the join between SR1[0..i+
a − 1] and SR2[0..j + b − 1] in the match M when the loop
terminates.

(Outer Loop) Termination: The while loop terminates
when i = |SR1| or j = |SR2|.
(Outer Loop) Correctness: The invariant shows that R

contains the join between SR1 and SR2 in the matchM when
the loop terminates.

REFERENCES
[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, ‘‘Internet of

Things (IoT): A vision, architectural elements, and future directions,’’
Future Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, Sep. 2013.

[2] C. MacGillivray and D. Reinsel, ‘‘Worldwide global datasphere IoT device
and data forecast, 2019–2023,’’ Int. Data Corp. (IDC), Framingham, MA,
USA, Tech. Rep. US45066919, May 2019.

[3] Y. Qin, Q. Z. Sheng, N. J. G. Falkner, S. Dustdar, H. Wang, and
A. V. Vasilakos, ‘‘When things matter: A survey on data-centric Internet
of Things,’’ J. Netw. Comput. Appl., vol. 64, pp. 137–153, Apr. 2016.

[4] GSM Association. (2018). IoT Big Data Framework Architecture
Version 2.0. [Online]. Available: https://www.gsma.com/iot/wp-content/
uploads/2018/11/CLP.25-v2.0.pdf

[5] S. Dey, A. Chakraborty, S. Naskar, and P. Misra, ‘‘Smart city surveil-
lance: Leveraging benefits of cloud data stores,’’ in Proc. 37th Annu.
IEEE Conf. Local Comput. Netw. Workshops (LCNWorkshops), Oct. 2012,
pp. 868–876.

[6] B. Xu, L. Da Xu, H. Cai, C. Xie, J. Hu, and F. Bu, ‘‘Ubiquitous data
accessing method in IoT-based information system for emergency medi-
cal services,’’ IEEE Trans Ind. Informat., vol. 10, no. 2, pp. 1578–1586,
May 2014.

[7] F. Shrouf and G. Miragliotta, ‘‘Energy management based on Internet of
Things: Practices and framework for adoption in productionmanagement,’’
J. Cleaner Prod., vol. 100, pp. 235–246, Aug. 2015.

[8] L. Atzori, A. Iera, and G. Morabito, ‘‘The Internet of Things: A survey,’’
Comput. Netw., vol. 54, no. 15, pp. 2787–2805, Oct. 2010.

[9] P. Widya, Y. Yustiawan, and J. Kwon, ‘‘A oneM2M-based query engine for
Internet of Things (IoT) data streams,’’ Sensors, vol. 18, no. 10, p. 3253,
2018.

[10] Y. Katsis and Y. Papakonstantinou, ‘‘View-based data integration,’’ in
Encyclopedia of Database Systems. New York, NY, USA: Springer, 2009,
pp. 3332–3339.

[11] H. Cai, B. Xu, L. Jiang, and A. V. Vasilakos, ‘‘IoT-based big
data storage systems in cloud computing: Perspectives and chal-
lenges,’’ IEEE Internet Things J., vol. 4, no. 1, pp. 75–87, Feb. 2017,
doi: 10.1109/JIOT.2016.2619369.

[12] Y.-T. Liao, J. Zhou, C.-H. Lu, S.-C. Chen, C.-H. Hsu,W. Chen,M.-F. Jiang,
and Y.-C. Chung, ‘‘Data adapter for querying and transformation between
SQL and NoSQL database,’’ Future Gener. Comput. Syst., vol. 65,
pp. 111–121, Dec. 2016.

[13] M. Zhu and T. Risch, ‘‘Querying combined cloud-based and relational
databases,’’ in Proc. Int. Conf. Cloud Service Comput., Dec. 2011,
pp. 330–335.

[14] B. Kolev, C. Bondiombouy, O. Levchenko, P. Valduriez, R. Jimenez-Peris,
R. Pau, and J. Pereira, ‘‘Design and implementation of the CloudMdsQL
multistore system,’’ in Proc. 6th Int. Conf. Cloud Comput. Services Sci.,
vol. 1, 2016, pp. 352–359.

[15] Z. Liu, F. Cretton, A. Le Calvé, N. Glassey, A. Cotting, and F. Chapuis,
‘‘Musyop: Towards a query optimization for heterogeneous distributed
database system in energy data management,’’ in Proc. Int. Conf. Comput.
Technol. Inf. Manage. (ICCTIM), Soc. Digit. Inf. Wireless Commun., 2014,
pp. 1–9.

