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ABSTRACT Achieving accurate navigation and localization is crucial for Autonomous Underwater Vehicle
(AUYV). Traditional navigation algorithms, such as Extended Kalman Filter (EKF) and Unscented Kalman
Filter (UKF), require the system model and measurement model for state estimation to obtain the AUV
position. However, this may introduce modeling errors and state estimation errors which will affect the final
precision of AUV navigation system to a certain extent. To avoid these problems, in this paper, we proposed
a deep framework — NavNet — by taking AUV navigation as a deep sequential learning problem. Firstly,
the proposed NavNet can take raw sensor data at different frequencies as input, which benefits from the
sequential learning capability of Recurrent Neural Network (RNN). Secondly, NavNet takes advantage of
a simplified attention mechanism and Fully Connected (FC) layers to output AUV displacements per unit
time, which accomplishes low-frequency AUV navigation by accumulation of it. More importantly, there is
no need for the model building and state estimation with NavNet, which avoids the import of relevant errors.
We compare the performance of NavNet to EKF and UKF using collected data by running Sailfish in the sea.
Experimental results show that NavNet has an excellent performance in terms of both the navigation accuracy
and fault tolerance. In addition, a reliable fusion strategy of NavNet and conventional method is applied to
achieve high-frequency AUV navigation. The experimental results show that the proposed architecture can
be a reliable supplement to limit the error growth of conventional algorithms.

INDEX TERMS Autonomous underwater vehicle, navigation, extended Kalman filter, unscented Kalman

filter, sequential learning.

I. INTRODUCTION

In recent years, Autonomous Underwater Vehicles (AUVs)
play a crucial role in a tremendous variety of missions, such
as oceanographic surveys, marine data acquisition, subma-
rine rescue, and underwater equipment maintenance [1], [2].
In order to accomplish these missions safely and gather the
valid oceanic data, accurate navigation and localization is
especially vital for AUVs. However, different from the sit-
uations of the outdoor robots [3] and aerial robots [4], under-
water navigation and localization are very challenging tasks
due to the limitation of the information transmission method
and transmission distance. For example, Global Positioning
System (GPS) is not available when the vehicle operates
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underwater. At the same time, the complicated underwater
environment also makes it difficult to perform navigation.
Even with so many difficulties and challenges, AUV
navigation and localization techniques have made consid-
erable progress over the past few decades. The primary
AUV navigation and localization approaches are divided into
three categories: acoustic navigation, geophysical navigation
and inertial navigation [5], [6]. By measuring the Time of
Flight (TOF) of signals from acoustic beacons or modems,
acoustic navigation techniques have been applied to perform
AUV navigation. However, acoustic beacons need to be
installed in advance, which limits the operating area to a
specific scope [7]. Moreover, the cost of the installation and
maintenance for acoustic beacons can be hardly affordable for
developing small-scale shallow sea AUVs. Recent develop-
ment of acoustic modems has made the stationary beacons
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unnecessary and reduced the cost to a certain degree [8].
Meanwhile, the mission range is extended because of the
mobility of the beacons during the missions. Nevertheless,
the acoustic modem technology also suffers from the disad-
vantages of acoustic propagation: the small bandwidth, high
latency and unreliability. Moreover, additional assistance
from manned surface support or autonomous surface crafts
is needed, which incurs extra operational expenditure.

Geophysical navigation techniques [9] depend on sonar
sensors or optical sensors to detect and identify the envi-
ronmental information. However, the lack of existing sub-
marine feature maps and the challenging underwater feature
recognition tasks emerge as obstacles for the utilization of
these methodologies. Therefore, inertial navigation [10] has
become the most popular mean of shallow sea AUV naviga-
tion and localization. Inertial navigation integrates the rota-
tion rate measurements from gyroscopes to obtain the vehicle
attitude. Simultaneously, the observations from accelerom-
eters are integrated twice to acquire the vehicle position
relative to a known initial location. However, since the posi-
tions are acquired by continuous integration of measurements
from accelerometers with respect to time, Inertial Navigation
Systems (INS) are susceptible to error accumulation, leading
to a position drift. In order to maintain a long-term high navi-
gation accuracy, Doppler Velocity Log (DVL) is equipped on
AUV to collect the bottom-track speed. By combining INS
and DVL measurements, a degree of improvement for the
issue of drift will be generated. Nonetheless, high-precision
INS is too expensive as well as oversized for small-scale
AUVs.

With the rapid development of the low-cost Micro
Electro-Mechanical Systems (MEMS) inertial sensors,
Attitude and Heading Reference Systems (AHRS) made
up of several MEMS inertial sensors have become popular
choices for a part of small-scale shallow sea AUVs, which
can be integrated with DVL to perform AUV navigation
[11]-[13]. During a specific mission, the data collected by
different sensors need to be processed together to acquire
an optimal estimate of the AUV position. By constructing
the system model and measurement model, a wide variety
of state estimation techniques are employed to derive the
estimate of the AUV position. At present, one of the most
commonly used state estimation techniques for AUV naviga-
tion is Kalman Filter (KF) [14]. KF is is an optimal Bayesian
estimator assuming that the system is Markovian, linear
and its uncertainties are subject to Gaussian distribution.
In fact, the built system model of AUV navigation is always
nonlinear, which dissatisfies the hypothesis requirements of
KF. In order to overcome these limitations, Extended Kalman
Filter (EKF) [15], [16] and Unscented Kalman Filter (UKF)
[17], [18] are applied as the expansion form to approximate
the nonlinear processes. The former linearizes the nonlinear
model by first-order Taylor series and the latter utilizes
statistical linearization to approximate the nonlinear function.
In addition, by incorporating the non-Gaussian distributions
and nonlinear models, Particle Filter (PF) was also proposed
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in [19], [20], and it has good performance in AUV navigation.
The state estimation techniques mentioned above represent
valid and fundamental means to achieve an accurate estimate
of the vehicle position, which are widely used in the field of
AUV navigation.

