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ABSTRACT Securing transmission of information between legitimate transmitter and receiver sides is a
great challenge for mathematicians, computer scientists and engineers in recent years. This paper aims at
achieving three goals. The first of them is to introduce a novel fractional order two dimensional (2D) map
having very complex chaotic behavior and distinct large positive values of Lyapunov exponents over wide
range of parameters, compared with other 2D maps in literature. Secondly, a new reliable secure encryption
scheme combining the associated chaotic pseudo-orbits of the proposed map with the advantages of elliptic
curves in public key cryptography is suggested, for first time, and applied to colored images. The hybrid
scheme is capable to confirm reliable secret keys exchange in addition to highly obscure and hide transmitted
information messages. Finally, a thorough mathematical analysis of security performance and evaluation
of encryption scheme immunity against all possible attacks are carried out and proved its efficiency and
robustness.

INDEX TERMS Chaos-based cryptography, chaotic maps, discrete fractional calculus, elliptic curves,

pseudo-orbits.

I. INTRODUCTION

The last three decades have witnessed a great technological
revolution which successfully reshapes our life. For example,
advanced digital communication systems, personal comput-
ers, smart phones, digital cameras, internet, among others,
play a crucial role in every one’s daily life. The necessity
for securing crucial information data transmitted between two
entities and preventing the leakage or snoop of any criti-
cal information are inevitable challenge for mathematicians,
computer scientists, and engineers.

The fascinating properties of chaotic dynamics, such as
high sensitivity to initial conditions and parameters, noise
like behavior, wideband spectrum, the possibility of being
generated through utilizing very fast nonlinear laser dynam-
ics and the possibility of attaining synchronization between
transmitter and receiver, render chaotic dynamical systems
a perfect choice in several modern applications including
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chaotic radars [1], chaotic LIDAR [2], chaos based encryp-
tion systems [3]-[5] and ultra-fast physical random number
generators [6]-[9]. More specifically, chaotic dynamics have
the ability to mask information signals in both frequency
and time domains. Furthermore, they can be employed in
different ways so as to encrypt various forms of informa-
tion messages in both software and hardware layers, see for
example [10]-[17] and references therein.

Chaos based communications systems have also attracted
considerable interest in recent years. For example, a proposed
chaotic constellation transformation technique in orthogonal
frequency-division multiple access-based passive optical net-
works (OFDM-PON) is examined theoretically and experi-
mentally in [18], where it has shown physical-layer security
enhancement and reliable 18.86 Gb/s encrypted signal trans-
mission over 25 Km single mode optical fiber. In [19], an opti-
mum block dividing scheme combined with two-dimensional
adjusted logistic sine map and dynamic key assignment
technique is employed for further security improvement in
OFDM-PON. Security enhancement for OFDM-PON using
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three-dimensional Brownian motion and chaos in cell [20]
and also using chaos encryption and DNA encoding [21] are
demonstrated.

However, the very recent studies concerned with secu-
rity performance of chaos based secure communication
systems reveal that two factors must be considered with
a great attention in building chaos based encryption
systems [22]-[24]. In particular, the high complexity and
dimensionality of chaos employed in these systems in addi-
tion to effective prohibition of any internal information of
the chaos based encryption system from being attained from
the transmitted chaotic signal by any illegal intruders are
required. Few techniques have been proposed to improve
chaotic dynamics and security performance of some spe-
cific chaos based cryptosystems [10], [23], [24]. For exam-
ple, the presence of time delay signature in outputs of
chaotic of laser systems having delayed optical feedback
was regarded as a major security deficiency which has been
treated in [19], [20]. Indeed, optical chaos sources that feature
good suppression of time delay signature [10], [23] as well as
the high-dimensional entangled photons systems [25]-[27]
can serve as fast physical random number generators [9].
Such sources of physical randomness are essentially impor-
tant in wide area of applications in the modern technology
era.

Block image encryption scheme was proposed in [28] to
treat the periodicity problems in cat map and therefor resist
chosen plain text attack. More specifically, the combined
Arnold cat map and dynamic random growth technique is
used in the way that the secret key is dependent on plain
images.

Also, in order to address the problems of long time permu-
tation processing and poor permutation performance of tradi-
tional permutation algorithm, like Arnold, Baker and cyclic
shift permutation schemes, the recent advances in the field of
image encryption involve achieving efficient fast encryption
in real-time systems that run for both distributed and parallel
computing environments [29]. Also, the Boolean networks
and matrix semi-tensor product technique are adopted in a
new chaos-based image encryption system with good security
characteristics [30].

On the other hand, elliptic curve cryptography has proved
itself as a popular effective public key cryptography tech-
nique [31], [32]. Elliptic curves cryptography reduces the
lengths of safe secret key, required for top secret docu-
ments, by approximately 90 % compared with other public
key encryption techniques such as Rivest—Shamir-Adleman
(RSA), Diffie-Hellman key exchange (DH), and El-Gamal.
Also, it is energy efficient with very fast computations speed,
memory savings and best fitting for small apparatuses.

Recently, there are few trials initiated in order to incorpo-
rate the advantages of chaos based cryptography with those
of elliptic curve cryptography in a robust image encryption
scheme [17], [33], [34]. Although the proposed schemes
successfully possess the ability to resist some of different
security attacks, there are major deficiencies occur in these
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works. For example, the chaos generators employed in these
systems usually produce relatively weak chaos (with small
values of positive Lyapunov exponents) or apply chaotic
perturbations in encryption through a way which renders it
more vulnerable to security attacks. Also, the joining scheme
which maximizes the security performance of the hybrid
(chaos/elliptic curve) cryptosystem is unclear. Furthermore,
the possible occurrence of unwanted signature that may
reveal the internal structure of cryptosystem in encrypted
transmitted signals should be taken into account. This creates
motivations for scientists, from different disciplines, to do
their best efforts to treat the aforementioned issues via build-
ing new hybrid crypto- systems.