[16] F. Wang, L. Hu, J. Zhou, J. Hu, and K. Zhao, ‘‘A semantics-based
approach to multi-source heterogeneous information fusion in the Internet
of Things,’’ Soft Comput., vol. 21, no. 8, pp. 2005–2013, Apr. 2017,
doi: 10.1007/s00500-015-1899-7.

[17] S. Watanabe and A. Nakamura, ‘‘Integrated data access to heterogeneous
data stores for IoT cloud,’’ in Proc. 10th Asian Conf. Mod. Approaches
Intell. Inf. Database Syst. (ACIIDS), ÐDồng Hói, Vietnam, Mar. 2018,
pp. 423–433.

[18] R. Sethi, M. Traverso, D. Sundstrom, D. Phillips, W. Xie, Y. Sun,
N. Yegitbasi, H. Jin, E. Hwang, N. Shingte, and C. Berner, ‘‘Presto: SQL
on everything,’’ in Proc. IEEE 35th Int. Conf. Data Eng. (ICDE), Macao,
China, Apr. 2019, pp. 1802–1813, doi: 10.1109/ICDE.2019.00196.

VOLUME 8, 2020 58055

http://dx.doi.org/10.1109/JIOT.2016.2619369
http://dx.doi.org/10.1007/s00500-015-1899-7
http://dx.doi.org/10.1109/ICDE.2019.00196

H. Ramadhan et al.: MusQ: Multi-Store Query System for IoT Data Using a Datalog-Like Language

[19] M. Hausenblas and J. Nadeau, ‘‘Apache drill: Interactive ad-hoc analy-
sis at scale,’’ Big Data, vol. 1, no. 2, pp. 100–104, Jun. 2013, doi: 10.
1089/big.2013.0011.

[20] S. Ceri, G. Gottlob, and L. Tanca, ‘‘What you always wanted to know about
datalog (and never dared to ask),’’ IEEE Trans. Knowl. Data Eng., vol. 1,
no. 1, pp. 146–166, Mar. 1989.

[21] MySQL. MySQL. Accessed: Sep. 9, 2017. [Online]. Available:
https://www.mysql.com/

[22] Cassandra. Cassandra. Accessed: Sep. 9, 2017. [Online]. Available:
http://cassandra.apache.org/

[23] MongoDB. MongoDB. Accessed: Sep. 9, 2017. [Online]. Available:
https://www.mongodb.com/

[24] M. I. Ali, F. Gao, and A. Mileo, ‘‘CityBench: A configurable benchmark to
evaluate RSP engines using smart city datasets,’’ in Proc. 14th Int. Seman-
tic Web Conf. (ISWC). Bethlehem, PA, USA: W3C, 2015, pp. 374–389.

[25] A. Doan, A. Halevy, and Z. Ives, Principles of data integration. Amster-
dam, The Netherlands: Elsevier, 2012.

[26] E. Rahm and P. A. Bernstein, ‘‘A survey of approaches to automatic schema
matching,’’ VLDB J., vol. 10, no. 4, pp. 334–350, Dec. 2001.

[27] J. Madhavan, P. A. Bernstein, and E. Rahm, ‘‘Generic schema matching
with cupid,’’ VLDB, vol. 1, pp. 49–58, Sep. 2001.

[28] L. Chiticariu, M. A. Hernández, P. G. Kolaitis, and L. Popa, ‘‘Semi-
automatic schema integration in Clio,’’ in Proc. 33rd Int. Conf. Very Large
Data Bases (VLDB Endowment), 2007, pp. 1326–1329.

[29] N. Jian, W. Hu, G. Cheng, and Y. Qu, ‘‘Falcon-ao: Aligning ontologies
with falcon,’’ in Proc. Workshop Integrating Ontologies (K-CAP), 2005,
pp. 85–91.

[30] E. Rahm, ‘‘Towards large-scale schema and ontology matching,’’ in
Schema Matching and Mapping. Berlin, Germany: Springer, 2011,
pp. 3–27.

[31] M. T. Özsu and P. Valduriez, Principles of Distributed Database Systems.
New York, NY, USA: Springer, 2011.

[32] P. A. Bernstein and L.M.Haas, ‘‘Information integration in the enterprise,’’
Commun. ACM, vol. 51, no. 9, pp. 72–79, 2008.

[33] H. Hacígümüş, J. Sankaranarayanan, J. Tatemura, J. LeFevre, and
N. Polyzotis, ‘‘Odyssey: A multistore system for evolutionary analytics,’’
Proc. VLDB Endowment, vol. 6, no. 11, pp. 1180–1181, Aug. 2013.

[34] K. W. Ong, Y. Papakonstantinou, and R. Vernoux, ‘‘The SQL++ unifying
semi-structured query language, and an expressiveness benchmark of SQL-
on-Hadoop, NoSQL and NewSQL databases,’’ CoRR, vol. abs/1405.3631,
2014.