Simultaneous Localization and Mapping (SLAM) tech-
nique which expands from the land robotics to the AUVs
enables them to build a map of the surroundings while con-
currently localizing itself in this environment. The wildly
used filter-based SLAM techniques rely on the previously
discussed state estimation algorithms, which yield many
new navigation ways for the underwater domain. As a
well-known approach for SLAM in underwater environ-
ments, EKF-SLAM [16], [21] has been validated to be effica-
cious under the actual underwater environment. However, it is
not suitable for large maps because of the high computational
complexity. To reduce the computational complexity, Fast-
SLAM that is based on PF was proposed. FastSLAM shows
both the poses of the vehicle and features of the map with
particles and is suitable for the real-time application of SLAM
in large-scale environments [22], [23]. It should be stressed
that the state estimation techniques mentioned above have
contributed greatly to the development of AUV navigation.
However, all of these state estimation techniques will intro-
duce nonlinear errors, linear truncation errors, or approxi-
mation errors to a certain extent. Meanwhile, in the under-
water environment, the established navigation models cannot
exactly describe the complicated motion of AUV, which will
import modeling errors to some degree.

In the last few years, Deep Learning (DL) has received
significant attention in many fields. For instance, Convo-
lutional Neural Network (CNN) makes a huge impact on
image classification [24] and object detection [25]. Recurrent
Neural Network (RNN) is a deep neural network designed to
handle sequential learning, which is widely used in speech
recognition [26] and machine translation [27]. Inspired by
research on DL, many solutions based on DL has been
proposed to perform the autonomous navigation. For exam-
ple, Mohanty et al. [28] studied the problem of monoc-
ular Visual Odometry (VO) based on a CNN framework,
instead of the usual methods through feature detection
and tracking. Their work was tested in both known and
unknown environments. The experimental results showed
that the proposed framework worked well in the known
environment, however, the effect is not very good in the
unknown environment. Wang et al. [29] presented a novel
end-to-end framework for monocular VO by utilizing deep
Recurrent Convolutional Neural Network (RCNN). The deep
RCNN model was trained in an end-to-end manner, which
deduced poses directly from a sequence of raw RGB images
without adopting any conventional VO procedures. Their
framework was tested and verified on the public dataset,
KITTI VO dataset [30]. Then they proposed an End-to-
end, Sequence-to-sequence Probabilistic Visual Odometry
(ESP-VO) framework for the monocular VO based on
deep RCNNSs [31]. The uncertainty is derived through the
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architecture without any extra computation. In addition,
Li et al. [32] came up with a UnDeepVO framework to
estimate the poses of a monocular camera and the depth of
its view by applying unsupervised deep neural networks.
Clark et al. [33] put forward a VINet to motion estimation
using visual and inertial sensors for Visual Inertial Odom-
etry (VIO) which integrated the data at an intermediate
feature-representation level. In their work, both the Inertial
Measurement Unit (IMU) data and monocular RGB images
are taken as input for the proposed CNN-RNN model to
estimate the poses. Turan et al. [34] proposed an VO approach
based on RCNN for endoscopic capsule robots. They evalu-
ated their method on a pig stomach dataset and their exper-
imental results show that the framework can realize high
translational and rotational accuracies for different types of
endoscopic capsule robot trajectories. However, research on
navigation with DL mainly focus on the visual navigation
or visual-inertial navigation field for outdoor robots and
aerial robots, and only very few of them were applied in the
maritime engineering field [35], [36].

Inspired by the successful research on DL in the field of
vision navigation, in this paper, we propose to use sequential
learning to perform AUV navigation. Specifically, different
from the regular methods that work on dealing with state
estimation errors, in this paper, we propose NavNet, a deep
framework based on deep neural networks for AUV navi-
gation. Since the raw sensor values are taken as input for
the deep framework to get the AUV position without using
a specific system model, the inevitable errors introduced by
the modeling process can be prevented which results in an
improvement on the the accuracy of AUV navigation. There
are three main contributions in the paper: 1) A deep frame-
work named NavNet is proposed to achieve AUV navigation
without building the regular system models; 2) We verified
the proposed framework on AUV with real experimental data
and show an improvement in the accuracy of AUV naviga-
tion and better fault tolerance compared to the traditional
methods; 3) An integration strategy of both the conventional
method and the deep framework to fulfill high-frequency
navigation is introduced. Specifically, in the strategy, outputs
of the proposed framework are combined with the estimated
position of the traditional algorithms to acquire approximated
AUV position, which can be regarded as virtual position
measurements for AUV. Experimental results show that the
proposed sequential learning method can be a reliable sup-
plement to the classic algorithms.

The rest of this paper is organized as follows. Section II
highlights the basic structure of our independently developed
AUV platform — Sailfish 210 AUV. Section III provides
a detailed description of the traditional methods for AUV
navigation. Both the architecture of NavNet and the fusion
strategy are elucidated in Section IV. Section V presents the
analysis and discussion on the experimental results. Finally,
the conclusion is drawn in Section VI.
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Il. AUV PLATFORM

In this section, we describe the experimental AUV platform.
Fig. 1 shows our independently developed AUV platform —
Sailfish 210. Sailfish 210 is a small-scale AUV, which is
mainly deployed in shallow sea region. The diameter and
length of Sailfish 210 are respectively 0.21 m and 2.3 m.
It can operate continuously for ten hours and its tonnage
is 72 kg. In addition, the maximum cruising speed is 5 knot.
The Sailfish 210 is equipped with many sensors to perform a
variety of tasks, such as autonomous navigation, motion con-
trol, and path planning. A single board computer is equipped
on Sailfish 210 and the Central Processing Unit (CPU) is
two cores with 777 Mhz main frequency. In addition, two
groups of rudders and one propeller are fitted at the rear of
Sailfish 210.

FIGURE 1. Sailfish 210 AUV.

The basic structure of Sailfish 210 is depicted in Fig. 2.
It can be seen clearly that the equipped sensors related to the
navigation system include AHRS, DVL, GPS, and Intelligent
Pressure Sensor (IPS). In the following part, we will introduce
these sensors in detail respectively.

GPS Antenna

Pressure Sensor DVL AHRS GPS

FIGURE 2. Basic structure of Sailfish 210 AUV.

A u-blox GPS is equipped on Sailfish 210 to get the ground
truth during surfacing. The concrete specifications of the
selected GPS are shown in Table 1. It provides the position
information in the form of latitude and longitude. However,
since the GPS signals are easy to encounter rapid attenuation
through the water, GPS is not available in the underwater
environments.

Sailfish 210 is equipped with an AHRS unit which is
an attitude sensor to perceive the attitude of the vehicle.
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TABLE 1. The concrete specifications of GPS equipped on AUV.

