
Received February 11, 2020, accepted March 13, 2020, date of publication March 23, 2020, date of current version April 1, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2982423

Spatial Two-Sided Online Bottleneck
Matching With Deadlines
LONG LI AND WEIFENG LV
SKLSDE Lab and BDBC, Beihang University, Beijing 100091, China

Corresponding author: Weifeng Lv (lwf@buaa.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant U11811463, and in part by the Science
and Technology Major Project of Beijing under Grant Z191100002519012.

ABSTRACT Recently, there are several studies focusing on the bottleneck optimization objective in Spatial
Crowdsourcing (SC). However, these studies usually do not consider the deadline constraint. Different from
these studies, we take deadlines into consideration and identify the Fully Online Bottleneck Matching with
Deadlines (FOBMD) problem in SC. Because of the deadlines, consideration must be given to both the
bottleneck cost and the cardinality, which makes the FOBMD problem more challenging, and no online
algorithm without actively refusing tasks can achieve a constant competitive ratio of the bottleneck cost for
the FOBMD problem. To settle the FOBMD problem, we consider three baseline algorithms and propose
an online algorithm, namely Local Isolated Point Greedy (LIPG). Finally, we validate the effectiveness and
efficiency of our proposed algorithm via extensive experiments on both synthetic and real world datasets.

INDEX TERMS Spatial crowdsourcing, online bottleneck matching, competitive ratio analysis.

I. INTRODUCTION
Applications and Services based on Spatial Crowdsourc-
ing (SC) become very popular with the development of smart
phones. These services of SC, such asUber,1 Lyft2 andDiDi,3

really make people’s life more convenient. However, one of
the main challenges in SC is how to assign tasks released
by customers to workers [1], [2], especially when tasks or
workers dynamically appear on the SC platform in real-world
scenarios.

Existing studies [3]–[11] model the task-worker assign-
ment problem in SC as an online matching problem for a
specifical optimization objective, e.g. maximizing the num-
ber of performed tasks (cardinality) [3], [4], maximizing the
total utility of the assignment [5]–[8], minimizing the total
cost to perform all tasks [9], [12] and the bottleneck opti-
mization objective, namely minimizing the maximum cost
of all taks-worker matching pairs [10], [11]. The bottleneck
optimization objective is an emerging optimization objec-
tive for online matching problems in SC and the existing
studies [10], [11] all focus on the two-sided online scenario,
where the both tasks and workers dynamically appear on
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approving it for publication was Yongqiang Zhao .
1https://www.uber.com/
2https://www.lyft.com/
3https://www.didiglobal.com/

the platform. More importantly, [10], [11] do not consider the
deadline constraint and they both assume tasks or workers
can wait until the algorithms matching them. However, this
assumption is unrealistic and unreasonable in real-world sce-
narios. Taking the online taxi-calling service as an example,
customers dynamically log in the SC platform and submit
their orders (tasks). these tasks can be constrained by dead-
lines, namely customers would be impatient and cancel their
orders if the platform does not assign orders to workers (taxis)
in a short period of waiting time. For the benefit of SC
platforms and better users’ experience, we should take the
deadline constraint into consideration and study the online
bottleneck matching problem with the deadline constraint
in SC.

More generally, we consider a situation where both tasks
and workers are constrained by deadlines, namely both
tasks and workers should be matched before their deadlines,
or otherwise expire after deadlines. Due to the existence of
deadlines, a contradiction between the bottleneck cost and
cardinality arises. Straightly speaking, the more tasks we
actively refuse, the bottleneck cost, namely the maximum
cost of all task-worker matching pairs, is more likely to be
lower. And extremely, the bottleneck cost can be zero if we
refuse all released tasks and the cardinality of the assign-
ment is also zero. However, actively refusing the customers’
orders (tasks) is ridiculous and unacceptable in real-world
scenarios. And we must consider the cardinality optimization
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objective at first and then the bottleneck optimization objec-
tive, namelymaximizing the number of task-workermatching
pairs and minimizing the maximum cost of all task-worker
matching pairs.

In this paper, we study the Fully Online Bottleneck
Matching with Deadlines (FOBMD) problem in SC. Specifi-
cally, given a set of spatial workers and a set of spatial tasks,
both tasks and workers dynamically appear on the platform
and their spatial locations are unknown until their appear-
ance, and both tasks and workers should be matched before
their deadlines, the FOBMD problem is to find a matching
between tasks and workers with maximizing the cardinality
and minimizing the bottleneck cost.

The FOBMD problem is hard to settle and even more
harder than the two-sided online bottleneck matching prob-
lems studied in [10], [11] due to consideration of both
the cardinality and bottleneck cost. Firstly, the bottleneck
cost is very sensitive and even a bad task-worker match-
ing pair can make the final bottleneck cost unusual high.
Secondly, we have to apply some special strategies to
resist sensibility of bottleneck cost and lower the bottle-
neck cost, however such strategies would have some bias
for some types of tasks/worker and can lead to lower
cardinality. The tradeoff between minimizing the bottle-
neck cost and maximizing the cardinality in the FOBMD
problem is a new challenge when comparing with the
two-sided online bottleneck matching problems studied
in [10], [11].

