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ABSTRACT In this paper, a parallel transmission-line transformer with complex terminal loads is introduced
for dual-frequency design. Through analyzing the different cases of complex terminal loads conditions,
there are four different mapping patterns of designable regions on the Electrical Length-Electrical Length
(EL-EL) plane. By adding an extra vertical Frequency Ratio (FR) axis, a novel 3D cube can be created
on the FR-EL-EL coordinate system, then the designable ranges of frequency ratio can be easily drawn in
this 3D cube. Therefore, the visible 3D mapping approach is newly reported for matching the complex
terminal load of parallel transmission-line transformer at two different frequencies. For the certain pattern,
a clearly boundary could be drawn to distinguish the designable and undesignable ranges. For verification,
two examples are designed, fabricated and measured. Simulated and measured results are matched very well.

INDEX TERMS Complex terminal loads, dual-frequency, parallel transmission-line transformer,
3D mapping approach.

I. INTRODUCTION
Transmission-line transformer (TLT) is a basic passive com-
ponent in RF/microwave system. For a certain frequency,
it can transform a source load impedance into a different
terminal load impedance and deliver the maximum power at
the same time. According to the different application require-
ments, the input or output impedances of power transistors,
antennas, power dividers, or baluns are not always real load
impedance, flexible TLTs are needed to match different kinds
of complex impedances.

Only one transmission-line (TL) section could not only
used for real-to-real impedance matching, but also for
complex-to-complex impedance matching at single-band
operation [1]. Focusing on real-to-real impedance match-
ing, by adding extra cascaded TL sections, cascaded TL
sections could be designed for dual-band operation [2]–[5],
or wideband performance [6]. As the number of cascaded
TL sections is increased, multi-band can be realized [7]–[9].
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Furthermore, multi-band cascaded TL sections could not only
be designed for real impedance application, but also for
complex impedance application [10]–[12].

Coupled TLT is the other basic transformer topology [13].
Compared with cascaded TLT topology, coupled TLTs
could provide extra variables which can be utilized for
broadband matching [13], DC blocks [14], compact cir-
cuit size [15] and multi-band application [16]. Because the
designable coupling strength of coupled TLT is quite lim-
ited, shunted open-/short-stubs (OS/SS) are preferred in TLT
design [17]–[21]. single-band [17], dual-band [18]–[20] or
even multi-band [21] applications can be easily realized.
Considering the precise bandwidth needs, several different
types of band-pass filtering transformers are also reported
in [22]–[26] for different system requirements. On the other
hand, parallel transmission-line is another interesting struc-
ture which can be used for single-band transformer [27],
filters [28], [29] and duplexer [30] applications.

Due to the limitation of the designable characteristic
impedances (or electrical lengths) ranges, designable values
are quite different for diverse topologies, therefore, it is a very
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important and effective method to distinguish the circuits’
performances. For example, it can be used to evaluate (1)
the designable range of terminal load ratio in TLT applica-
tions, (2) the designable bandwidths of filter applications,
(3) the designable range of frequency ratio in dual-frequency
circuits, and so on. Comparing with the obscure constraint
formulas which are derived frommatching condition, allowed
and forbidden regions [1], [27] could provide a quite clearly
visible boundary on Smith chart, which the designable and
undesignable ranges can be separated clearly. As far as we
know, this method is only working on single-frequency appli-
cations. For dual-frequency or even multi-band applications,
flow charts are only method to describe relationship among
all mathematical constraint. Usually, several numerical exam-
ples are also listed to show tendency of all the design parame-
ters. However, the boundary of designable range for a certain
topology is unpredictable.

Recently, a dual-frequency parallel transmission-line
transformer (PTLT) for real terminal loads is reported in [31],
it only consists of two parallel TLs with different physical
lengths. Through analyzing the physical lengths ratio, des-
ignable square regions are mapping on the Electrical Length-
Electrical Length (EL-EL) plane [32], [33], and the mapping
pattern of all the designable regions looks like chess board.
Because [32] and [33] are only comments and authors’ reply,
their definitions are quite different, detail design approach
and strict mathematical proof are also not clear.