Sensor Type u-blox LEA-M8T

Horizontal Position Accuracy Autonomous 2.5 m

SBAS 2.0m
Velocity Accuracy 0.05 m/s
Heading Accuracy 0.3 degrees
Max Navigation Update Rate 5Hz

TABLE 2. The concrete specifications of AHRS equipped on AUV.

Sensor Type SBG Systems Ellipse-A

Bias In-run Instability Accelerometers 20 pig

Gyroscopes 8 deg/h
Roll, Pitch 0.2° RMS
Heading 1° RMS
Rate Up to 200 Hz

The concrete specifications are shown in Table 2. A typ-
ical AHRS unit contains a triaxial gyroscope, a triaxial
accelerometer and a triaxial magnetometer. Therefore, it can
measure the angles, the triaxial accelerations, and the tri-
axial angular velocities of the vehicle. The orientation of
the vehicle can be obtained by integrating the angular rates
measured by gyroscope. Obviously, the integrals will lead to
drifts during the processes of angles estimation. In addition,
both the direct measurements of the gyroscope and the mag-
netometer will have a influence on the accuracy of long-term
heading. Furthermore, the gravity vector measured by the
accelerometer can affect the stability of long-term pitch and
roll.

A downward DVL is installed on Sailfish 210, which can
acquire the velocity of the vehicle by emitting acoustic pulses
and receiving the reflected pulses. When the vehicle is close
enough to the seafloor, DVL measures the Doppler shift from
the reflected pulses and then determines the speed vector of
the vehicle with respect to the seabed. In general, a DVL typ-
ically has four or more transceiver units. However, in Sailfish
210, a DVL with a phased array transducer is set up to obtain
the forward, starboard and downward velocities relative to the
body frame. Compared to the four beams sensors, the phased
array DVL eliminates the effect of the sound velocity dis-
tinction of the seawater between different areas on frequency
measurement. Otherwise, it will introduce errors in velocity
measurement. The specifications of the selected phased array
DVL are shown in Table 3.

TABLE 3. The concrete specifications of DVL equipped on AUV.

Sensor Type TRDI DVL 600 kHz
Maximum Altitude 89 m

Minimum Altitude 2m

Velocity Range +16 m/s

Base Bottom Track Long Term Accuracy ~ £1.15% 0.2 cm/s
Ping Rate 12 Hz max
Resolution 0.1 cm/s
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Sailfish 210 is also armed with an IPS and the Valeport
minilPS is actually used. In practice, the IPS is able to obtain
an accurate determination of absolute depth based on the
properties of seawater. As a consequence, AUV navigation
and localization can be converted into a two-dimensional
(2D) situation, and the 2D position of the vehicle can be
obtained by integrating the data from AHRS and DVL. The
specifications of the chosen Valeport miniIPS are illustrated
in Table 4.

TABLE 4. The concrete specifications of IPS equipped on AUV.

Sensor Type Valeport miniIPS

Range 5, 10, 30, 50, 100, 300 or 600 Bar
Resolution 0.001% range

Accuracy 40.01% range

Response Time 1 milliseconds

IIl. REVIEW OF CONVENTIONAL METHOD FOR AUV
NAVIGATION

In this section, we will review conventional method for AUV
navigation. As shown in Fig. 3, after getting the raw sen-
sor data, the system state can be estimated using the state
estimation techniques. Meanwhile, the system model and
measurement model are usually indispensable prerequisites
for the state estimation process, which has been proven to be
a valid and fundamental mean to achieve an accurate estimate
of the AUV position. In the rest of this section, each part of
the process will be introduced respectively.

A. MODEL BUILDING

Fig. 4 illustrates the motion of Sailfish in a simplified form.
Here, the navigation coordinate system is the standard north-
east-down coordinate system and NOE denotes the top view
in a 2D case. Moreover, the body-fixed frame is defined as
forward-starboard-down coordinate system and its top view
is shown as nG§&.

The state vector which reflects the status of the navigation
system is composed of position, attitude, and velocity of the
vehicle. Here, the specific state vector at time k is Xz =
[x,y, 0, vx, vy, ax, ay, WZ]T, where x and y denote the AUV
position in the north-east coordinate system, ¢ is the yaw of
AUV, vy and vy, are the forward and starboard bottom-track
velocity in the local coordinate system, a, and a, are the
corresponding accelerations of the velocity v, and vy respec-
tively, w, stands for the angular velocity of yaw.

Based on the kinematic equations, the system model which
is used to predict the evolvement from time k — 1 to time k
can be defined as (1) and (2), shown at the bottom of the next

page:
Xi =fXk—1, mg—1). (D

Here, m = [my,my, my, my,, My, Mgy, Ma,., mwz]T signi-
fies the white Gaussian noises with zero mean. Meanwhile,
the covariance of m is the system noise matrix Q which is
shown as (3), at the bottom of the next page [37].
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FIGURE 3. Pipeline of conventional method for AUV navigation.
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FIGURE 4. Coordinate systems in a 2D situation.

As previously discussed, several navigation sensors are
equipped on the Sailfish which enable it directly to get some
observations relevant to the state vector. Therefore, the mea-
surement model is chosen as a linear form, which is described
as:

Zy = HiXppk—1 + ng, @

where Z represents the observation vector. For Sailfish,
at time k it can be described as Z; = [@, vy, vy, ax, ay, wZ]T.

Moreover, n denotes the white Gaussian noises with zero
mean, which is illustrated as n=[ny, ny,, ny,, na,, na,, nWZ]T
As mentioned, the corresponding observation matrix H can
be written as:

H =1[06x2 Isxs]. (5)

Meanwhile, the covariance of n is the measurement noise
matrix R, which is expressed as:

[on O 0 0 0 0 ]
0O o 0O 0 0 O
0 0 o) 0 0 0
B=10o o 0o o2 0o o ©
0 0 0 0 o 0
o o0 0 0 0 o

In reality, because the AUV motion in the underwater envi-
ronment is complex, the built models can only approximate
this process. However, with the constructed system model and
measurement model, various state estimation techniques can
be used to achieve a comparatively accurate estimate of the
AUV position.