To handle the FOBMD problem, we propose an online
algorithm, namely Local Isolated Point Greedy (LIPG). The
core idea of LIPG is that we assume the tasks/workers sur-
rounded by less workers/tasks are more likely to result in the
larger bottleneck cost and we greedily match a task/worker to
its isolated neighbor within a local range.

We summarize our main contributions as follows:
• We identify a two-sided online bottleneck matching
problem with the deadline constraint in SC, the Fully
Online Bottleneck Matching with Deadlines (FOBMD)
problem, as a first work considering both minimiz-
ing bottleneck cost and maximizing the cardinal-
ity of two-sided online bottleneck matching in SC.
And we clarify that no online algorithms without
actively refusing tasks can achieve a constant com-
petitive ratio of the bottleneck cost for the FOBMD
problem.

• We clarify that the existing online algorithms for solv-
ing the two-sided online maximum cardinality matching
problem in SC or two-sided online bottleneck match-
ing problem without deadlines in SC, Greedy, Rank-
ing and Batch, do not work nicely for the FOBMD
problem.

• We propose an online algorithm, namely Local Isolated
Point Greedy (LIPG), to solve the FOBMD problem.

• The effectiveness and efficiency of our proposed algo-
rithm is verified through extensive experiments on both
synthetic and real datasets.

The rest of the paper is organized as follows. In Section III,
we formally formulate the FOBMD problem and the
competitive ratio, and then we give some competitive ratio
analysis for the FOBMD problem. In Section II, we review
related work. In Section IV, we review three existing state-
of-the-art existing the two-sided online maximum cardinal-
ity matching problem in SC or two-sided online bottleneck
matching problemwithout deadlines in SC, and thenwe intro-
duce our proposed algorithm. Extensive experiments on both
synthetic and real-world datasets are presented in Section V.
In Section VI, we conclude the paper.

II. RELATED WORK
In this section, we review related work from two cate-
gories: online matching in spatial crowdsourcing, general
fully online matching with deadlines, and bottleneck bipartite
matching.

A. ONLINE MATCHING IN SPATIAL CROWDSOURCING
There are a lot of existing studies focusing on the online
matching problem in SC [2]–[13]. Most of the exist-
ing studies consider the maximum-cardinality optimization
objective [3], [4], [13], [14], or the max-/min-sum-cost opti-
mization objective [5]–[9], [12], [15]–[19]. And only two
related studies [10], [11] consider the minimum bottleneck
cost optimization objective as we consider in this paper.
However, [10], [11] do not consider the deadline constraint
and they just make the tasks/workers waiting as long as they
want. In fact, there exists the deadline constraint in real-world
scenarios. And we consider the deadline constraint which is
different which other existing studies.

B. GENERAL FULLY ONLINE MATCHING WITH DEADLINES
Recently, there are some studies focusing on the general
fully online matching problem with deadlines in the theoret-
ical computing field [20]–[23]. References [20], [21] focus
the optimization objective of maximizing the cardinality
and [22], [23] focus the optimization objective of maximizing
the total utility of all task-worker matching pairs. All these
studies do not consider the bottleneck optimization objective
and this is the difference between our paper and these existing
studies.

C. BIPARTITE BOTTLENECK MATCHING
The offline bipartite bottleneck matching problem is been
introduced in 1953 [24] and then studied by a lot of related
work [25]–[30]. And these studies do not work for the
FOBMD problem due to the online setting where tasks and
workers appear online and the information of tasks and
worker is unknown before appearing.

However, there are only a few studies [31]–[34] con-
sidering the bipartite bottleneck matching problem in the
one-sided online scenario where all workers are known in
advance and the tasks appear online one-by-one, and this set-
ting is different with our paper where both tasks and workers
appear online.
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III. PRELIMINARIES
In this section, we formally define the FOBMD problem and
the standard competitive ratio (CR). And then, we give the
basic competitive ratio analysis for the FOBMD problem.

A. PROBLEM DEFINITION
Definition 1 (Task): A spatial task (‘‘task’’ for short),

denoted by t =< lt , at , dt >, is located at lt in a 2D space,
appears on the platform at time at with the deadline dt and
needs to be answered before time at + dt , otherwise it will
expire.
Definition 2 (Worker): A spatial worker (‘‘worker’’ for

short), denoted by w =< lw, aw, dw >, is located at lw in
a 2D space and appears on the platform at time aw with the
deadline dw and needs to be answered before time aw + dw,
otherwise it will expire.
Definition 3 (The FOBMD Problem): Given a set of tasks

T and a set of workers W , where both tasks and work-
ers dynamically appear on the SC platform and their spa-
tial information is unknown before they appear, and given
a metric distance function dis(., .) in 2D space, the Fully
Online Bottleneck Matching with Deadlines (FOBMD) prob-
lem is to find a matching M to maximize the number of
task-worker matching pair |M | and minimize the maximum
distance cost of all task-worker matching pairs, Cost(M ) =
maxt∈T ,w∈W dis(t,w). such that the following constraints are
satisfied:
• Deadline Constraint: each task/worker should be
matched after appearing and before its deadline, or oth-
erwise it will expire and remain unmatched after the
deadline.

• Capacity Constraint: a task can be assigned to only one
worker and vice versa.

• Invariable Constraint: once a task is assigned to a
worker, the corresponding task-worker matching pair
cannot be revoked.