In this paper, a visible 3D mapping approach is newly
introduced for a dual-frequency PTLT with complex terminal
loads, where the complex terminal loads at two frequencies
are not independent. The 3D coordinate system consists of
one EL-EL plane and a vertical Frequency Ratio (FR) axis
named u. Usually, two electrical lengths which are on the
EL-EL plan are defined from 0 to 2π . Through analyzing the
different cases of complex terminal loads conditions, there are
four different mapping patterns of designable regions on the
EL-EL plane. When the electrical lengths ratio is given, the
designable range of frequency ratio can be easily drawn in
the 3D cube on the FR-EL-EL coordinate system. To the best
of the authors’ knowledge, the proposed visible 3D mapping
approach has not been reported before.

For ease of understanding, a 3D mapping example for real
terminal load case [31] is introduced in Fig. 1. The EL-EL
plane has been introduced in [32] briefly, the red and blue
squares are the mapping pattern of designable regions of
dual-frequency PTLT, and it looks like part of chess board,
where 0 < β1l1 < 2π and 0 < β1l2 < 2π are defined
on the EL-EL plane. The definition of vertical FR axis is u,
where 0 < u < 10. For a given electrical lengths ratio, such
as β1l2/β1l1 = 5 in Table 1 [33], where β1l1 = 56.25◦

and β1l2 = 281.25◦. Then, the ABIJ plane shows the case
of β1l2/β1l1 = 5. Two solid black lines in line AJ are the
designable ranges in the two red regions. From the design
equations in [31], [32], the designable ranges u can be easily
calculated and drawn as the green solid lines on the ABIJ
plane. On the other hands, the relationship between β1l1 and

FIGURE 1. An example of visible 3D mapping approach on the FR-EL-EL
coordinate system for dual-frequency PTLT application [31], [32].

TABLE 1. Comparison among the proposed transformer and others.

u (or, the relationship between β1l2 and u) can also be easily
calculated and drawn onABFE plane (orABCD plane), where
1.5 < u < 7/3 and 4 < u < 9.
In summary, the novelty of the proposed dual-frequency

PTLT with complex terminal load can be summarized as fol-
lows: (1) Novel four mapping patterns of designable regions
are derived and summarized on EL-EL plane under the condi-
tion of different case of complex terminal loads. (2) By adding
an extra vertical FR axis, a novel 3D cube is newly intro-
duced on FR-EL-EL coordinate system for dual-frequency
design application. (3) When the electrical lengths ratio is
determined, the novel 3D mapping approach is reported to
derive the designable frequency ratio range in the 3D cube.
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FIGURE 2. Dual-frequency parallel transmission-line transformer (PTLT)
[31], [32] with complex terminal loads.

II. DESIGN EQUATIONS
Fig. 2 shows the proposed topology of the dual-frequency
PTLT. Although the same topology has been introduced
in [31]–[33] for real terminal loads applications, to the best
of authors’ knowledge, the dual-frequency analysis of 3D
mapping approach is newly reported for complex terminal
loads application in this paper. In Fig. 2, Z1 and Z2 are
characteristic impedances of line 1 and line 2, respectively,
and their physical lengths are l1 and l2, where l1 > l2 is
defined in this paper. β denotes a propagation constant of the
TLs. For dual-frequency operation, two design frequencies
are defined as f1 and f2, where f1 < f2, and frequency ratio
u = f2/f1. Then, β1 and β2 are the propagation constants at f1
and f2, respectively. Finally, two complex terminal loads can
be written as ZS = R + jX , where ZS1 = R1 + jX1 at f1 and
ZS2 = R2 + jX2 at f2, respectively. In this paper, the terminal
load ZL = 50 � is defined.

A. THE DERIVATION BETWEEN CHARACTERISTIC
IMPEDANCES AND ELECTRICAL LENGTHS
From [31], ABCD matrices of line 1 and line 2 are expressed
as[
A1 B1
C1 D1

]
Line1
=

[
cos (βl1) jZ1 sin (βl1)

j sin (βl1)/Z1 cos (βl1)

]
(1a)[

A2 B2
C2 D2

]
Line2
=

[
cos (βl2) jZ2 sin (βl2)

j sin (βl2)/Z2 cos (βl2)

]
. (1b)

Then, the ABCDmatrix of proposed PTLT can be obtained
in (2), since the same derivation processes are described
in [31].