C o ] X 4 (vet + laxtz) cos(p) — (vyt + %ayﬂ)sin(go)—i—mx
; v+ (vt + Eaxtz)sin(w) + (vyt + %aytz) cos(p)-+my
Ve @+ wit+my
wl| = Ve + atm, @
ay vy + ayt—i—mvy
ay ax+mq,
L Wz 1y ay+may
L wz+myy, de_t
(o2 0 0 0 0 0 0 0 7]
0 o 0 0 0 0 0 0
0 0 o, O 0 0 0 0
0 0 0 o5 0 0 0 0
=10 0o o 0 o 0 0 0 3
0 0 0 0 0 o 0 0
0o 0 0 0 0 0 o 0
L0 0 0 0 0 0 0 op,
VOLUME 8, 2020 59849



IEEE Access

X. Zhang et al.: Navnet: AUV Navigation Through Deep Sequential Learning

B. CONVENTIONAL STATE ESTIMATION TECHNIQUES
EKEF is the most widely used and valid state estimation tech-
nique in AUV navigation. It is a nonlinear extension of KF
and is more suitable for the real situations. The flow diagram
of EKF is shown in Fig. 5 [38].

Initial estimates
Measurement Update (Correct)

Time Update (Predict)

(1)Compute the Kalman Gain
K, =P, H'[HP, H +R]"

Klk-1 K k-1

(1)Calculate the state one-step prediction

)"(k\kfl = f()}'kq Smy;)

(2)Calculate the error covariance
one-step prediction

2)Update the prediction with measurements
X, = Xk\k—l +K; [Z/: - H/:Xk\k—] ]

P (3)Update the error covariance

k-1 = cD/(\AflRHCDZ\k—l +0i
B =l -K.H]F,

N

FIGURE 5. The flow diagram of EKF.

k-1

By using the first order of Taylor expansion of the non-
linear system model, EKF transfers the nonlinear problem
into a linear form. The specific procedure can be divided
into two parts: the predicted process and the update process.
In the first place, according to the established system model,
the one-step state prediction can be obtained. Upon receiving
the observations, the update process will renovate the state
estimate based on the distinction between the prediction and
observation. Then the final state estimate can be acquired.

EKF is widely used in the actual AUV missions due to its
feasibility and practicality. Nevertheless, since EKF ignores
the high order terms of Taylor series, it will perform poorly
and get low accuracy in a highly nonlinear situation.

As an improvement of EKF, UKF performs in a similar
predict-update cycle. The difference between the EKF and
UKEF is that the UKF utilizes the Unscented Transform (UT)
to get the statistical linearization rather than making use of
linear truncation. Symmetrical sampling is used for UT to
choose a set of sigma points. Then taking advantage of these
selected points, a nonlinear function approximation which
contains the higher order terms of the Taylor series can
be obtained. Since the UKF retains the higher order terms
which is ignored by the EKEF, it can achieve a more accurate
estimation of the state. However, some limitations such as
approximate errors still exist with UKF. The specific flow
chart of UKF is shown in Fig. 6 [39].

IV. AUV DEEP NAVIGATION FRAMEWORK

In order to avoid the possible errors imported by the modeling
and estimating processes mentioned above, in this section,
a deep sequential learning framework based on the deep neu-
ral networks — NavNet, is proposed for AUV navigation. The
specific details of the proposed framework will be described
later.

A. ARCHITECTURE OF THE PROPOSED DEEP
FRAMEWORK

At present, numerous frameworks based on deep neu-
ral networks have achieved great success in many fields.
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l Initial estimates /\

Time Update (Predict) Measurement Update (Correct)
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FIGURE 6. The flow diagram of UKF.

(4)Update the state and covariance
X=Xy + K(Z, = Zy )
B, :Pk\k—\ ’KAPz“ ‘KI:

For instance, both the AlexNet [40] and ResNet [41] play
essential roles in the field of computer vision. Different
from those computer vision problems which mainly focus on
image processing, the AUV navigation and localization tasks
aim to get the AUV position through processing the raw sen-
sor data collected over time. Therefore, existing deep neural
network frameworks are not suitable for AUV navigation and
we propose a new deep framework — NavNet.

The overall architecture of NavNet is shown in Fig. 7.
It consists of a multilayer RNNs module, a simplified atten-
tion module and a Fully Connected (FC) layers module.
Based on the discussion of the traditional methods for AUV
navigation, it is believed that the received data from naviga-
tion sensors can reflect all the possible situations of AUV
position in the ocean. Therefore, in NavNet, the inputs are
the collected AUV raw sensor data which are relevant to
navigation. As described earlier, in the real world applica-
tions for Sailfish, the major related navigation sensors are
AHRS and DVL. Moreover, all these sensor data can be
regarded as time-series data to be processed. Hence, utiliz-
ing the sequential learning ability of deep RNNs, the raw
sensor data of adjacent unit time are taken as input. Here,
the per unit time is defined as one second. However, in con-
sideration of the different principles of different sensors,
the corresponding output frequencies differ from one another.
For instance, for Sailfish, the AHRS is configured to be
10 Hz while DVL is only 2 Hz. Therefore, in order to deal
with the multi-frequent input data, the proposed framework
adopts two RNNs at different rates to perform time-series
learning. More specifically, one RNN takes the AHRS data
as input, which is a 9-dimensional vector which includes
yaw, pitch, roll of the vehicle, the triaxial acceleration with
respect to the body frame, and the corresponding triaxial
angular velocity. Furthermore, the other RNN model takes
the DVL data as input, which contains the 3-dimensional
vector of the velocities: the forward, starboard and downward
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FIGURE 7. Whole architecture of NavNet.

velocity relative to the vehicle coordinate system. In order
to capture the long-term time dependence between the input
time-sequential data better, a simplified attention module [42]
is deployed to process the outputs of RNNs. Then the con-
nected vector which concatenates those two different context
vectors from attention models is fed into FC layers and the
outputs of the framework can be obtained. The output of
the framework is a 2-dimensional vector and the element
of each dimension illustrates the AUV displacement during
one second in north-east coordinate system. The concrete
description of each module will be introduced in the next part.

B. DESCRIPTION OF DIFFERENT PARTS FOR NavNet

1) RECURRENT NEURAL NETWORK

As mentioned above, for the proposed NavNet, the collected
raw sensor data are considered as time-sequential data which
are suitable for RNNs modelling. A typical unfolded RNN
framework is illustrated in Fig. 8.

y<1> y<2> y<3> y<T>
TW TW TW TW
s a” a”
a” —> —> S —>e0 00 —>
> <> <> x>

FIGURE 8. A typical unfolded RNN framework.