Moreover, several works have highlighted the issue of
chaotic behavior degradation and suppression in simple one
dimensional chaotic maps, such as logistic map or tent
map [35]-[37]. The reason for this degradation is due to the
finite precision impacts [35], [37]. Different strategies can be
applied in order to offer appropriate solutions to chaos sup-
pression problem via utilizing more accurate finite precision
calculations or transition between chaotic outputs of different
chaotic systems [35]. However, there still exist some other
factors which render the realization of robust and efficient
encryption algorithms a difficult work. As an example, the 1D
chaotic maps based cryptosystem typically have small key
space as a result of single used value of initial conditions.

The generalization of the ordinary differential and inte-
gral calculus to non-integer order calculus is called the frac-
tional calculus (FC) [38]. Recently, FC has proved itself
as useful tool for applications in many fields of research
such as biomedicine, nonlinear electronic circuits, chaos
based cryptography and image encryption [39]-[50]. The
specific field of discrete fractional calculus (DFC) is a hot
topic which develops rapidly in recent years. In fact, several
new mathematical topics related to the discretization of the
Riemann-Liouville and the Caputo operators have been stud-
ied such as the initial value problem in DFC [51], the vari-
ational approach to the fractional discrete model [52], the
properties of the discrete forms of Riemann-Liouville and the
Caputo operators [53], and the Laplace transform in discrete
fractional calculus [54]. Furthermore, chaotic discrete frac-
tional dynamical systems were examined in Refs. [55]-[57]
and they proved their efficiency in some modern chaos base
encryption scheme [58]-[62].

This paper is an attempt to face this challenge. The key
problems which motivate this work are summarized below:

Firstly, the vast majority of chaos based cryptography
systems are based on chaos generators having time series
outputs with low degree of complexity. The largest Lyapunov
exponent, as a measure for strength of chaotic dynamics,
typically takes values less than 3 in most of these chaotic
systems. So, can we introduce a new chaotic map that can
successfully achieve larger values maximum Lyapunov expo-
nents (MLEs), greater than 20, for example?

Secondly, the chaotic output of the proposed new map is
to be employed implicitly in an efficient encryption scheme
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by adopting the corresponding pseudo orbit and therefore
increase its effectiveness.

Finally, elliptic curves as a technique for public secret key
transmission are well known by its superiority over other
similar technique such as RSA, DH, El-Gamal.... . etc. So, can
we combine the advantages of this technique with the noise-
like behavior of the new improvised chaotic map to devise a
superior cryptosystem?

The key advantages of the proposed encryption scheme
compared with other schemes in literature, such as schemes
which use one-time keys, bit-level permutation, cellular
automata, etc., see [63]-[66] and reference therein, are: (a)
Distinctive large values of Lyapunov exponents (LEs), see
for example one-time keys image encryption scheme [63]
and spatial bit-level permutation [64] where the maximum
LEs of employed piecewise linear chaotic map and Chen
chaotic system are less than three. (b) The pseudo-chaotic
encrypting sequence is extracted from two mathematically
equivalent but computationally nonequivalent systems. This
overcomes the possible degradation of statistical features in
encrypting sequence in systems which apply chaotic outputs
directly [67]. (c) The proposed system combines the advan-
tages of robust and efficient EC key exchange with those
of pseudo-chaotic orbits. In particular, the proposed scheme
can be further improved in future work to easily include the
more advanced supersingular isogeny ECKE and therefore
can withstand the risks of quantum computers era. (d) The
secret keys of the proposed encryption scheme are not fixed.
They are depending on plain images and the time moment
of their arrival. This implies that if the same plain image is
applied multiple times, different secret keys will generated
for encryption process.

Our proposed technique extends the idea of [28] by incor-
porating the advantages of the reliable ECKE, high com-
plex novel chaotic map, and finally time varying and plain
image dependent secret keys. Moreover, the pseudo chaotic
sequence is used in permutation—diffusion processes, rather
than direct application of conventional generated chaotic
sequence, which increases the effectiveness of scheme, uti-
lizes finite precision error and overcomes the degradation in
statistical features of chaotic sequence due to finite precision
computations on computers [67].

The paper is organized as follows. Some preliminaries and
mathematical concepts are introduced in Section II followed
by the proposed fractional order 2D chaotic map and its
associate dynamical properties in Section III. The proposed
hybrid cryptosystem is presented for the case of colored
images as input data in Section IV. Simulation results and
security analysis of the scheme are performed in Section V
to verify its superiority then the discussion of results is con-
cluded in Section VI.

Il. PRELIMINARIES

Discrete fractional calculus was introduced to efficiently
incorporate and capture the memory effects in nonlinear
discrete time systems [68]-[70]. Dynamical behaviors and
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applications of fractional difference models, on an arbitrary
time scale, were investigated in the last decade where delta
difference equation was utilized [70]-[72]. Assume that a
sequence p(n) is given and the isolated time scale N, is
represented in terms of real valued constant 7 i.e. {t, 7 + 1,
T+ 2,...,}such that p : X; — R. Also, the difference
operator is denoted by A, where Ap(n) = p(n + 1) — p(n).
Then we summarize some key results and definitions of
discrete fractional calculus as follows.

Definition 1: For o > 0, the order « fractional sum is given
by [70]

A% (1) = v _Te=m rer
: p()_l"(oz)mzzrl"(t—m—a—i—l)p(m)’ € Nea-

Definition 2: The order o Caputo-like delta difference is
defined by [71]:

A1) = AT"TOA"p (1)

t—(n—a)

1 I' (t-m)
_ Ly Ao,
(n—a) — r¢t—m—n+oa+1)
teRiipyo, n=lal+1

Definition 3: The delta fractional difference equation of
order « is represented by [72]:

CAYp (1) =ft+a—1,p(t+a— 1),

and the equivalent discrete fractional integral is given by
t—uo

_ b L —m
y(l)_pO(t)+F(a)m:;hal"(t—m—a—kl)

Xfm+a—1, pm+ o — 1)),

t € RNeyp.