B. COMPETITIVE ANALYSIS MODELS
The Competitive Ratio (CR), namely the worst-case ratio of
an online algorithm’s result to the optimum over all possible
inputs and all possible arrival orders, is a standard evaluation
for online algorithms. The definition of the competitive ratio
of the bottleneck cost and the competitive ratio of the cardi-
nality is shown as follows.
Definition 4 (Competitive Ratio of the Bottleneck Cost):

The competitive ratio in the adversarial model of the bot-
tleneck cost for the FOBMD problem is defined as follows:

CR(Bottleneck)A = max
∀T ,∀W ,σT ,∀σW ∀

Cost(M )
Cost(OPT )

(1)

where T and W is an arbitrary set of tasks and workers
respectively, σT is an arbitrary arrival order of the tasks T ,
σW is an arbitrary arrival order of the workers W , Cost(M )
is the bottleneck cost generated by the online algorithm, and
Cost(OPT ) is the offline optimal bottleneck cost.

Note that the aforementionedCost(OPT ) can be calculated
by classical offline bipartite bottleneck matching algorithms,
e.g. the threshold-based algorithms [25], [26], [28], [29] and
the swap-chain algorithm [30].
Definition 5 (Competitive Ratio of the Cardinality): The

competitive ratio in the adversarial model of the cardinality
for the FOBMD problem is defined as follows:

CR(Cardinality)A = max
∀T ,∀W ,σT ,∀σW ∀

|M |
|OPT |

(2)

where T and W is an arbitrary set of tasks and workers
respectively, σT is an arbitrary arrival order of the tasks T ,
σW is an arbitrary arrival order of the workers W , |M | is the
cardinality of the matching output by the online algorithm,
and |OPT | is the cardinality of the offline optimal bottleneck
cost, where |OPT | is also the cardinality of the offline maxi-
mum matching of T and W.

C. COMPETITIVE ANALYSIS
We give some basic competitive analysis in this subsection.
Example 1: Consider all tasks and workers located on

a line, and the locations of k + 1 tasks, {t0, t1, . . . , tk},
are points {20, 21, . . . , 2k} respectively. And k workers,
{w0,w1 . . . ,wk−1}, locate at points {21+ε, 22+ε . . . , 2k+ε}
respectively, where ε is an arbitrarily small positive number.
And the arrival time of k + 1 tasks and k workers are
{1, 3, 5, . . . , 2k + 1} and {2, 4, 6, . . . , 2k}, respectively. The
deadlines of all tasks and workers are 2. The arrival time of
tasks and workers on the time line is illustrated in Fig. 1.

FIGURE 1. An illustration of the arriving time of task and workers on the
time line.

Theorem 1: No online algorithm without actively refusing
tasks can achieve a constant competitive ratio of the bottle-
neck cost for the FOBMD problem.

Proof: As shown in Example 1, apparently, the only
worker available for task t0 before t0’s deadline is w0. If the
online algorithm does not actively refuse any tasks, the online
algorithm has to match t0 to w0 and finally outputs a result
with {t0, t1, . . . , tk−1} being matched to {w0,w1, . . . ,wk−1},
respectively, and the cardinality is k , the bottleneck cost
is Cost(M ) = 2k−1 + ε. The optimal algorithm would
match {t1, t2, . . . , tk} to {w0,w1, . . . ,wk−1}, respectively,
and the cardinality is k and the optimal bottleneck cost is
Cost(OPT ) = ε. And we have:

CR(Bottleneck) =
Cost(M )
Cost(OPT )

=
2k−1 + ε

ε
→∞ (3)

In this case, the competitive ratio of any online algorithm
without actively refusing tasks approaches infinity. Obvi-
ously, there is no online algorithm without actively refusing
tasks can achieve a constant competitive ratio of the bottle-
neck cost for the FOBMD problem. �
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Theorem 2 [21]: The lower bound and upper bound of the
competitive of the cardinality is 0.5 and 0.6317, respectively.

Reference [21] has discussed the bound of competitive
ratio for the two-sided online maximum matching problem
with deadlines. And the two-sided onlinemaximummatching
problem only considers the cardinality optimization objective
and the conclusion also applies to the FOBMD problem for
the competitive ratio of the cardinality.

The aforementioned theorem shows that the FOBMD is
hard if considerations are given to both the cardinality and the
bottleneck cost. For a better competitive ratio of cardinality
and trying to service every customer, the competitive ratio of
the bottleneck cost can be as bad as infinity. There is no upper
bound for the competitive ratio of the bottleneck cost.

IV. ALGORITHMS
In this section, we present the baseline algorithms and our
proposed algorithm.

A. BASELINE ALGORITHMS
Existing online algorithms only consider one optimization
objective, the bottleneck cost (the two-sided online bottleneck
matching problem without deadlines) or the cardinality (the
two-sided online maximum matching problem). The existing
online algorithms for the two-sided online bottleneck cost
matching problem without deadlines [10], [11] do not apply
for the FOBMD problem due to the deadline constraints.
Especially, the proposed algorithm based on HST (Hierar-
chically well-Separated Tree) [11] needs to know all the
locations of workers beforehand for constructing the HST and
is not appropriate for the FOBMD problem.