As shown above, the unfolded RNN can be identified as
a deep feedforward network. For an input sequence with a
length of T, each item of it which is described as x<'> will
be processed in sequence. Meanwhile, a state vector a~'>
is maintained in the hidden units, which contains all the
information of the past. Therefore, RNN has the ability to
keep the relation between the current item and the previous
items. Then the output y=<'> which relies on the information
of all the previous moments can be obtained. It is important to
note that all the layers share the same weights for RNN, that
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Mechanism

is to say, the same parameters Wy, W,, and Wy, are used in
each time step. The forward propagation at time 7 is described
as follows [43]:

a<l> — g(Waaa<[—l> +Waxx<t> +ba) (7)
y<t> = h(Wyaa<t> + by), (®)

where b denotes the bias vectors, g and /& respectively rep-
resent the nonlinear activation functions which generally use
Rectified Linear Unit (ReLU) and tanh function. Neverthe-
less, typical RNN will face lots of challenges in the prac-
tical applications. For example, it is difficult to memorize
all the information of the sequences, especially for the very
long ones. Moreover, since the deep feedforward network
is trained with the Backpropagation Through Time (BPTT),
there might be problems such as gradients explosion or van-
ishment with RNN after many time steps [44].

In order to avoid the problems of typical RNN, in our pro-
posed framework, Long Short-Term Memory (LSTM) [45]
is utilized to maintain the long-term dependencies. With the
special hidden units, LSTM is capable of memorizing the
inputs for a long time. The basic architecture of unfolded
LSTM is depicted in Fig. 9.

By introducing the memory gates and memory cells,
the framework can determine whether the previous hidden
states will be reserved to update the current state or not.
In Fig. 9, ¢<'> denotes the memory cell, x<'> represent
the inputs, and a<'~!> are the previous hidden states. The
specific computational process at time ¢ is according to (9)
to (14) [45]:

&= = tanh(w[a~""1>, x> + b.) )
Ty = o(wla™ "> x=>]1+ by) (10)
Ty = o(wla™ ", x> 4 by) (11)
Lo = o(wola™ ">, x> ] + by) (12)

<17 =Ty % &= 4+ Ty w71 (13)

a<"> =T, % tanh(c="), (14)
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FIGURE 9. Basic architecture of unfolded LSTM.

where I'y, I, and I', respectively represent the forget gate,
input gate and output gate which play important roles in
LSTM. According to the characteristics of the sigmoid func-
tion, the maximum value of I'y is one and its minimum
is limited to zero. If I'y equals to zero, it means that all
the information of the inputs and the previous hidden states
will be forgotten. On the other hand, if it is one, the whole
information will be retained to perform the following com-
putation. Otherwise, if I's is a value between zero and one,
the information will be memorized at the corresponding ratio.
Then, I', determines the information that needs to be updated.
Afterwards, combining the input modulation ¢<*> with the
previous memory cell ¢<~!>, the current memory cell ¢</>
can be obtained. In the end, T, is integrated with ¢<'> to
acquire the current hidden state a='>, and the results will be
passed to the next time step.

In order to model accurately, as exhibited in Fig. 7,
we stack two LSTM layers to increase the depth of the
network. In the stacked network, the hidden state of an LSTM
is fed into another one as input. In order to reach better
final accuracy of the proposed model and save the calculating
resources, the number of each hidden layer neurons of LSTM
is set to be 100 according to the parameter tuning process.

2) SIMPLIFIED ATTENTION MECHANISM

In order to capture the long-term time dependence between
the input time-sequential data better, a simplified attention
mechanism [42] is applied to NavNet. The schematic diagram
is shown in Fig. 10.

As shown in Fig. 10, a='> represents the hidden state in
each moment which is from the LSTM. All the hidden states
are fed into a learnable function g(a<>), and then calculated
with the Softmax function, the corresponding weightings o
can be obtained. The specific formula is [42]:

e = g(a™"), (15)
ex
o = Tp&, (16)
21— expler)
where T denotes the length of input sequence. Furthermore,

in the proposed framework, tanh function is selected as the
learnable function g(-). After that, a context vector c is able
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FIGURE 10. Schematic diagram of a simplified attention mechanism.

to be acquired with the weighted mean of the hidden states.
The computation of ¢ can be described as (17):

T
c=Y oa'”. (17)
t=1

In a way, ¢ can be seen as an adaptive weighted average
of the hidden states, which is able to better memorize the
information of a long-term input sequence. In the proposed
framework, two context vectors from different sensor data can
be concatenated to get a concat vector, and then this vector is
fed into the FC layers to execute the subsequent calculation.

3) COST FUNCTION AND OPTIMIZER

At the end of the proposed NavNet, two FC layers are gen-
erated to gain a converged output. Then, the output of the
framework is fed into a Euclidean loss layer to calculate
an L2 Loss. Adam optimizer [46] proposed by combining
the AdaGrad [47] and RMSProp [48], has the advantages
of simple implementation, efficient computation and needs
little memory requirements. Utilizing the estimates of the first
and second moments of the gradients, it is able to calculate
the individual adaptive learning rates for different parameters.
In addition, the hyperparameters only need little tuning and
it is verified that the default settings of the hyperparame-
ters is useful for dealing with the majority of the machine
learning problems. Therefore, in view of the outstanding
performance as well as the prominent advantages of the Adam
optimizer, it is employed in the proposed framework. More-
over, the default hyperparameters recommended by [46] are
used for NavNet, and it means that the starting learning rate
is 0.001, the exponential decay rates 81, B> are 0.9 and 0.999,
respectively.

4) THE ROBUSTNESS OF NavNet

It is worth mentioning that in the process of developing the
deep framework, the robustness of the model is also taken
into account. It is known that the sensor data collection is
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susceptible to noises, which will affect the accuracy of the
subsequent procedures. For Sailfish, there are the same prob-
lems with data collection by the equipped navigation sensors,
AHRS and DVL.