APTLT = (A1B2 + A2B1)/(B1 + B2) (2a)

BPTLT = B1B2/(B1 + B2) (2b)

CPTLT = (C1 + C2)+ (A1 − A2) (D2 − D1)/(B1 + B2)

(2c)

DPTLT = (B2D1 + B1D2)/(B1 + B2) (2d)

In order to match the terminal load RL, we have

Z̄S = R− jX =
RLAPTLT + BPTLT
RLCPTLT + DPTLT

(3)

The real and imaginary parts of (3) can be derived as Real
part:

DPTLTR = APTLTRL + jCPTLTRLX (4a)

Imaginary part:

BPTLT = CPTLTR · RL − jDPTLTX (4b)

From APTLT = DPTLT and APTLTDPTLT − BPTLTCPTLT =
1, the following equations can be derived.

APTLT = GA (R,X ,RL)
BPTLT = GB (R,X ,RL)
CPTLT = GC (R,X ,RL)
DPTLT = GD (R,X ,RL)

(5)

On the other hand, from (1) and (2), (6) can be easily
derived. 

APTLT = FA (Z1,Z2, βl1, βl2)
BPTLT = FB (Z1,Z2, βl1, βl2)
CPTLT = FC (Z1,Z2, βl1, βl2)
DPTLT = FD (Z1,Z2, βl1, βl2)

(6)

Based on (5) and (6), Z1 and Z2 can be described by βl1,
βl2, R, X and RL. (7a) and (7b) could be summarized as
follows. 

Z1 =
p · q [cos (βl2)− cos (βl1)]
sin (βl1) [cos (βl2)+ p · X ]

Z2 =
p · q [cos (βl1)− cos (βl2)]
sin (βl2) [cos (βl1)+ p · X ]

(7a)

or 
Z1 =

p · q [cos (βl1)− cos (βl2)]
sin (βl1) [cos (βl2)− p · X ]

Z2 =
p · q [cos (βl2)− cos (βl1)]
sin (βl2) [cos (βl1)− p · X ]

(7b)

where

p =

√
RL

R
[
(R− RL)2 + X2

] (7c)

q = X2
+ R2 − R · RL (7d)

B. THE DERIVATION BETWEEN ELECTRICAL LENGTHS
AND FREQUENCY RATIO
By analyzing the range of trigonometric function in (7),
frequency ratio ranges are determined by l2/l1. Because the
lengths of two transmission-lines can be selected arbitrary,
the general equations can be summarized as{

2aπ < β1l1 < 2 (a+ 1) π
2bπ < β1l2 < 2 (b+ 1) π

(8a){
β1l1 + β2l1 = nπ
β1l2 + β2l2 = mπ

(8b)

where, a, b, m and n are positive integers.
Then, we have l2/l1 = m/n, the general expression of β1l1,

β1l2, β2l1 and β2l2, can be rewritten as
β1l1 =

nπ
1+ u

β1l2 =
mπ
1+ u

for frequency f1 (9a)


β2l1 =

nπ
1+ 1/u

β2l2 =
mπ

1+ 1/u

for frequency f2 (9b)
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C. THE CONSTRAINT CONDITIONS OF COMPLEX
TERMINAL LOADS FOR DUAL-FREQUENCY OPERATION
The constraint conditions of complex terminal loads (R1, X1
and R2, X2) for dual-frequency operation is determined by
different (n+ m). They will be discussed separately.

Firstly, from (7c) and (7d), we have p1 =

√
RL

R1
[
(R1 − RL)2 + X2

1

]
q1 = X2

1 + R
2
1 − R1 · RL

at f1 (10a)

 p2 =

√
RL

R2
[
(R2 − RL)2 + X2

2

]
q2 = X2

2 + R
2
2 − R2 · RL

at f2 (10b)

Then, put (10a) and (10b) into (7a) and (7b), respectively.
We have

±p1 · q1 [cos (β1l2)− cos (β1l1)]
sin (β1l1) [cos (β1l2)± p1 · X1]

=
±p2 · q2 [cos (β2l2)− cos (β2l1)]
sin (β2l1) [cos (β2l2)± p2 · X2]

(11a)