Note that the initial iteration in this case is expressed as

n—1
~ Fre—t+1
po<t)_}§)k!F(t—f—k+l)A P (D).

Now, we review some key points related to elliptic curves.
Elliptic curves were firstly utilized in cryptography by Neal
Koblitz and Victor Miller [31], [32].

Definition 4: For a prime field F,,, p # 2, 3, assume that
a,b € F, and 4a3 + 27b* # 0. Then, any elliptic curve E
defined over F), is represented by

E:y25x3+ax+b(modp).

The group of points (x, y) which satisfying the equation of
elliptic curve E, along with a point O at infinity, are referred to
as elliptic curve group E (F p). The basic operations on ellip-
tic curves are addition and doubling of points. In addition,
the multiplication by a scalar is carried out by combining
addition and doubling operations. In particular, given two
elliptic curve points P = (x1, y1), Q = (x2, y2), and a positive
integer k, then the addition of P and Q are defined by

P+ 0= (x3,y3),

where x3 = (y2 —x] — xz) mod p,
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v3 = (¥ (x1 — x3) — y1) mod p and

y2 — )1
= ) P#Q’
X2 — X1
_3x12+a _0
2y 7

For the case where x; = x2(mod p), y1 + y2 = 0 (mod p),
then P+ Q = O.
The scalar multiplication is defined by

kP=P+ P+ P+ ...+ P (k times) .

Given two points M and N on an elliptic curve E, then it
is computationally very hard to find the value of & which
achieves Q = kP. This problem is referred to as Elliptic
Curve Discrete Logarithm Problem (ECDLP) which is com-
putationally very hard problem to solve provided that the
recommended values for parameters suggested by National
institute of Standards (NIST) are used.

Ill. THE PROPOSED FRACTIONAL ORDER
2D CHAOTIC MAP
Inspired by excellent characteristics of lemniscate chaotic
map [73], the proposed chaotic map is inherited from lem-
niscate map [73] as a seed. In particular, three identical
lemniscate chaotic maps are cascaded in the way that the
output of third stage is fed back as input to the first stage.
Figure 1 elucidates how new map was formulated from three
identical lemniscate chaotic maps. It is important to notice
that the proposed structure of the map is not restricted to only
three cascaded maps but it can be extended to general n-stages
setup. More specifically, it is observed that the values positive
Lyapunov exponents in new map increase linearly with the
number of cascaded seed maps. Nevertheless, the forms of
resulting new maps become more and more complicated
when the number of cascaded seed maps increase. Therefore,
if four or five cascaded maps are employed to form new map
then the MLEs will be further increases whilst more compu-
tations costs are demanded for the highly intricate developed
map. In the present work we establish the proposed map with
three maps to achieve the balance between complexity of
computations and the improved dynamics of the map.

The proposed model is presented in two forms, namely,
integer order form and fractional order form as follows.

Lemniscate
map Il

Lemniscate
map I

Lemniscate
map |

FIGURE 1. Construction of the proposed chaotic map from three
lemniscate chaotic maps.

Integer order form

3
Ftr T s rAT
COS[2 Cos[2.x(n)]Sm[22 x(n)]
1+Sin[2x(n)]

]

x(n+1)= T ’
- 227 Cos[27x(m)1Sin[27x ()] 12
I+ Sin[ 14Sin[2rx(n)]? ]
24/2Cos[ ZCO2Y 1 2Cosl2(m] |
yn+1)= 14Sin[2"y(n)] 14Sin[2ry(n)] )

. 2'Cos[2y(m)] 12
1 Sinl 2y
Caputo-like delta fractional difference form of order o

CA% (1) +x(t — 1 + )

3
22 Cos[2%x(t— 1 +a)]Sin[2"x (1 — 1 +a)]

Cos[ 1+Sin[27x (t— 1 4) >

]

3 9
2 Cos[28x (1 — 140)]Sin[25x (t— 1 +a)]
14+Sin[2"x (1 — 14-a)]?

CA%Yy () +y (- 1+a)
]Sin[

2'Cos[2"y(r—14w)]
24/2
+/2Cos [1+Sin[2ry(t—1+a)]2
2rCos[ 2Ty (r—14a)]
14Sin[2ry(t—1+a) ]*

2
1 + Sin[2 ]

2'Cos[2"y(r—14w)]
14Sin[2ry(t—1+a) ]

]2
where fractional order satisfies 0 < o < 1 and parameter r
is positive.

Hence, we get the following equivalent integral form (3),
as shown at the bottom of this page.

)

3

1 + Sin [
)

A. DYNAMICAL BEHAVIORS OF THE NOVEL CHAOTIC MAP
In this subsection, the interesting nonlinear dynamics exhib-
ited by new chaotic map are investigated through time series
plots, phase portraits, bifurcation diagrams and maximum
Lyapunov exponent plot. It will be shown that the proposed
system has distinguished large positive value of maximal
Lyapunov exponent and very wide range of parameter r at
which the map exhibit complex chaotic behavior.

Z%HCOS[TX(/;l)]Sin[2rx(jf])]

- ) + 1 i Fn—j+a) COS[ 1+Sin[27x (j— D 2 ] G D)
x(n) =x X —x(— ,
Fao)y~Tn-j+1 3. _ o 2
j=1 1 + Sin | 22 Cos2:x(=DISin[2'x(=D)]
1+Sin[2rx (j—1)]?
) 2'Cos[2"y(j—1)] ] [ 2'Cos[2"y(j—1)] ]

y (n) =y (0) + 1 Xn: r (l’l —J + a) x 2\/§COS |:1+Sin[2ry(i*1)]2 Sln 1+Sin[2ry(i*1)]2 —y (] _ 1) (3)

' (o) = Fn—j+1 2Cos[2'y(—1)] ]2
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FIGURE 2. Time series of x output of new chaotic map at r = 10 and
(@a=1, (b)a =0.95, (c) « = 0.75, (d) « = 0.5.