In the ideal situation, since the AUV motion is steady
during the mission, it is believed that the sensor data vary con-
tinuously without sudden change. Nevertheless, in fact, there
are a lot of uncertainties in the sensor data collection process.
In view of the differences in sensor principles and collection
frequency between different sensors, the errors from DVL are
more likely to have huge impacts on the performance of AUV
navigation. For instance, the data collection of DVL is in a
low frequency, which means that a wrong measurement will
affect the position accuracy in a relatively long period of time
and have a great impact on the final result.

In the proposed NavNet, the raw sensor data are regarded
as time-series to perform the subsequent sequential learning.
In order to improve the fault tolerance and enhance the robust-
ness of the system, both the previous unit time observation
and current unit time observation of the raw sensor data
are considered as the input of the framework. As aforesaid,
the adopted LSTMs have the ability to perform the learning
in sequence, which signifies that the input measurements
of all time steps will influence the output of current unit
time. In conventional approaches, once there is an exception
with the collected raw sensor data of a specific time step,
it is bound to bring influence on the corresponding results.
However, if a similar situation happened with the proposed
methods, the sensor data of the adjacent time steps also make
a difference to the final results, which play the role of a filter
for the raw sensor data. Furthermore, the introduced atten-
tion mechanism further enhances the dependencies between
different time steps and improves the ability of fault tolerance.

C. FUSION OF TRADITIONAL METHOD AND DEEP
FRAMEWORK

Since the proposed NavNet can realize the low-frequency
AUV navigation with the rate of only 1 Hz, we implement
a fusion strategy of the conventional method and deep frame-
work in this section. We take EKF as an example to describe
the fusion strategy because of its high computational effi-
ciency which is more suitable for real-time AUV navigation.

Because of the nonlinear error brought by EKF as well as
the inherent characteristics of sensors, there is a drift in the
estimation of AUV position existing over time. In general,
this problem can be mitigated by resurfacing and using GPS
to get a corrected position in the process of AUV missions.
However, it is impractical for AUV to frequently resurface
when it is carrying out various missions in the complex
underwater environment.

Through the above mentioned analysis of the proposed
NavNet, the deep framework outputs the corresponding dis-
placements of the AUV during per unit time. As shown
in Fig. 11, (8x, 8y) represent the displacements of the cor-
responding time interval. During the same time interval,
different from other algorithms for state estimation, n times
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FIGURE 11. The displacements of the corresponding time interval.

iterations have already been performed by EKF-based algo-
rithms. As previously mentioned, EKF-based algorithms
perform the cycles of prediction and update to get the AUV
position. In the update process, the sensor measurements are
used to calculate the residual and correct the predict state.
In section III-A we mentioned that the observation vector
of EKF-based algorithms consists of angles, velocities and
accelerations, and all these data are measured by the equipped
AHRS and DVL. Since there is no usable extra position
sensor in AUV, the position is not taken into account in the
observation vector.

As shown in Fig. 11, (6x, §y) from NavNet can express the
displacements of the unit time interval. These two values can
be combined with the estimated position state of EKF at n
time step ago to obtain a approximated AUV position at time
step k. The concrete accumulation process is shown as:

x = Xp_n(1) + 8x (18)
y = Xp—n(2) + 8y (19)

Here, consistent with the foregoing, Xi—n represents the esti-
mated system state of k — n time step and the first two
items respectively denotes the position in the north and east
orientation. x and y signify the estimated AUV position at
time step k which can be regarded as the measurements of a
virtual position sensor. Therefore, at the corresponding time
step k, the observation vector can be augmented by AUV
position, which is shown as:

Zi =[x, ¥, @, vy, vy, Gy, Gy, w]" (20)

The representations of specific quantities are the same as
above. Meanwhile, as shown in (21), the observation matrix
needs to be augmented accordingly to perform the correct
stage.

H = Igxg 2D

During the time step k — n to k, the standard EKF is
performed to maintain a high-frequency AUV navigation.
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Through introducing the virtual position measurements,
the drifts caused by conventional methods and sensor charac-
teristics can be reduced without equipping with any additional
sensors. Combined with conventional methods, the low-
frequency displacements of NavNet are used to limit the error
growth of the traditional algorithm while the high-frequency
navigation can be guaranteed at the same time. The concrete
realizing process is described in Algorithm 1. This strategy
does not require any additional sensors or rising to the sur-
face, which will become a feasible and reliable method for
AUV missions.

Algorithm 1 A Fusion Strategy of Intelligent Navigation
Framework With EKF

1: Initialize )A(O, Poy;

2. fork=1,...do

3: {Time update}

4: %% %o Propagate the state and covariance% %%

5 Xijk—1 = f Ki—1) + wi

6: Piri—1 = ¢k|k—1Pk—1¢';€|k_1 + Ok—1;
7: {Measurement update }
3:
9

if Deep framework outputs a result then
9% %Integration with the output of deep naviga-
tion framework% % %

10: x = Xp_n(1) + 8x;

11: Y = Xg—n(2) + 3y;

12: 9% % % Observation vector% % %

13: Zi = [x,y, @, Vx, Vy, Gy, ay, wZ]T;

14: % % % Observation matrix % % %

15: H = Ig«s;

16: 9% % %Update the state and covariance% % %
17: Ky = {)klk—ng[HkPklk—ng +Rel7Y
18: X = Xejk—1 + Ki[Zk — HiXgji—11;

19: Py = [I — Ky H]Prjk—15

20: else

21: 9 % % Observation vector% % %

22: Zy = [@, vy, vy, ax, ay, wz]T;

23: 9% % % Observation matrix % % %

24: H = [06x2 Ioxe I

25: 9% % % Update the state and covariance% % %
26: Ky = fklk—lHkT[HkPklk—lHkT + Rl
27: Xi = Xpjk—1 + Ki[Zy — Hi Xy k11

28: Py = [ — Ky Hy]Prjk—1;

29: end if

30: end for

V. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we present and discuss the experimental
results.

A. DATASET

We tested our proposed algorithm with Sailfish 210 in an
experiment in the sea. The data is collected at Nanjiang wharf,
Qingdao in April and May 2019 as the dataset to perform the
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training and testing process. The recovery of Sailfish 210 is
shown in Fig. 12. Since the GPS is available when AUV is
carrying out tasks on the surface of the water, we collected
the exact location of AUV with GPS as the ground truth.
Meanwhile, the displacement obtained by GPS during per
unit time is used as the training label to calculate the loss with
the output of proposed framework.