For clarifying that these existing online algorithms solving
the two-sided online maximum matching problem do not
work for the FOBMD problem. We consider three represen-
tative or state-of-the-art algorithms for the two-sided online
maximum matching problem as baseline algorithms, Greedy,
Ranking and Batch.

1) GREEDY ALGORITHM
Greedy [7], [35], [36]is the most straightforward online algo-
rithm for solving online matching problems and the main idea
of Greedy is to match tasks/workers to their nearest available
neighbor worker/task as soon as the tasks/workers arrive.
Example 2: Consider k tasks and k workers locating on

a line, and the k tasks, {t0, t1, . . . , tk−1}, arrive at time
{1, 3, . . . , 2k−1} and locate points {1, 21, . . . , 2k−1}, respec-
tively. And the k workers, {w0,w1, . . . ,wk−1}, arrive at
time {2, 4, . . . , 2k} and locate at points {−ε, 21, . . . , 2k−1}
respectively, where ε is an arbitrarily small positive number.
The deadlines of all tasks and workers are the same, 10.

As shown in the aforementioned example, Greedy out-
puts a result with {t0, t1, . . . , tk−1} respectively matching to
{w0,w1, . . . ,wk−1}, the cardinality is k and the bottleneck
cost is 1+ ε.
Complexity Analysis: The time and space complexity

of Greedy are O(max(|T ′|, |W ′|)) for each task/worker

achieving its deadline, where |T ′| and |W ′| are the number
of available tasks and workers when matching.

2) RANKING ALGORITHM
References [20], [37] show the randomized ranking algo-
rithm, namely ‘‘Ranking’’, performs nicely for the two-sided
online maximum matching with deadlines and the compet-
itive ratio for the cardinality of the Ranking algorithm is
between 0.5541 and 0.5671 [20]. To verify the performance
of Ranking for the FOBMD problem, we use Ranking as a
baseline algorithm in this paper.

The basic idea of Ranking is simple: each task or worker
uniformly picks a random float value in interval [0, 1),
and a task/worker is assigned to the unmatched worker/task
with the minimum random float value when the task/worker
reaches its deadline. The produce of Ranking is shown in
Alg. 1.

Algorithm 1 Ranking Algorithm [20]
input : The task set T , the worker set W
output: The matching M between T and W

1 (1) a task or worker v arrives:
2 pick yv ∈ [0, 1) uniformly at random;
3 (2) a task or worker v reaches its deadline:
4 let N (v) be the set of unmatched neighbors of v;
5 if N (v) = ∅ then
6 v remains unmatched;
7 else
8 u′← argminu∈N (v) yu;
9 M ← M ∪ {(u′, v)};

10 return M ;

Back to Example 2, Ranking is a randomized algorithm and
Ranking randomly matches t0 to one of {w0,w1,w2,w3,w4}

when t0 reaches its deadline. And Ranking outputs a result
with the cardinality k and the bottleneck cost which is at least
1+ ε and at most 2k−1 − 2k−5 = 15 · 2k−5.

Complexity Analysis. The time and space complexity of
Ranking are the same with the aforementioned Greedy’s.

3) BATCH ALGORITHM
Batch is proposed in [38] and is demonstrated as the state-
of-art algorithm for the two-sided online maximummatching
with deadlines in SC [14]. We slightly adjust Batch a bit to
fit the FOBMD problem by calculating the optimal bottle-
neck matching in each batch. And we still refer the slightly
adjusted Batch as ‘‘Batch’’ and use it as a baseline algorithm.

The basic idea of Batch is to divide the timeline into a
number of discrete batches and treat the matching problem
in each batch as an instance of offline bottleneck matching
problem. Specifically, the arriving tasks/workers must wait
until they reach the end of a batch and the tasks/workers
in each batch are matched according the optimal bottleneck
matching result of these tasks and workers. The produce of
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Algorithm 2 Batch Algorithm
input : The task set T , the worker set W
output: The matching M between T and W

1 (1) A task t arrives:
2 T ← t ∪ T ;
3 (2) A worker w arrives:
4 W ← w ∪W ;
5 (3) Matching procedure:
6 update T and W by deleting the expired tasks/workers;
7 let the current timestamp be ζ ;
8 let T ′/W ′ be the tasks/workers arriving in time [ζ − θ, ζ ];
9 calculate the optimal bottleneck matching M ′ of T ′ and
W ′;

10 M ← M ∪M ′;
11 update T and W by deleting the already matched

tasks/workers;
12 return M ;

FIGURE 2. An illustration for the isolated task and the isolated worker.

BATCH is illustrated in Alg. 2 and θ is the length setting of
batch.

Back to Example 2, we assume that θ = 10 and Batch
matches tasks and workers every θ = 10 timestamps.
At time 10, Batch matches {t0, t1, t2, t3} to {w0,w1,w2,w3},
respectively. Finally, Batch outputs a result with matching
t0, t1, t3, . . . , tk−1 to w0,w1,w2, . . . ,wk−1, respectively. The
bottleneck cost is 1+ ε and the matching cardinality is k .
Complexity Analysis: Comparing with the aforementioned

algorithms, Greedy and Ranking, Batch is more complex
and time-consuming because Batch has to calculate of the
optimal bottleneck matching in each batch. For each batch,
the space complexity of Batch is O(|T ′| · |W ′|) and the time
complexity is O(log(max(|T ′|, |W ′|)) · α) where α is the cost
of a maximum flow algorithm (e.g. α = O((|T ′| · |W ′|)2 ·N ))
on a flow network with |T ′| · |W ′| vertices and N edges if we
use the proposed IBFS algorithm in [39], where T ′ and W ′

are the task set and worker set within the batch, respectively.