[35] D. J. DeWitt, A. Halverson, R. Nehme, S. Shankar, J. Aguilar-Saborit,
A. Avanes, M. Flasza, and J. Gramling, ‘‘Split query processing in poly-
base,’’ in Proc. Int. Conf. Manage. Data (SIGMOD). New York, NY, USA:
ACM, 2013, pp. 1255–1266.

[36] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and
A. Rasin, ‘‘HadoopDB: An architectural hybrid of MapReduce and DBMS
technologies for analytical workloads,’’ Proc. VLDB Endowment, vol. 2,
no. 1, pp. 922–933, Aug. 2009.

[37] J. Chamanara, B. König-Ries, and H. V. Jagadish, ‘‘QUIS: In-situ hetero-
geneous data source querying,’’ Proc. VLDB Endowment, vol. 10, no. 12,
pp. 1877–1880, Aug. 2017.

[38] A. Gupta and I. S. Mumick, ‘‘Maintenance of materialized views: Prob-
lems, techniques, and applications,’’ IEEE Data Eng. Bull., vol. 18, no. 2,
pp. 3–18, 1995.

[39] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati,
‘‘Data management in peer-to-peer data integration systems,’’Global Data
Manage., vol. 8, pp. 177–201, Jul. 2006.

[40] JSON. Json. Accessed: Sep. 9, 2017. [Online]. Available: http://
www.json.org/

[41] WordNet. WordNet. Accessed: Sep. 9, 2017. [Online]. Available: https://
wordnet.princeton.edu/

[42] C. A. Furia, B. Meyer, and S. Velder, ‘‘Loop invariants: Analysis,
classification, and examples,’’ ACM Comput. Surveys, vol. 46, no. 3,
pp. 34:1–34:51, Jan. 2014, doi: 10.1145/2506375.

[43] ANTLR. Antlr(Another Tool for Language Recognition). Accessed:
Sep. 9, 2017. [Online]. Available: http://www.antlr.org/

[44] Thi-Van-Anh Nguyen, S. Bimonte, L. d’Orazio, and J. Darmont, ‘‘Cost
models for view materialization in the cloud,’’ in Proc. Joint EDBT/ICDT,
Workshops, D. Srivastava and I. Ari, Eds. Berlin, Germany: ACM,
Mar. 2012, pp. 47–54, doi: 10.1145/2320765.2320788.

HANI RAMADHAN received the master’s
degrees from the Informatics Engineering Depart-
ment, Institut Teknologi Sepuluh Nopember,
Indonesia, and the Complex System and Interac-
tion Department, Universite de Technologie de
Compiegne, France, in a joint-degree program.
He is currently pursuing the Ph.D. degree with the
Big Data Department, Pusan National University,
South Korea. His research interests include data
mining, machine learning, and computer vision.

FITRI INDRA INDIKAWATI received the
bachelor’s degree from the Department of Infor-
matics, Institut Teknologi Sepuluh Nopember,
Indonesia, in 2010, and the master’s degree from
the Department of Big Data, Pusan National Uni-
versity, South Korea, in 2017. She was a Senior
Software Engineer with Samsung Electronics
Indonesia, from 2010 to 2015. She is currently
a Junior Lecturer and a Researcher with Ahmad
Dahlan University. Her main research interests

include the IoT data management and analytics, data mining, and machine
learning.

JOONHO KWON (Member, IEEE) received the
B.S., M.S., and Ph.D. degrees from the School
of Electrical Engineering and Computer Engi-
neering, Seoul National University, South Korea,
in 1999, 2001, and 2009, respectively. He is cur-
rently a Professor with the School of Computer
Science and Engineering, Pusan National Uni-
versity, South Korea. His current research inter-
ests include big data management and analytics,
NoSQL databases, the IoT data query processing,

XML indexing and query processing,Web services, RFID data management,
and serious games.

BONYONG KOO received the Ph.D. degree in
naval architecture and ocean engineering from
Seoul National University, South Korea, in 2012.
He is currently an Assistant Professor with the
School of Mechanical Convergence System Engi-
neering, KunsanNational University, South Korea.
He has 15 years of industrial experience in
naval shipbuilding and offshore engineering. His
research interests include optimization and mea-
surement technologies.

58056 VOLUME 8, 2020

http://dx.doi.org/10.1089/big.2013.0011
http://dx.doi.org/10.1089/big.2013.0011
http://dx.doi.org/10.1145/2506375
http://dx.doi.org/10.1145/2320765.2320788