FIGURE 12. The recovery of Sailfish 210 at Nanjiang wharf.

The data are divided into three parts: training set, validation
dataset, and testing set. Different trajectories of AUV mis-
sions are segmented to different lengths to generate several
datasets, which include multiple circles, triangles, rectangles,
pentagons, straight lines with different orientations and other
mission tracks. After pruning the data, 5356 samples in total
remained and are used as the training set to train the deep
framework. The validation dataset is made up of multiple
whole single trajectories. Moreover, several groups of trajec-
tories representing the typical real AUV missions, such as
single circle or single pentagon trajectories, are selected as the
testing set. We will describe in detail in the following section.

B. EXPERIMENTAL RESULTS

1) RESULTS OF NavNet

In order to verify the effectiveness of the proposed deep
framework, we chose four cases represented by four groups
of datasets for the typical trajectories of the real AUV mis-
sions. In addition, in order to use the GPS trajectories as
ground truth to verify the accuracy of the proposed algo-
rithm, the AUV on-surface data are used to test the model.
The estimated trajectory of the proposed method — NavNet,
is compared to that of EKF, UKF and the ground truth,
as shown in Fig. 13, 14, 15 and 16. Meanwhile, the single-
step position error of each case which is calculated by com-
paring the trajectories of NavNet, EKF and UKF with GPS
trajectories is also shown in the figures. The boxplots of the
single-step position error are also shown for comparison of
different algorithms. And the overall position Root Mean
Square Error (RMSE) of four cases is shown in Table 5.
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FIGURE 16. The motion trajectory results and position error of Case 4.

Fig. 13 shows the estimated motion trajectory of Case 1,
with a length of about 108 meters and 73 seconds in time.
As we can see from Fig. 13, the EKF algorithm has the
worst performance for AUV navigation, which is furthest
away from the GPS trajectory. In addition, the proposed
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deep framework has a comparative navigation capabil-
ity with the UKF algorithm, which can also be seen
in Table 5. However, the RMSE of NavNet is the smallest
while UKF has a minimum value of end point position
error.
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TABLE 5. Overall position RMSE and end point position error of Case 1 to
Case 4.

Case Criterion NavNet EKF UKF
Case 1 Overall position RMSE (m)  1.7984 3.8664  2.0886
End point position error (m)  2.7435 57769  1.3591
Case 2 Overall position RMSE (m)  1.9538 3.6520  3.5215
End point position error (m)  0.9324 3.8534  1.4077
Case 3 Overall position RMSE (m)  2.1145 8.1301  4.3910
End point position error (m)  3.2894 7.3772  7.4267
Case 4 Overall position RMSE (m)  2.5404 6.0237  2.6439
End point position error (m)  3.5220 1.9393  2.0625

In case 2, AUV performs a pentagon task track with
the length of side around 40 meters, and the estimated
motion trajectory is shown in Fig. 14. The total length of
Case 2 is approximately 184 meters and the running time is
130 seconds. In this case, the performance of EKF and UKF
is similar, which is worse than the performance of NavNet.
Table 5 also shows the effectiveness of the deep framework,
which has the smallest RMSE.

Fig. 15 shows the estimated trajectory of Case 3, which
is a circular track with a radius of 80 meters. The total
running distance is around 491 m with the running time of
479 seconds. The results in this case is similar to that in
in Case 2, with the proposed NavNet performing the best.
Moreover, NavNet has a smaller overall position RMSE and
position error than the other two algorithms.

The track of Case 4 is square with its side length
of 120 meters and the gross cruising distance is 468 meters.
The voyage takes 452 seconds and the estimated trajectory
is shown in Fig. 16. The performance of AUV navigation
with NavNet is similar to UKF while the RMSE of NavNet
is a bit smaller. Both of them are better than the performance
of EKF. In terms of the position error, the performance of
NavNet is also similar to that of UKF. The position error of
EKF is much larger than the other two algorithms in the task,
but the end point position error is the smallest. At the same
time, the computation time of four cases is shown in Table 6.
As seen from Table 6, the proposed NavNet has a shorter
computation time compared to EKF and UKF.

TABLE 6. Computation time of Case 1 to Case 4.

Case Criterion NavNet EKF UKF

Case 1  Computation time (ms)  22.323 38.553 102.396
Case 2 Computation time (ms)  26.281 54.712 154.881
Case 3  Computation time (ms)  41.548 145.75 500.398
Case4  Computation time (ms)  38.103 136.129  481.867

Overall, our experimental results show that the proposed
deep framework can realize a reliable AUV navigation and
localization, and has an equivalent or better performance than
UKEF, which is better than EKF.

2) FAULT TOLERANCE

We also take the sensor errors into account for designing the
proposed deep framework, especially the DVL low-frequency
errors. In this section, we test and verify the fault tolerance
ability of the the proposed framework.
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We consider two cases to test the fault tolerance of NavNet,
in consideration of the running environment of Sailfish and
the characteristics of sensors. The results are shown in Fig. 17
and Fig. 18.

Case 5 is a track with a total length of 175 meters and
the running time of 125 seconds. In the task, limited by the
property of AUV, the forward velocity of DVL is always
between 1 m/s to 2.5 m/s. To simulate the situation that
DVL acquired incorrect data, we inserted a wrong forward
velocity of DVL—10 m/s — at the time of 49 seconds,
as shown in Fig. 17(a). Fig. 17(d) shows the estimated
trajectory and Fig. 17(d) shows the corresponding position
error. In order to show the results more clearly, the region
that was influenced by the wrong data is locally enlarged
in original dealing frequency of each algorithm, as shown
in Fig. 17(c) and Fig. 17(e). From Fig. 17 we can obvi-
ously seen that, both EKF and UKF are badly affected by
the wrong data at the corresponding time step. However,
the AUV navigation with the proposed framework is unaf-
fected and achieves a higher navigation accuracy. Moreover,
in terms of position error, we found that the position error of
EKF and UKEF increases rapidly at the time of inserting the
wrong data, while the position error of NavNet has a mild
increase.