B. OUR PROPOSED ALGORITHM
In this subsection, we introduce our proposed online algo-
rithm for solving FOBMD, called Local Isolated Point
Greedy (LIPG).

1) CORE IDEA
There are many reasons can lead to the large bottleneck
cost and we try to overcome one of the reasons, isolated

Algorithm 3 LIPG Algorithm
input : The task set T , the worker set W
output: The matching M between T and W

1 (1) A task t arrives:
2 T ← t ∪ T ;
3 (2) A worker w arrives:
4 W ← w ∪W ;
5 (3) Matching procedure:
6 update T and W by deleting expired tasks/workers;
7 1←

∑i=|T |
i=1

∑j=|W |
j=1 dis(ti,wj);

8 δ← 1
|T |·|W | ;

9 TLD(T )← [0, 0, . . . , 0]|T |;
10 TLD(W )← [0, 0, . . . , 0]|W |;
11 foreach ti in |T | do
12 W ′← {∀w|w ∈ W and dis(ti,w) ≤ η × δ};
13 TLD(ti)← |W ′|;

14 foreach wj to |W | do
15 T ′← {∀t|t ∈ T and dis(t,wj) ≤ η × δ};
16 TLD(wj)← |T ′|;

17 foreach ti in |T | do
18 if ti reaches its deadline then
19 if TLD(ti) = 0 then
20 w′← argminw∈W dis(ti,w);

21 else
22 CW← {∀w|w ∈ W and dis(ti,w) ≤ κ × δ};
23 w′←the worker in CW with largest TLD;

//If there are multiple workers with the same
largest TLD, the algorithm chooses the one
with the smallest distance to ti as w′;

24 M ← M ∪ (ti,w′);
25 W ← W − w′;

26 update T by deleting the already matched tasks;
27 foreach wj to |W | do
28 if wj reaches its deadline then
29 if TLD(wj) = 0 then
30 t ′← argmint∈T dis(t,wj);

31 else
32 CT← {∀t|t ∈ T and dis(t,wj) ≤ κ × δ};
33 t ′←the task in CT with largest TLD; //If

there are multiple tasks with the same largest
TLD, the algorithm chooses the one with the
smallest distance to wj as t ′;

34 M ← M ∪ (t ′,wj);
35 T ← T − t ′;

36 update W by deleting the already matched workers;
37 return M ;

tasks/workers, by designing an online algorithm and solving
the FOBMD problem. As shown in Fig. 2, there are some
tasks and workers located on a 2D space, where the solid
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FIGURE 3. Results of varied θ of Batch when tasks and workers follow different distributions.

FIGURE 4. Results of varied η of LIPG when tasks and workers follow different distributions.

FIGURE 5. Results of varied κ of LIPG when tasks and workers follow different distributions.

points indicate tasks and the hollow points indicate work-
ers. The task/worker locating far away other workers/tasks
and surrounded by less workers/tasks is isolated. Obviously,
the isolated task/worker is more likely to result in the large
bottleneck cost if the matching strategy is inappropriate. And
we can lower the bottleneck by rightly handling the isolated
tasks/workers. In the two-sided online scenario, we do not
know spatial information of future tasks/worker, and the
right choice is to preferentially match the current isolated
tasks/workers in case the isolated tasks/workers becomemore
isolated in the future and end up with a worse matching.

The remaining question is how to identify the isolated
tasks/workers. Inspired by a density-based outlier detection
algorithm, LoF [40], we define a metric, namely Thresholded
Local Density (TLD), to identify whether a task/worker is
isolated or not. It turns out that the TLD works nicely for
the FOBMD problem and the definition of TLD is shown as
follows.
Definition 6 (Thresholded Local Density): Given a set of

tasks T = {t0, t1, . . . , tk−1} and workers W =

{w0,w1, . . . ,wk−1} with specific locations in a 2D space,
a metric distance function dis(., .) and a distance threshold
ϕ (ϕ > 0), the Thresholded Local Density (TLD) of an
task ti is

TLD(ti) = |W ′| (4)

where W ′ = {∀w ∈ W |dis(ti,w) ≤ ϕ}.

Similarly, the Thresholded Local Density (TLD) of an
worker wj is

TLD(wj) = |T ′| (5)

where T ′ = {∀t ∈ T |dis(t,wj) ≤ ϕ}.
For a task ti, the TLD of ti is defined as the number of

workers surrounding around it within the distance range of ϕ.
If there are less workers surround ti, ti will be more isolated.
And TLDof aworker is defined almost the same. Hence, TLD
measures how isolated a task/worker is.

Notice that different settings of the threshold ϕ can sig-
nificantly affect the result of TLD. In this paper, we set
ϕ = η × δ, where δ is the average distance of arbitrary
task-worker pair and η is the scaling factor. It turns out
this setting ϕ = η × δ can adaptively fit different spatial
distribution setting of tasks and workers in our experiments.
And η can also be empirically determined by experiments.
Based on the aforementioned discussion, we propose an

online algorithm to settle the FOBMD problem, Local Iso-
lated Point Greedy (LIPG), and the procedure of LIPG is
shown in Alg. 3.