Moreover, incorporating memory influences, via fractional
order difference operator, has the advantage of increasing the
number of parameters in the model and hence enlarging the
secret key space for encryption process. Also, the coexistence
of stable chaotic multiple attractors are observed in fractional
order case.

Firstly, the value of r is fixed and the time series plots of the
output of proposed map are depicted in Fig.2 at different val-
ues fractional order «. It is found that a significant influence
is induced by fractional difference which appears through the
obvious modulation of conventional chaotic signal produced
by integer order map. Also, chaotic fluctuations are observed
for wide range of fractional order «.

The next step is to thoroughly examine the integer order
case via obtaining x-y phase portraits at different val-
ues of parameter 7 It is shown that the new map under-
goes a sequence of period-doublings in a small range of
r (0 < r < 1). The occurrence of chaotic dynamics is there-
fore observed for wide range of r values. Examples of phase
portraits generated by new map (1) are illustrated in Fig.3.
Furthermore, bifurcation diagram and spectra of Lyapunov
exponents (LE) are utilized to give a broad view of the dynam-
ics of new map (1) versus r and to confirm the existence
of chaotic output for wide range of this parameter. The LE
spectra are obtained to quantify the degree of complexity and
sensitivity to initial conditions [18] in the proposed chaotic
map. Figure 4 shows LE spectra of the chaotic map (1)
and shows that both LEs have distinguished large positive
values which confirm the occurrence of complicated behavior
in the proposed map. From Fig.4, it can be demonstrated
that compared with other conventional chaotic maps, like
Logistic, Henon, Sine, Zaslavisky, etc., the proposed map has
a distinguished large value of MLE that is increasing with r.
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FIGURE 3. Phase portraits of integer order chaotic map (1) obtained at
(@r=03,(b)r=0.8,(c)r=1, (d) r =4, (e) r =12, and finally
(f) r=19.

Finally, the case of proposed Caputo-like delta fractional
difference map (3) is scrutinized where some results are
presented in Fig.5. In Fig.5, the value of r is fixed at 10 and
the value of fractional order is varied so as to inspect the
changes in system dynamics; see Fig.5 (a-c). The first and
foremost important observation here is that the orbits starting
from distinct initial positions will subsequently converge to
different coexisting chaotic attractors in phase space. These
simultaneously occurring attractors is colored by red, blue,
brown and black in Fig.5. Changing the value of r, the same
phenomenon is observed; see for example Fig.5 (d). Bifur-
cation diagrams in terms of parameters « and r verify that
complex dynamics persist over a broad range of o and r,
see Fig.5 (e-f). The aforementioned characteristics of new
Caputo-like fractional difference map (3) render it preferable
in chaos based cryptography applications.

IV. THE PROPOSED HYBRID CRYPTOSYSTEM

A. INPUT

Plain image of size & x v pixels. There are three values
associated to each pixel such that they they are corresponding
to degrees of colors red, green and blue. For a pixel in
position (i, j), denote by P, (i,)) , Py (i,]) , and Pj (i, ) the
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(@)

LE Spectrum

(b)
FIGURE 4. Bifurcation diagram of state variable x and LE spectrum

evaluated for new chaotic map (1) versus parameter r.

red, green, and blue pixel values, respectively, which range
from O to 255. The internal clock of transmitter is initiated
when the encryption session starts.

B. PUBLIC KEYS

Group generator and parameters of one of the standard elliptic
curves suggested by NIST in USA. For example, in the
following simulations we consider the P-192 curve groups in
the form

y2 = x> —3x+ b,
with

G = {602 046 282 375 688 656 758 213 480 587
526 111 916 698 976 636 884 684 818,
174 050 332 293 622 031 404 857 552 280
219 410 364 023 488 927 386 650 641},

b = 2455 155 546 008 943 817 740 293 915 197
451 784 769 108 058 161 191 238 065,

q = 277 101 735 386 680 763 835 789
423 207 666 416 083 908 700 34 961 279,

refer to group generation, parameter of the curve and modulus
of finite field, respectively.

C. SECRET KEYS

(a) The initial values of parameters r and « in the proposed
chaotic map, namely, o and op.

(b) Private key at the sender side i.e. k;.

(c) Private key at the receiver side i.e. kg.
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FIGURE 5. The phase portraits of proposed map (3) are shown in

(a)-(e) for (@) r =10 and « = 0.95, (b) r = 10 and « = 0.75, (c) r = 10 and
« = 0.5, (d) r =20 and « = 0.95. The bifurcation diagrams versus « and r
in (e) and (f), respectively.

(d) The two initial conditions of proposed chaotic map.
(e) A set of arbitrary m-perturbation values denoted by

{pl,P29 .. ,pm} .
(f) An arbitrary real number .

D. ENCRYPTION/DECRYPTION PROCESS
1) Employ the following two mathematically equivalent
forms of new map (3)

1 2":1"(n—j+oz)

YW =x O+ S 2 T a1

J=1

3
227" Cos[2x(j—1)]Sin[27x(i—1)]
Cos [ 1+Sin[2rx (j—1)]?

X

3 2
.| 227 Cos[2mx (j— D1Sin[27x (= 1)]
1+ Sin [ 1+Sin[25x (j— 1)1

—x(=D],
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F'h—j+a)

1 n
y(")ZY(OHF(a);F(n—jH)

2)

3)

4)

5)

ZﬁCos[ 2rC9s[2‘y(j—l)]2] Sin [ 2'Cos[2"y(j—1)] ]

14-Sin[2ry(j—1)] 14Sin[2ry(—1)]?

- 2
. [ 2rCos[2ry(j—1)]
1+ Sin |:1+Sin[2ry(jfl)]2]

X

-yi=-DOf. ©&

and (5), as shown at the bottom of this page, which can
be considered as two interval extension of the map (3).
In spite of being mathematically equivalent, the restric-
tions of floating point representation implies that two
pseudo orbits emanate from systems (4) and (5) will
diverge exponentially. For a review on analysis of inter-
val extensions and the lower bound error theorem, see
Refs [74], [75].