The application scenarios of Sailfish are mainly the shal-
low sea conditions which means that the operating distance
of DVL is always within the sensor threshold. Generally
speaking, under these circumstances, the DVL is always
available for AUV. Nevertheless, in the complex underwa-
ter environments, some unforeseeable cases may happen to
affect the validity of DVL. For instance, when the seafloor
is covered with strong sound absorption materials such as
sludge, or the AUV encounters larger pitch attitude and roll
attitude, the transmitted acoustic pulses of DVL cannot be
reflected back, which will make the DVL measurements fail-
ure temporarily. Therefore, in Case 6, we focus on the invalid
circumstance of DVL. In Case 6, the AUV is running for
96 seconds and a total length of 140 meters. The invalid data
of DVL forward velocity is interpolated at the 80th time step,
as shown in Fig. 18(a). Fig. 18(b) shows the estimated trajec-
tories of NavNet, EKF, UKF and the ground truth. The region
that was influenced by the invalid data is also locally enlarged,
as shown in Fig. 18(c). From Fig. 18(c) we can see that,
the tracking trajectories of EKF and UKF have a tiny turn at
the time of interpolating the invalid data. However, the perfor-
mance of NavNet is unaffected. Nevertheless, since the speed
of AUV is small, the invalid data does not cause fatal effect
for conventional algorithms. In this case, the proposed frame-
work also achieves a better performance. The corresponding
RMSE and end point position error of Case 5 and 6 are shown
in Table 7. Together with results in Table 7, we can see that
our proposed NavNet can improve the navigation accuracy
and has good fault tolerance capacity at the same time. The
computation time of these two cases is shown in Table 8§,
and the proposed NavNet has a shorter running time than
others.
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FIGURE 18. Corresponding results of Case 6. (a) represents the forward velocity of DVL, (b) and (d) are respectively the trajectory and position
error results. The enlargement is the region of the red boxes. (e) is the boxplot of the position error.

3) COMBINING TRADITIONAL METHOD WITH DEEP
FRAMEWORK

The experimental results of combining the proposed frame-
work with EKF are shown in Fig. 19, 20 and 21. The cor-
responding evaluation criterions are described in Table 9.
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Fig. 19(a), 20(a) and 21(a) shows the estimated trajectories
of the fusion strategy, EKF and the ground-truth. In addition,
the yaw, forward velocity, and starboard velocity for the
fusion strategy, EKF and the raw sensory data are also shown
in Fig. 19, 20 and 21, respectively.
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TABLE 7. Overall position RMSE and end point position error of Case 5 to
Case 6.

Case Criterion NavNet EKF UKF
Case 5 Overall position RMSE (m) 3.4035 7.4135 6.4151
8¢ End point position error (m)  6.3783  10.0972  11.1906
Case 6 Overall position RMSE (m) 1.9032 5.3554 3.6349
End point position error (m)  1.4532 7.2586 7.4049
TABLE 8. Computation time of Case 5 to Case 6.
Case Criterion NavNet EKF UKF
Case 5  Computation time (ms)  25.367 56.547  159.793
Case 6 Computation time (ms)  23.848 44,622  130.29

Firstly, we study the fusion outcome in Case 5 where a
wrong forward velocity data was artificially inserted at the
time of 49 seconds. From the the enlarged Fig. 19(b) we
can see that the trajectory of fusion strategy were drifted at
the time of inserting the wrong data. However, in the next
moment when the NavNet output arrives, the position of the
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TABLE 9. Overall position RMSE and end point position error of
corresponding Cases.

Case Criterion Fusion = EKF
Case 5 Overall position RMSE (m) 2.4671 6.4151
) End point position error (m)  2.1943  10.1910
Case 2 Overall position RMSE (m) 1.7287  3.6520
End point position error (m)  1.7226  3.7616
Case 7 Overall position RMSE (m) 2.2314  5.3999
End point position error (m)  5.5220  9.7324

fusion strategy has been limited and pulled back. Finally,
the fusion strategy achieves a better accuracy than EKF. This
can also be shown by the results in Table 9 in terms of RMSE
and end point position error.

Case 2 is also used to demonstrate the superior per-
formance of the fusion strategy. The trajectory of fusion
method is closer to the ground truth and the accuracy of
EKF has been greatly increased. Case 7 is a track with a
total length of 194 meters and running time of 126 seconds.
The experimental results in Case 7 are similar to those in
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FIGURE 21. The trajectory and position error results of Case 7.

Case 2. In this case, the performance of EKF is unsatisfactory
but the fusion method has an excellent performance. Table 9

TABLE 10. Computation time of corresponding Cases.

. . Case Criterion Fusion  EKF
also shows the advantage of the fusion strategy in terms of s C on time (mo) 71828 4219
set . et ase omputation time (ms . .
the overau p0§1t1or'1 RMSE a.nd end point position error. The Case2  Computation time (ms) 73445 48005
computation time is shown in Table 10. Because the fusion Case7 Computation time (ms) ~ 72.22  45.963

method combines the proposed NavNet with EKF, its running
time is longer than EKF.

From the above results we can see that, the fusion
strategy not only achieves high-frequency navigation but
also improves the navigation accuracy to a large extent.
Meanwhile, the fusion strategy has a good tolerance of fault
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data and can limit the error influence. Therefore, the proposed
deep framework can be used as a reliable supplement for con-
ventional algorithms to obtain a more robust AUV navigation
system.
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VI. CONCLUSION

In this paper, we proposed a deep framework — NavNet —
by taking AUV navigation as a deep sequential learning prob-
lem. Different from traditional navigation algorithms, such
as Extended Kalman Filter (EKF) and Unscented Kalman
Filter (UKF), which require the system model and measure-
ment model for state estimation to obtain the AUV position,
NavNet does not need the model building. Therefore, it can
avoid the import of modeling errors and state estimation
errors. We compare the performance of NavNet to EKF
and UKF using collected data by running Sailfish in the
sea. Experimental results show that NavNet has an excel-
lent performance in terms of both the navigation accuracy
and fault tolerance. In addition, a reliable fusion strategy
of NavNet and conventional method is applied to achieve
high-frequency AUV navigation. The experimental results
show that the proposed architecture can be a reliable supple-
ment to limit the error growth of conventional algorithms.

In the future, we would like to investigate the general-
ization of our method to different and complex underwater
environments. For example, data from more sensors can be
augmented to sense the surrounding environments in a more
precise way so as to improve the generalization ability of
the proposed framework. In addition, we will focus on the
real-time application of the fusion strategy and take the sys-
tem uncertainty into account to improve the performance of
the framework.
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