The procedure of LIPG is illustrated in Alg. 3. In line 2,
we add the new arrival task t to the task set T . In line 4,
we add the new arrival worker w to the worker set W .
Lines 6-36 are the procedure of matching. We first update
the task set T and worker set W by deleting the already
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FIGURE 6. Results that the locations of task/workers follow uniform, normal, exponential and power-law
distributions with different deadline settings.

expired tasks/workers in line 6. In lines 7-8, we calculate the
average distance δ of all possible task-worker matching pairs.
In lines 9-10, we initialize TLD of all tasks and workers as 0.
In lines 11-13, we calculate the TLD for each task. In lines
14-16, we calculate the TLD for each worker. And in lines
17-25, we match all the tasks reaching their own deadlines.
If the task’s TLD is 0, we greedily match the task to its nearest
unmatched worker, otherwise, we greedily match the task to
the worker with largest TLD within the distance range of
κ × δ in lines 19-24. After matching each time, we delete
the already matched worker from W in line 25. And we
update the task set T by deleting the already matched tasks
in line 26. Similarly, we match the workers which reach their
deadline in lines 27-35. And we update the worker set W
in line 36.

Notice that there are two different thresholds as shown
in Alg. 3, the threshold of computing the local density
(line 12 and line 15) and the threshold used when matching
(line 22 and 32). The former threshold decides the TLD of
tasks and workers, and the latter threshold is designed to

designed for prevent the distance cost of a task-worker pair
from becoming too large. Different thresholds have different
purposes and they should be different. As mentioned before,
we set the threshold of computing the local density (line 12
and line 15) as η×δ to make this threshold able to adaptive fit
different distribution settings of tasks and workers. Similarly,
we also set the latter threshold as κ × δ to adaptively fit
different distribution settings of tasks and workers.

Back to Example 2, we assume η = 1 and κ = 1.
The fist task t0 is matched at time 11. At time 11, T =
{t0, t1, t2, t3, t4, t5} and W = {w0,w1,w2,w3,w4}. And δ =
279 + ε, δ = 279+ε

6∗5 ≈ 9.3, and TLD(T ) = {4, 4, 4, 5, 2, 0},
TLD(W ) = {4, 4, 4, 5, 2}. And t0 will be matched to w0.
Similarly, t1 will be matched to w1 at time 12. Finally,
{t0, t1, . . . , tk−1} are matched to {w0,w1, . . . ,wk−1}, respec-
tively and the cardinality is k , the bottleneck cost is 1+ ε.
Complexity Analysis: The time and space complexity of

LIPG for each matching procedure are O(|T | · |W |) and
O(|T | · |W |), respectively. When |T | = |W | = n, the time
complexity of LIPG is O(n2), which is polynomial, and
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FIGURE 7. Results that the locations of workers follow normal, exponential and power-law distributions while
the locations of tasks follow uniform distribution.

we can say that LIPG is theoretically efficient in running
time.
Implementation of LIPG: Note that LIPG consumes most

of running time for computing the distance between an arbi-
trary task and an arbitrary worker in Line 7 as shown in
Alg. 3. And the distance computing in line 12, line 15, line 22
and line 32 is contained in line 7. To reduce the redundant
computation of distance between tasks and workers, we use a
dynamic distance matrix to cache the distance of all available
tasks and workers. When a new task/worker arrives, we com-
pute the distances between the task/worker and all available
workers/tasks, and we insert these distances to the distance
matrix. After matching a task and a worker, we delete all
the distances corresponding the task and the worker from the
distance matrix. It turns out that using the dynamic distance
matrix can really make LIPG more efficient in running time.

V. EXPERIMENTAL EVALUATION
In this section, we conduct experiments on both synthetic and
real datasets with all the baseline algorithms and our proposed

algorithm, LIPG. Firstly, we introduce the experimental set-
tings in Sec. V-A. And then we demonstrate the effectiveness
and efficiency of our proposed algorithms in Sec. V-B.

A. EXPERIMENTAL SETTINGS
Synthetic Dataset: We use a 1000*1000 2D grid space as
the working space and the Euclidean distance function as the
distance metric dis(·, ·). Four different spatial distributions
(uniform, normal, power-low and exponential distributions)
are taken into consideration to validate the effectiveness and
efficiency of the proposed algorithm. Notice that these spatial
distributions have been generally used in studies about online
matching problems in SC [5], [6], [9]–[11], [41], [42] and that
is the reason why we choose these distributions.

For the arriving time, we assume all time and work-
ers arrive at discrete time stamps randomly sampled from
{0, 1, 2, . . . , 1000}, i.e. in the time period [0, 1000].
Specific parameters of different settings are shown in

Table 1. The bold parameters in Table 1 is the default param-
eters in experiments.
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FIGURE 8. Results that the locations of workers follow normal, exponential and power-law distributions while
the locations of tasks follow normal distribution.

TABLE 1. Synthetic distributions’ setting.