±p1 · q1 [cos (β1l1)− cos (β1l2)]
sin (β1l2) [cos (β1l1)± p1 · X1]

=
±p2 · q2 [cos (β2l1)− cos (β2l2)]
sin (β2l2) [cos (β2l1)± p2 · X2]

(11b)

When (n+m) is even integer, the relationship between R1,
X1 and R2, X2 are summarized as{

R2 = R1
X2 = −X1

(12)

When (n + m) is odd integer, by using (7a) and (7b), the
relationship between R1, X1 and R2, X2 are summarized as

R2 =
RLd22

d21d
2
2 + R

2
L

(
1− d21

)2
X2 =

d1d2
[
d22 − R

2
L

(
1− d21

)]
d21d

2
2 + R

2
L

(
1− d21

)2 (13a)

where
d1 =

p1X1 [cos (β1l2)− cos (β1l1)]
±2p1X1 + [cos (β1l2)+ cos (β1l1)]

d2 =
p1q1 [cos (β1l1)− cos (β1l2)]

±2p1X1 + [cos (β1l2)+ cos (β1l1)]

(13b)

III. THE ANALYSIS OF MAPPING PATTERNS ON EL-EL
PLANE
Firstly, the range of R1, X1 and RL must be defined. Based on
Z1 > 0, Z2 > 0 and (7), the relationship between designable
regions and electrical lengths ratio m/n will be discussed into
five different cases in this section, where:

Case I: R1 > RL
Case II: R1 < RL and X2

1 < R1 · RL − R21
Case III: R1 < RL and X1 >

√
R1 · RL − R21

Case IV: R1 < RL and X1 < −
√
R1 · RL − R21

Case V: R1 = RL

FIGURE 3. The mapping pattern of Case I under the condition of (7a).

A. CASE I
Because R1 > RL, the design equation (7a) and (7b) should
be discussed, respectively.

Firstly, from (7a), Z1 and Z2 must be positive value. Then,
we have p1 > 0 in (7c), q1 > 0 (7d), p1q1 > 0 and 0 <
|p1X1| < 1. The periods of two transmission-lines are 2π ,
therefore, four zones will be divided and evaluate separately,
where, [2aπ , 2aπ + π ] & [2bπ , 2bπ + π ] in Zone 1; [2aπ ,
2aπ + π] & [2bπ + π , 2bπ + 2π ] in Zone 2; [2aπ + π ,
2aπ + 2π ] & [2bπ + π , 2bπ + 2π ] in Zone 3; [2aπ + π ,
2aπ + 2π ] & [2bπ , 2bπ + π] in Zone 4.
In Zone 1, two designable ranges of electrical lengths are

cos (β1l2) > cos (rπ) > cos (β1l1) (14a)

or

cos (β1l1) > cos (rπ) > cos (β1l2) (14b)

where

cos (rπ) = −p1X1 (14c)

From equation (14a), (14b) and (14c), two red rectangle
regions are the mapping pattern of Zone 1 in Fig. 3.

In Zone 1, based on (14a) and (14b), we have{
(2a+ r) π < nπ/(1+ u) < (2a+ 1) π
2bπ < mπ/(1+ u) < (2b+ r) π

(15a)

or {
2aπ < nπ/(1+ u) < (2a+ r) π

(2b+ r) π < mπ/(1+ u) < (2b+ 1) π
(15b)

Then, electrical lengths ratios can be derived.

2b/(2a+ 1) < m/n < (2b+ r)/(2a+ r) (16a)

or

(2b+ r)/(2a+ r) < m/n < (2b+ 1)/2a (16b)

The mapping pattern of Zone 1 is also given in Fig. 3, and
their frequency ratio ranges are summarized as[

n
2a+ 1

− 1,
m

2b+ r
− 1

]
Max

< u

<

[
n

2a+ r
− 1,

m
2b
− 1

]
Min

(17a)
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or[
n

2a+ r
− 1,

m
2b+ 1

− 1
]
Max

< u

<

[
n
2a
− 1,

m
2b+ r

− 1
]
Min

(17b)

By using the similarly discussion above, only the crucial
equations are summarized in Zone 2. The relationship of two
electrical lengths are

cos (rπ) > cos (β1l1) > cos (β1l2) (18a)

or

cos (β1l2) > cos (β1l1) > cos (rπ) (18b)