Compute the following three image-dependent perturba-
tion values

= (hxv)zZZPt(lj)

i=1 j=1

where t = r, g, b and u is an arbitrary real number.
The reading T of internal clock in transmitter part is used
to further update the values of ¢; such that

cr=c+e(T+1),

where ¢ < 1 has an arbitrary random value. The value of
¢ is selected randomly for each new encryption session.
Update the values of parameters and initial conditions as
follows, where hat is omitted for brevity

r=ro+c, o«=0ag+Cp, X0 = Xinit + Cb,

Yo = Yinit + Cg-
Using the updated values of parameters and initial con-

ditions, simulate the two systems (4) and (5), which
represent two natural interval extensions of original new

7)

8)

map, such that each system is iterated 3 x 1+ h x v times
for state variable x and 3 x v + h x v times for state
variable y. Note that a sufficient initial transient number
of iterations, say ¢ iterations, should be discarded firstly
S0 as to neglect any transient dynamics.

The perturbation values denoted by {p1, p2, ..., pm} are
added to the output time series by the following way:
Forn =1:1000 X,1 = x41 +p1, Yu1 = yu1 +
P1, Xn2 = Xn2 + p1, Yn2 = yu2 +p1, Forn =1001 :
2000 Xn,l = Xu,1+Pp2, Yn,l = Yu1+tPpP2, Xn,2 = Xp2t+
P2, Yn2 =yn2 + p2, and so on.

The module one operation is applied to the perturbed
time series such that

an_mod(nl,l),
XnZ—mOd(nZvl)v
Ynz—mod( nz,l).

Ynl_mod( n],l),

The lower bound error for each state variable is then
evaluated by

Xi1—X; Yi1—
(er); = %: (eny), = ”T
Figure 6 shows examples for lower bound errors
obtained for different values of r.
Therefore, the minimum values of e; and ey, series are
found and used to compute the following two encrypting
sequences
For the first 3/ values of ey :

Yio

-, _
Ency = mod | IntegerPart # x 101 Jh).
| min (efy)

For the first 3v values of ejy:

Enc. — Cly 15
ncy = mod | IntegerPart | ——— x 10 v,
min (ely)

For the remaining values of ej, and e;,

_ 1 10%],256),
| min (egy)

by 10‘5} ,256) .
| min (ely)

Enc, = mod <IntegerPart

Ency = mod (IntegerPart

x(n) =x0)+

1
y () =y(0) + F(a)j; =D

" 2V2T (n—j+a)

2'Cos[2x(j—1)]Sin[2"x(j—1)] ]
Cos [ 14Sin[2rx (j—1)]?

1 X”: I (n—j+a)

I‘()

o Te—=j+D

IZEES R &

T(n—j+a) C“[

S -

1 + Sin 2%“Cos[Z'x(j—1)]Sin[2'x(j—l)] I (@) j=1
1+Sin[27x (j— D ]?

2'Cos[2"y(j—1)] ]

14Sin[2ry(j—1)]?

. [ 2"Cos[2"y(i—1)] ]
Sin [1+Sin[2fy(jfl)]2

1 anf‘(n—j+oz)
F@ & Tn—j+1

xy(G—1)
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FIGURE 6. Lower bound errors of state variables x and y of system (2)
obtained when (a,b) r = 12 and (c,d) r = 19.

9) The average chaotic time series can be calculated from
the following equation

Xi+X+Nh+ 1
4

x 10‘5] , 256) )

10) The first 34 components of Ency and the first 3v
components of Enc, are separated and arranged in an
ascending order, after deleting any possible repeating
values, to form the following six confusion vectors:
Sg = Encx(1:h),S;; = Ency(h+1:2h),S;, =
Enc, 2h+1:3h), Sy = Ency(1:v),85 =
Ency (v+1:2v), and Sg; = Ency 2v+1:3v).

11) The rows of plain image pixel matrix are scrambled in
the way that red component values of pixels are per-
muted according to S whereas green and blue compo-
nents follow S(; and Sy orders, respectively. Similarly,
the columns of plain image pixel matrix are scrambled
by using S7,t =R, G, B.

12) The permuted plain image is reshaped in a new formed
three vectors such that each of which has length of 2 x v
elements corresponding to pixel intensity of a specific
colour e.g. red or green or blue.

13) The bitwise XOR operations between the aforemen-
tioned three vectors, namely, Vg, Vg and Vp, and three
encrypting sequence Ency, Ency and Enc,, are carried
out in order to obtain the three ciphered components of
encrypted image i.e.

(VR)gnc = VR @ Ean,
and (V),,. = VB @ Encyy.

Ency, = mod (IntegerPart |:

(VG)enc =Vc® Enc}”

14) The transmitted side publishes [k;]G whereas the
receiver side publishes [kg]G. Subsequently, the two
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sides agree on a shared symmetric key [ks] ([kr] G) =
[kr] ([ks] G). This is known as Diffie-Hellman analogy
of elliptic curve key exchange.

15) The three image-dependent perturbation values c; in
addition to preselected m perturbation values and inte-
ger number p are ciphered using the agreed symmetric
key. In particular, El-Gamal scheme for encryption with
elliptic curve can be efficiently employed [76].

16) Utilizing the shared secret keys, identical chaotic maps
and the same setting for precision of numerical repre-
sentation at receiver side, the three encrypting sequence
Ency, Ency and Enc,, can be regenerated successfully.

17) The transmitted three ciphered vectors are decrypted at
receiver side via repeating the bitwise XOR operations
of step (10) but with the encrypted vectors.

18) Finally, the plain image can be recovered by reshaping
the deciphered vectors into original matrix associated
with the plain image.