Real-World Dataset:We use the open datasets collected by
DiDi Chuxing, the largest taxi dispatching platform in China.
The dataset contains 7,063,532 online taxi-calling orders with
corresponding pick-up/drop-out time and GPS locations of
November 2016 in Chengdu, China. And we assume the
pick-up locations and time as the locations and time of a task
appearing on the platform. Similarly, we assume workers’
locations and time are the drop-out locations and time. Hence,
we have a task dataset with 7,063,532 tasks and a worker
dataset with 7,063,532 workers.

In our experiments, we randomly sample different numbers
of tasks and workers in from all 7,063,532 tasks and workers,
respectively. And the distance function based on GPS is used
as the distance function dis(·, ·) (accurate into one kilometer).
Notice that we normalize the arriving time of the sampled
tasks/workers to [0, 1000] for avoiding the effect of different
time unit settings (second or minute).
Evaluation Metrics and Implementation Details:We study

the effect of varying parameters on the performance of dif-
ferent algorithms in terms of bottleneck cost, cardinality,
running time and memory consuming. All the experiments’
results are the average performance of these algorithms run-
ning repeatedly for 10 times.

All algorithms were implemented in C++ and the exper-
iments were performed on a PC with Intel(R) Core(TM)
i7-7700 CPU and 32G memory.

B. EXPERIMENT RESULTS
Wefirst analyze the effect of different setting of Batch’s θ and
LIPG’s η under different distributions. And then, we show
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FIGURE 9. Results that the locations of workers follow normal, exponential and power-law distributions while
the locations of tasks follow exponential distribution.

the performance of the aforementioned algorithms under dif-
ferent distributions and different scalability settings. Finally,
we show the performance of these algorithms one the real
dataset.
Effect of Batch’s θ : Fig. 3 shows the effect of the dif-

ferent settings of θ in Batch when tasks/workers follow
different spatial distributions with the default scalabil-
ity settings of |T | = |W | = 3000. The settings
of θ are {0.2, 0.4, 0.6, 0.8, 1}×deadline. And the bottle-
neck cost becomes a bit lower (about 10%) when θ

increases from 0.2×deadline to 1×deadline. The match-
ing cardinality do not change with θ increasing, and Batch
always achieve the maximum-cardinality matching. The
running time increases and decreases with θ increasing.
And the memory consumed by Batch increases with θ

increase because number of tasks/workers increases in each
batch.

Taking the bottleneck cost, running time and memory into
consideration, we use θ = 1×deadline as the default setting
of θ in next experiments.

Effect of LIPG’s η: We choose η = {0.5, 1, 1.5, 2, 2.5}
in this experiment and the scalability is |T | = |W | =
3000. Fig. 4 shows the different settings of η does affect the
bottleneck cost, running time and memory under different
distributions. Fig. 4a shows the bottleneck cost decreases
first and then increases with η increases. Fig. 4b shows
LIPG always can output maximum-cardinality matching
with different η. Fig. 4c and Fig. 4d show the running
time and memory change dramatically when η increases
for 2 to 2.5.

Based on aforementioned observation, we use η = 2 as
the default setting in all following experiments including the
experiments on the real dataset.
Effect of LIPG’s κ:Wechoose κ = {0.5, 0.75, 1, 1.25, 1.5}

in this experiment with the scalability |T | = |W | = 3000.
As shown in Fig. 5, different settings of κ affect the bottleneck
cost, running time and memory under different distributions.
Similarly with the effect of LIPG’s η, Fig. 5a shows the
bottleneck cost decreases first and then increases with κ
increases. Note that the bottleneck is lowest when κ = 1 in
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FIGURE 10. Results that the locations of workers follow Normal, Exponential and Power-law distributions while
the locations of tasks follow power-law distribution.

most cases, but the bottleneck reaches the lowest value when
η = 2 in most cases. And we can say that κ and η should
be different as shown in Fig. 5a and Fig. 4a. And the two
threshold, κ × δ and η × δ, are different.
Fig. 5b shows LIPG always can output maximum-

cardinality matching with different κ . Fig. 5c and Fig. 5d
show the running time and memory decrease when κ

increases for 0.5 to 1.5.
Based on aforementioned observation, we choose κ = 1 as

the default setting in all following experiments including the
experiments on the real dataset.
Effect of Deadline: Fig. 6 shows the bottleneck

cost remains nearly stable under different deadlines
({25, 50, 100, 200, 400}). And the matching cardinality is not
affected by different deadlines.

The running time of LIPG increases with deadlines
increase and the running time of other algorithms remains
nearly stable. And the memory of Batch increases with dead-
lines increase, but the memory of other algorithms remains
stable with deadlines increase.

Generally, the different settings of deadlines do not
affect the matching result. And we set the deadlines of
tasks/workers as 100 in the following experiments.
Effect of Locations of Tasks Following Different Distribu-

tion: Fig. 7 shows the results when the locations of tasks
follow the uniform distribution and the locations of work-
ers follow three different distributions respectively, normal,
exponential and power-law distributions. Fig. 8 shows the
results when the locations of tasks follow normal distribution
and the locations of workers follow normal, exponential and
power-law distributions with different parameters, respec-
tively. Fig. 9 shows the results when the locations of tasks
follow exponential distribution and the locations of workers
follow normal, exponential and power-law distributions with
different parameters, respectively. And Fig. 10 shows the
results when the locations of tasks follow power-law distri-
bution and the locations of workers follow normal, exponen-
tial and power-law distributions with different parameters,
respectively. Notice that the scalability is |T | = |W | = 3000
in these experiments.
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FIGURE 11. Results that the locations of workers follow uniform, normal, exponential and power-law
distributions with different scalability settings.