Then, the electrical lengths ratios are

(2b+ 1)/(2a+ 1) < m/n < (2b+ 2− r)/(2a+ r) (18c)

or

(2b+ 2− r)/(2a+ r) < m/n < (2b+ 2)/2a (18d)

The frequency ratio ranges are

m+ n
2a+ 2b+ 2

− 1<u<
[

n
2a+ r

−1,
m

2b+ 1
− 1

]
Min
(18e)

or[
n

2a+ r
−1,

m
2b+ 2

−1
]
Max

<u<
m+ n

2a+ 2b+ 2
−1 (18f)

There is no result in Zone 3. In Zone 4, the relationship of
two electrical lengths are

cos (β1l1) > cos (β1l2) > cos (rπ) (19a)

or

cos (rπ) > cos (β1l2) > cos (β1l1) (19b)

The electrical lengths ratios are

2b/(2a+ 2) < m/n < (2b+ r)/(2a+ 2− r) (19c)

or

(2b+ r)/(2a+ 2− r) < m/n < (2b+ 1)/(2a+ 1) (19d)

The frequency ratio ranges are[
n

2a+ 2
−1,

m
2b+ r

−1
]
Max

<u<
m+ n

2a+ 2b+ 2
−1 (19e)

or
m+ n

2a+ 2b+ 2
− 1 < u <

[
n

2a+ 1
− 1,

m
2b+ r

− 1
]
Min
(19f)

Finally, under the condition of (7a), the total red designable
regions in Fig. 3 are the mapping pattern of Case I.

Secondly, from (7b), Z1 and Z2 must be positive value.
By using the same process, the detail design equations are
listed in Table 2, and the blue designable regions in Fig. 4 are
the pattern of Case I.

TABLE 2. For Case I, design equations under the condition of (7b).

B. CASE II
Similarly, the design equation (7a) and (7b) are discussed in
Case II, and final design equations are listed in Table 3 (a) and
III (b), respectively. The total designable regions in Fig. 5
(a) and (b) are the mapping pattern of Case II.

C. CASE III
Under the conditions of (7a) or (7b), two group of design
equations are the same, and they are listed in Table 4,
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FIGURE 4. The mapping pattern of Case I under the condition of (7b).

therefore, two designable regions are overlapped, and the
mapping pattern of Case III are shown in Fig. 6.

D. CASE IV
The design equations are listed in Table 5. Two designable
regions are overlapped, and the mapping pattern of Case IV
are shown in Fig. 7.

E. CASE V
Because the design equations and designable regions of
Case III and IV are exactly the same to those in Case V (when
R1 = RL, X1 > 0) and (when R1 = RL, X1 < 0), respectively.
Therefore, these discussions and results are omitted in this
paper.

IV. 3D MAPPING APPROACH AND DESIGN EXAMPLES
In order to realize the complex terminal loads ZS in Fig. 2,
two transmission-lines ZSTL1, ZSTL2 and one resistor RSTL
are cascaded to realize ZS, where the electrical lengths of
ZSTL1 and ZSTL2 are θSTL1 and θSTL2, respectively. The total
topology is shown in Fig. 8.

From Section III, all five cases are introduced in detail,
their mapping patterns of designable regions are also drawn
on the EL-EL plane with design equations. By adding an
extra vertical FR axis named u, a novel 3D cube can
be created on the FR-EL-EL coordinate system. For a
given electrical lengths ratio β1l2/β1l1, the designable range
of frequency ratio can be easily drawn in the 3D cube.
Two design examples for Case I and Case III are listed,
respectively.