V. NUMERICAL RESULTS AND SECURITY PERFORMANCE
In this part, the proposed chaotic pseudo-orbit-based encryp-
tion algorithm is applied to some samples of colored images.
The robustness of the presented scheme against main pos-
sible types of attacks, such as statistical attacks, differential
attacks, and brute-force attacks, is examined.

Numerical simulations are carried out for r = 20, @ =
0.95, u = 0.1100587139, and the other perturbation values
are selected randomly from the interval (0,1). Using Intel
Core i7-8550U CPU @ 1.8GHz and 16 GB RAM, the execu-
tion times of the proposed encryption algorithm for 256 x 256
and 512 x 512 colored images are 292 ms and 1.2 s, respec-
tively. Figure 7 (a) shows the original plain baboon image,
encrypted baboon image and decrypted baboon image. The
image histograms for separate red, green and blue compo-
nents within the pixels of each image are depicted in Fig.7 (b).
Similarly, Fig.8 and Fig.9 depict the results of encryption
scheme when it is applied to pepper and Egyptian pyramids
images. From these figures, it is seen that distribution of
pixels intensities in cipher images is flat and makes uniform
distribution which makes the cipher images invulnerable to
statistical attacks.

The variance of histogram is employed to quantify the
uniformity of ciphered images. In particular, the lower value
of variances indicates the higher uniformity of ciphered
images [77]. The variance of histogram is defined for red,
green and blue, respectively colors by [77]:

256 256

R= 5% 2562 DIPBUAEAR

i=1 j=1
256 256

76 = 0% 2562 >3 (HE ~HEY

i=1 j=I
256 256

~ 2 x 2562 > Y P - Py

i=1 j=1
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FIGURE 7. The original, encrypted and decrypted baboon images are
presented in (a) while their associated image histograms for each color
component are shown in (b) such that the top, middle and bottom rows
are corresponding to red, green and blue components, respectively.

TABLE 1. The variance of histogram values.

Image OR Og ap
Plain Baboon 293 x10* | 1.051x 105 | 2.681 x 10°
Cipher Baboon 287.945 289.55 287.289
Plain Pepper 4766 x 10* | 3.994 x 10* | 2.332 x 10°
. 215.469 309.566 234.266
Cipher Pepper
Plain Pyramids 3.06 X 10* | 1.599 x 105 | 2.602 x 10°
. . 296.882 202.273 265.251
Cipher Pyramids

where Hl.S denotes number of pixels having i values for color
component S such that § = G, B, R. Table 1 shows the
variance of histogram values for each image and each color
component.

A. SECRET KEYS ANALYSIS

The proposed novel encryption scheme has two initial con-
ditions, two interior chaotic system parameters, i.e. » and
o, three plain image dependent perturbation values and
sixty five perturbation values for generated time series (for
the case of 256 x 256 size images). Assuming that the
double-precision binary floating-point IEEE 754 format is
employed. Hence, the key space size of our scheme is equal
to 23816 excluding the parameters related to elliptic curve
key exchange step. It is known that the minimum key space
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FIGURE 8. Similar to Fig.7 but for pepper image.

necessary to resist brute-force attacks is 2100 (781, [79]. Thus,
the proposed encryption scheme has a sufficiently very large
key space to render any brute force attack useless.

B. CORRELATION ANALYSIS

The tiny values for correlation coefficients in cipher images,
between neighboring pixels in all directions i.e. in horizontal,
vertical and diagonal directions, are necessary for a good
encryption system so as to resist statistical attacks. Given two
vectors x and y of specific color component in adjacent pixels,
then the correlation coefficient py, corresponding to them is
computed from the following as follows:

_ Cov(x.y)
Pxy = Dy D, )

1 N 1 N )
Be=o ) % De=3) 0 (i EX)Y

1 N
Cov (x,y) = = 3 (i —E (@) 0s = E 0),

i=1

where x; and y; are the color values of selected two neighbor-
ing pixels in the image. More specifically, a random sample
of 1000 pairs of adjacent pixels is considered for each of red,
green and blue color components in both of plain and cipher
images.

Figure 10 depicts the correlations of adjacent pixels in
original and encrypted images. Moreover, Table 2 shows the
values of correlation coefficients of plain and cipher images
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FIGURE 9. Similar to Fig.8 but for Egyptian pyramids image.

where it indicates the suppression made in values of coeffi-
cients of correlation in cipher images.

C. KEY SENSITIVITY ANALYSIS

The high sensitive to teeny alternations in the secret keys
is another major requirement for an efficient encryption
scheme. By adding a perturbation value of 10~'* to one
of secret keys of our cryptosystem and then employing the
generated chaotic pseudo orbit to decrypt the cipher image,
the sensitivity to mismatch in parameters can be examined.
For example, the value of r is increased by 10™'% and the
decrypted baboon, pepper and pyramids images are illus-
trated in Fig.11. It is obvious that the slight difference in
r cannot successfully decrypt the cipher images and also
similar conclusions are acquired regarding other secret keys
in the system.

It is crucial to quantify the sensitivity to mismatch in
parameters [80]. Table 3 illustrates the original value of
one of the secret keys which is used in encryption process,
the percentage of relative error or mismatch in secret key’s
value used for decryption, and the percentage of difference
between the resulting two deciphered images for each color
component value.
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D. INFORMATION ENTROPY ANALYSIS

The information entropy is considered as a measure for
amount of randomness and uncertainty in cipher image.
In particular, the higher value of information entropy of an
encrypted image the high randomness it has. The entropy in
bits for an input source of information is defined as [81]

N

Homy == 3" pmlogop(m)

where m is the input variable and p(,,;) denotes the probability
of symbol m;. The optimum value of information entropy in
a given cipher image is to be very near to eight. The values
of information entropy of the cipher-images which result
from our encryption scheme are illustrated in Table 4 where
it is obvious that these values are very close to 8 which
emphasizes the reliability of the suggested scheme.