For the bottleneck cost, we observe that LIPG always
outperforms other algorithms and the bottleneck cost of LIPG
is only about 50% of the bottleneck cost of other algorithms.
And the bottleneck cost of Greedy, Ranking and Batch is
similar. In most cases, Ranking outputs the bottleneck cost
a bit larger than the bottleneck cost of Greedy and Batch
because Ranking treats all tasks and workers equally and
there is no strategy in Ranking to resist the sensibility of
bottleneck cost.

For matching cardinality, all algorithms can achieve the
maximum-cardinality matching because all algorithms do not
actively refuse a task or a worker.

As for the running time, LIPG is worst comparing to other
algorithms, but LIPG is still efficient enough in running time
because LIPG takes only about 0.5 seconds for matching
3000 tasks and workers. And Batch takes more time then
Greedy and Ranking because the calculation of local optimal
bottleneck matching in each batch. Greedy runs fastest than
other algorithms and Ranking runs a bit slower than Greedy
because Ranking has to pick a random float value for each
task/worker.

When considering memory consuming, Batch consumes
most memory then other algorithms because the local opti-
mal bottleneck matching calculation in each batch. Greedy,
Ranking and LIPG are as efficient as the same.
Scalability:We study the effect of scalability for the algo-

rithms, where the size of |T | (|W |) varied from 1000 to 5000.
And Fig. 11 shows the results of experiments of the scalability
with tasks/workers follow uniform, normal, exponential and
power-law distributions. All these figures show that LIPG
always outperforms other online algorithms at the bottleneck
cost under all situations. The bottleneck cost of LIPG is about
half of the bottleneck cost of other algorithms. And Greedy,
Ranking and Batch output similar bottleneck cost. In most
cases, Greedy’s bottleneck cost is a bit lower than Ranking
and Batch, and Ranking’s bottleneck cost is worst among all
four algorithms.

As for the matching cardinality, all four algorithms can
output the maximum cardinality.

The running time of all four algorithms in descending
order is LIPG>Batch>Ranking>Greedy. LIPG takes less
than 1.2 seconds for LIPG to match 5000 tasks and workers.
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FIGURE 12. Results on the real dataset.

And LIPG is still quite fast and is still experimentally efficient
in running time.

The memory of all four algorithms in descending order
is Batch >LIPG≈Ranking≈Greedy. Batch costs much more
memory than other algorithms due to the calculating pro-
cess of the local optimal bottleneck matching in each
batch.
Experiments on the Real Dataset: Fig. 12 shows the results

of the experiment on the real dataset with the size of |T | (|W |)
varies from 1000 to 5000. Obviously, the matching results of
LIPG have much lower bottleneck cost than other algorithms
as shown in Fig. 12a. The bottleneck cost of LIPG remains
relatively stable and does not increases fast with the size of
|T | (|W |) increases from 1000 to 5000.
Fig. 12b shows all four algorithms can output the

maximum-cardinality matching.
Fig. 12c shows that LIPG takes more running time than

other algorithms and the running time of all four algorithms in
descending order is LIPG>Batch>Ranking≈Greedy. LIPG
only takes less than 8 seconds to match 5000 tasks and
workers (0.0016 second to match a task and a worker), and
the time complexity of the LIPG algorithm is polynomial,
O(n2) when |T | = |W | = n. So, we can still say LIPG
is acceptable and efficient, experimentally and theoretically.
And Batch also takes about 2 seconds to match 5000 tasks
and workers. Notice that LIPG and Batch consume more
running-time on the real dataset then them on the synthetic
datasets with the same number of tasks/workers, and the
reason is that it is much more time-consuming for calculat-
ing the GPS distance than calculating the simple euclidean
distance.

Fig. 12d shows that Batch consumes more memory than
other algorithms. The consuming memory of four algorithms
in descending order is Batch>LIPG>Ranking≈Greedy. And
LIPG is efficient in memory.
Summary of Experiments: We summarize the observation

of all aforementioned experiments as follows:
• LIPG always outputs the matching result with much
lower bottleneck cost than Greedy, Ranking and Batch.

• Greedy, Ranking, Batch and LIPG can achieve the
maximum-cardinality matching.

• LIPG consumes more time than Greedy, Ranking and
Batch, but still is efficient in running time.

• LIPG is efficient in memory and consumes much less
memory than Batch.

VI. CONCLUSION
In this paper, we formulate the Fully Online Bottleneck
Matching with Deadlines (FOBMD) problem and clarify that
there is no online algorithm without actively refusing tasks
can achieve a constant competitive ratio of the bottleneck
cost for the FOBMD problem. And then we introduce three
baseline algorithms, Greedy, Ranking and Batch. After that,
we discuss how to lower the bottleneck cost by considering
the isolated tasks/workers, and we propose the Local Isolated
Point Greedy (LIPG) algorithm to handle the FOBMD prob-
lem based on the discussion. Finally, extensive experiments
on both synthetic and real datasets demonstrate that LIPG
can output the maximum-cardinality matching with the dras-
tically lower bottleneck cost than the other online algorithms
and LIPG is also efficient in running time and memory.
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