In Example 1, the complex terminal load ZS is determined
as follows: ZS1 = 70 − j50 @ f1 = 1 GHz and ZS2 =
3.8 − j2.2 @ f2 = 3.6 GHz, where u = 3.6. Because of
R1 > RL, the mapping pattern should belong to Case I. Then,
p1 and r can be calculated from (10a) and (14c), respective.
From (14a) and (14b), the mapping pattern of Case I can be
easily drawn on theADHE plane in Fig. 9 (a), where, there are
two designable regions: red regions and blue regions. When
β1l2/β1l1 = 1/2 is given, line AJ will through Zone 1 and
Zone 4, the ABIJ plane can be easily created. If m = 3 is
fixed, n = 6 is automatically determined. By using (9a),
the green solid lines can be drawn on the ABIJ plane, where,
the limitation is determined by (17a) in Zone 1 and (19f)
in Zone 4. Finally, two green solid lines are the designable

TABLE 3. (a) For Case II, design equations under the condition of (7a).

frequency ratio ranges of proposed topology. By the way, two
black solid lines which on the ABFE plane and ABCD plane
are the projection of the green solid lines. Corresponding to
Fig. 9 (a), the detail design parameters of Example 1 are
also listed in Table 6, and its circuit simulation result is
shown in Fig. 10 (a), where, the characteristic impedances
and their electrical lengths are calculated from (7b) and (9a),
respectively.
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TABLE 3. (Continued.) (b) For Case II, design equations under the
condition of (7b).

For Example 1, the design parameters are shown in Table 6,
Rogers RT/6010 substrate is used for demonstration. The data
of the substrate are εr = 10.2, tanδ = 0.0023, thickness
of dielectric layer h = 1.27 mm, and conductor thickness
t = 0.018 mm. Fig. 11 shows the fabricated circuit and its
simulated and experimental results.

Similarly, for Case III, Example 2 is also discussed in
this section, the parameters of complex terminal load are:

FIGURE 5. The mapping pattern of Case II. (a) The mapping pattern under
the condition of (7a). (b) The mapping pattern under the condition of (7b).

TABLE 4. For Case III, design equations under the condition of (7a) or
(7b).

ZS1 = 40 − j200 @ f1 = 1 GHz and ZS2 = 40 +
j200 @ f2 = 2.2 GHz. Its 3D designable frequency ratio

57478 VOLUME 8, 2020
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FIGURE 6. The mapping pattern of Case III.

TABLE 5. For Case IV, design equations under the
condition of (7a) or (7b).

FIGURE 7. The mapping pattern of Case IV.

ranges are shown in Fig. 9(b). Detail design parameters are
listed in Table 6, and its circuit simulation result is shown
in Fig. 10 (b).

FIGURE 8. The topology of proposed dual-frequency PTLT with complex
terminal load.

FIGURE 9. Two design examples on the 3D FR-EL-EL coordinate.
(a) Design example in Case I, where r = 0.21. (b) Design example in
Case III.

TABLE 6. Design parameters of dual-frequency parallel transmission-line
transformer, where RL = 50 �.

V. EXPERIMENT
Corresponding to Example 1 and 2, two experimental circuits
were fabricated, simulated and measured, respectively.
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FIGURE 10. Ideal frequency characteristics for two design examples of
dual-frequency PTLT (corresponding to Table 6 ). (a) Example 1.
(b) Example 2.

FIGURE 11. Experimental results of Example 1. (a) Fabricated circuit.
(b) Circuit simulation, EM simulation and measured results.

EM simulated and measured results are matched
very well.

For Example 2, the design parameters are also shown
in Table 6, NPC-F260A substrate is used for demonstration.

FIGURE 12. Experimental results of Example 2. (a) Fabricated circuit.
(b) Circuit simulation, EM simulation and measured results.

The data of the substrate are εr = 2.6, tanδ = 0.004,
thickness of dielectric layer h = 0.996 mm, and conductor
thickness t = 0.018 mm. Fig. 12 shows the fabricated circuit
and its simulated and experimental results.

VI. CONCLUSION
In this paper, a parallel transmission-line transformer with
complex terminal loads was introduced for dual-frequency
design. Four different mapping patterns of designable regions
were newly summarized on the EL-EL plane under the condi-
tions of different cases of complex terminal loads. By adding
an extra vertical FR axis, the designable ranges of fre-
quency ratio could be easily drawn in the 3D cube on the
FR-EL-EL coordinate system. The visible 3D mapping
approach matched the complex terminal load of parallel
transmission-line transformer at two different frequencies.
For the certain pattern, clearly boundary distinguished the
designable and undesignable ranges. For verification, two
examples were designed, fabricated andmeasured. Simulated
and measured results were matched very well.
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