E. DIFFERENTIAL ATTACK ANALYSIS

Effective image cryptosystem must be also very sensitive to
very small and negligible variations in plain image as well as
secret keys of the scheme. This means that any tiny perturba-
tions applied to the input plain image produce a significant
change in the output cipher image and thus the encryption
technique is more robust to possible differential attacks.
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FIGURE 10. Correlation between adjacent pixels in horizontal (first row),
vertical (second row) and diagonal (third row) directions for (a) baboon
image, (b) pepper image and (c) pyramids image. The left column is
associated to plain images while the right column is associated to cipher

images.

Two well-known quantities are utilized to quantify the sen-
sitivity to changes in the original image. The first one is the
number of pixels change rate (NPCR) which can be defined
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TABLE 2. Correlation coefficients of plain and ciphered images for each

color component.

Image Correlation Coefficients (Red color)
H \Y D
Baboon 0.9608, 0.9479 0.9243
0.0018 0.0047 0.00167
Pepper 0.9917 0.9875 0.9788
0.0038 0.0012 0.00156
Pyramids 0.9803 0.9596 0.9503
0.0049 0.00296 0.0065
Image Correlation Coefficients (Green color)
H \Y D
Baboon 0.9372 0.9162 0.8795
0.00452 0.0087 0.00424
Pepper 0.9871 0.9821 0.9663
0.0057 0.0079 0.00522
Pyramids 0.9802 0.9601 0.9501
0.00419 0.0060 0.00632
Image Correlation Coefficients (Blue color)
H \4 D
Baboon 0.9640 0.9543 0.9326
0.00770 0.00207 0.00114
Pepper 0.9799 0.9711 0.9459
0.00536 0.00213 0.00697
Pyramids 0.9907 0.9815 0.9768
0.0034 0.00371 0.0010

TABLE 3. Quantification of sensitivity to mismatch in parameters.

Image

Secret key | Mismatch (%)

Difference (%)

Baboon

r=20 0.00001

G:99.63
R:99.62
B:99.66

Baboon

0.5 0.00001

G:99.64
R:99.63
B:99.66

Baboon

0.5 0.00001

Yo =

G:99.64
R:99.61
B:99.67

Pepper

20 0.00001

G:99.65
R:99.63
B: 99.66

Pepper

xo = 0.5 0.00001

G:99.61
R:99.68
B: 99.65

Pepper

=0.5 0.00001

Yo

G:99.61
R:99.67
B:99.60

Pyramids

20 0.00001

G:99.59
R:99.57
B:99.52

Pyramids

xo = 0.5 0.00001

G: 99.66
R:99.65
B: 99.68

Pyramids

¥o =05 0.00001

G: 99.63
R:99.68
B:99.66

as the percentage of different pixels between two cipher
images when their original images differ in one pixel only.
The unified average changing intensity (UACI) is the second
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TABLE 4. Information entropy in encrypted images.

Image Information entropy (Red-Green-Blue)
Baboon 7.9968 7.9976 7.9967
Pepper 7.9968 7.9966 7.9978
Pyramids 7.9972 7.9973 7.9975

TABLE 5. NPCR and UACI for baboon, pepper and pyramids cipher
images.

Image NPCR UACI
(%) (%)

99.6368 | 33.5321

Baboon 99.6170 | 33.5252
99.6241 | 33.5275

99.6536 | 33.4601

Pepper 99.6170 | 33.4826
99.6307 | 33.5002

99.6367 | 33.4574

Pyramids 99.6298 | 33.4571
99.6322 | 33.4576

quantity which evaluates the average differences intensity
between two cipher images for only one pixel change in their
corresponding original images.

Suppose that C; and C, are two cipher images associ-
ated with two plain images which have only one pixel dif-
ference. Let C1(i,j) and C,(i,j) denote the values of one
of color components in pixel at position (i,j) of the two
images C; and C3, respectively. Thus, the NPCR is defined
by [82]

Y X, DG, j)
M x N

where D(i, j) is an array of the same size as the cipher image
but with the next components

L if G j) # Co(i))
0 if C1(@,)) = Ca(0, ).

NPCR = x 100%,

DG, j) =

The second test, i.e. UACI, is defined as

1 XL Y ICHG)) — GG
M x N 2n — 1
Table 5 gives the values of NPCR and UACI when one pixel
value difference between two plain images, in one color com-
ponent, is applied. The three consecutive values correspond
to red, green and blue color components.

UACI = x 100%.

F. RESISTANCE AGAINST OTHER ATTACKS

According to Kerckhoff’s principle [83], we assume that any
potential eavesdropper knows the design and detailed steps
of encryption process in the present encryption scheme, not
including the values of secret keys. Hence, the cryptanalyst
can apply one of the basic four attacks, namely, ciphertext
only, known plaintext, chosen plaintext and chosen ciphertext
attacks. In particular, in chosen plaintext attack, the attacker

57744

can secretly get a temporary access to the encryption machine
whereas in chosen ciphertext attack, he is able to get tem-
porary access to decryption machine. It is known that if
the proposed encryption system is immune to the powerful
chosen plaintext/ciphertext attacks, then it can resist the other
two types [24], [84].

The proposed hybrid scheme process involves calcula-
tions of plain image-dependent parameters, time dependent
parameters, acquirement of pseudo chaotic perturbing values,
elliptic curve key exchange, shuffling of pixels position and
bit-XORing of pixels values. The secret keys of the system
control and determine the output of each stage of encryption
so that the encryption process is highly sensitive to these
values. The first crucial point here is that some statistical
features are extracted from plain image in order to update
the secret keys of the algorithm. This implies that different
cipher images are produced for different plain images even
if tiny differences occur among plain images. The values of
UACI and NPCR confirm this fact. Furthermore, supplying
the same image to the encryption machine at different times
will generate different cipher images since the secret keys
depend on the time moment when the plain image is supplied
to transmitter. In other words, the values of secret keys are
not fixed but they are time varying and also plain image-
dependent. Moreover, the permutation and diffusion stages
are not depending explicitly on the output of one chaos gener-
ator system but rely on the lower bound error between outputs
of two interval extensions. As a result, the proposed hybrid
technique can resist known-plaintext and chosen-plaintext
attacks [24], [84].

Regarding to the above discussion, it is crucial to note
that if the attacker gets the values of some plain-pixels and
their corresponding cipher-pixels, i.e. via applying known-
plaintext attack, he cannot attain any further information
regarding the values of secret keys. Indeed, both of the time
varying secret keys and pseudo chaotic sequences confirm
this result even if all values of pixels in the plain image
are set to zeros, or any pre-specified values, which may
cause a degenerate security performance in other encryp-
tion systems, see [85]-[87]. Similarly, if the attacker utilizes
chosen-ciphertext attack to provide some special forms of
cipher images, such as zero cipher images, to decryption
machine, it obvious that he will not able to achieve his goal
due to aforementioned reasons too.

Finally, the opponent may try to reveal the values of secret
keys via employing one of Baby Step, Giant Step attack or
Pollard’s Rho attack, rather than conventional naive attack,
to overcome elliptic curve key exchange procedure [88]-[90].
Nevertheless, it is practically impossible for the attacker to
fulfill his aim. The reason is that although the aforementioned
attacks reduce the computational cost of integer factorization
or discrete logarithmic problem, it still requires approxi-
mately /Cgc operations for attacking scheme to solve this
problem, where Cgc is the size of cyclic group of EC over
a finite field. For the proposed hybrid encryption scheme,
JC Ec = 7.9228 x 10?8, In other words, it takes more than
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(a)

(b)

FIGURE 11. Decrypted baboon, pepper and pyramids images for mismatch in parameter r in (a), (b) and (c), respectively.

10'* years to accomplish this task using Intel Core i7-8550U
CPU @ 1.8GHz and 16 GB RAM.

Finally, the proposed chaos-based public key image
encryption has featured several advantages over other con-
ventional symmetric-key image cipher, whose key has been
exchanged through another public-key cryptosystem such as
RSA. Firstly, compared to RSA, DH, and El-Gamal, the ellip-
tic curve scheme considerably reduces adequate length of
secret keys required for top secret documents [76] as shown
in the Table 6. This implies that elliptic curve-based scheme
has low computations’ complexity, high performance and low
capacity requirements. Secondly, the proposed scheme can
be further improved in future work to involve supersingular
isogeny elliptic curve key exchange and therefore establish
a powerful a post-quantum cryptographic algorithm that can
resist quantum algorithms running on quantum computers.

VOLUME 8, 2020

TABLE 6. Recommendations for Secret key lengths.

Key Performance RSA DH/ Elgamal | EC
(bits) (bits) (bits)

Provides absolutely | 1776 1776 192

minimum security

Guarantees minimum | 2432 2432 224

security

Adequate except top secret | 3248 3248 256

plain-data

Adequate for top secret | 15424 15424 512

plain-data

Thirdly, the proposed scheme also utilizes the enhanced
statistical features of noise-like pseudo chaotic orbits by
adopting finite precision errors and it efficiently employs time
varying and plain image dependent secret keys.
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TABLE 7. Comparisons with some recent state-of-the-art chaos-based
image encryption schemes.

Paper MLE | Entropy | UACI | NPCR | MCC IS(;Zce ECKE
Present U

work (2 w'.’ s9 | 7997 99.79 | 3347 0.0087 | 2%1¢ Yes
rounds) i

Ref.

[91] @ | 2 7.903 99.81 | 3348 0.0191 | N.A. No
rounds)

g;ﬁ' 2 7.997 99.61 | 33.42 0.0131 | N.A. No
Ref. N.A. | 7991 99.61 3345 0.0082 | 2'¥ No
193]

EZ? 6.756 | 7.998 99.61 | 33.40 0.0143 | N.A. No

VI. DISCUSSION AND CONCLUSION

A reliable framework to design a superior hybrid encryption
system with enhanced characteristics is proposed. The first
advantage of the encryption system is its dependence on a
novel 2D fractional discrete chaotic map with large value of
positive Lyapunov exponents which extend over wide range
of parameters. Compared with conventional 2D maps that
were employed in similar schemes, the proposed map has
distinguished preferable characteristics including the coex-
istence of multiple chaotic attractors and positive values of
Lyapunov exponent greater than 30. The presented scheme
has also the advantages of indirectly implementing chaotic
time series in encryption process. In particular, the pseudo
orbits which are obtained from any two interval extension
of the proposed chaotic map are utilized in order to increase
complexity of encryption process with relatively low compu-
tational cost.

Furthermore, the proposed encryption technique adopts
robust elliptic curve key exchange with recommended argu-
ments of NIST to achieve efficient secure transmission of
secret keys between sender and receiver sides. Also, the gen-
erations of noise-like encrypting signal is made highly depen-
dent on moment of transmission and on any perturbations
occur in information message. To best of authors’ knowl-
edge, this is the first attempt to design encryption scheme
that incorporates chaotic pseudo orbits and elliptic curve key
exchange. Numerical simulations are accomplished on dif-
ferent colored images and confirm the efficiency of suggested
hybrid scheme against possible statistical, brute-force, chosen
plaintext/ciphertext attacks and differential attacks.

Finally, comparisons with key results of some recent
state-of-the-art chaos-based image encryption schemes are
summarized in in the Table 7. Here, MCC denotes maximum
correlation coefficients found in cipher pepper and baboon
images while the mean values of other security measure-
ments for three color components are given in the table. It is
obvious that the proposed encryption scheme has comparable
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performance results but with distinguished large value of
MLE and more extended key space.

The future work can involve adopting high dimensional
chaotic maps in single or in network configurations. Also,
the very fast and ultra wide-band chaotic laser systems can be
employed in similar yet more efficient hybrid schemes com-
bining supersingular isogeny elliptic curve key exchange and
thus establishing a powerful a post-quantum cryptographic
algorithm that can resist quantum algorithms running on
quantum computers.
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