
Received February 28, 2020, accepted March 15, 2020, date of publication March 20, 2020, date of current version March 31, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2982251

A Competitive Co-Evolutionary Approach for the
Multi-Objective Evolutionary Algorithms
VAN TRUONG VU 1, LAM THU BUI1, AND TRUNG THANH NGUYEN 2
1Le Quy Don Technical University, Hanoi 100000, Vietnam
2Liverpool John Moores University, Liverpool L3 5UG, U.K.

Corresponding author: Trung Thanh Nguyen (t.t.nguyen@ljmu.ac.uk)

This work was supported in part by the Newton Fund and managed by the Royal Academy of Engineering under Grant NRCP1516-1-134,
and in part by the Vietnam Ministry of Science and Technology under Grant HNQT/SPDP/14.19.

ABSTRACT In multi-objective evolutionary algorithms (MOEAs), convergence and diversity are two basic
issues and keeping a balance between them plays a vital role. There are several studies that have attempted
to address this problem, but this is still an open challenge. It is thus the purpose of this research to develop
a dual-population competitive co-evolutionary approach to improving the balance between convergence
and diversity. We utilize two populations to solve separate tasks. The first population uses Pareto-based
ranking scheme to achieve better convergence, and the second one tries to guarantee population diversity
via the use of a decomposition-based method. Next, by operating a competitive mechanism to combine
the two populations, we create a new one with a view to having both characteristics (i.e. convergence and
diversity). The proposed method’s performance is measured by the renowned benchmarks of multi-objective
optimization problems (MOPs) using the hypervolume (HV) and the inverted generational distance (IGD)
metrics. Experimental results show that the proposed method outperforms cutting-edge co-evolutionary
algorithms with a robust performance.

INDEX TERMS Dual-population, convergence, diversity, co-evolution, competitive.

I. INTRODUCTION
There exist many practical problems in which often-
conflicted objectives need to be optimized simultaneously;
especially prolems in machine learning where we are seeking
a model with the best performance in both accuracy and
generalization measures. These problems are called multi-
objective optimization problems (MOPs). Unlike single-
objective optimization which can be easy to find the best
single solution, in multi-objective optimization (MOO), a set
of optimal solutions (called Pareto-optimal solutions) will be
usually selected. Obviously, finding the largest number of
Pareto-optimal solutions possible from theMOO is a vital but
time-consuming task. Therefore, the MOO tries to find a set
of solutions that satisfy both criteria: as close as possible to
the Pareto-optimal front and as diverse as possible [1].

Unlike single-solution-based algorithms, population-based
algorithms like evolutionary algorithms (EAs) can find a
number of solutions simultaneously and hence it has become
amajor approach for dealing withMOPs [2]. Recently,Multi-
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objective Evolutionary Algorithms (MOEAs) have become
one of the present trends in developing EAs. Various MOEAs
like Pareto-based algorithms ( [3], [4]), indicator-based algo-
rithms [5], decomposition-based algorithms [6], or direction-
based algorithm [7] have been proposed. These MOEAs
differ both in convergence as well as in diversity preserva-
tion. In general, these algorithms can be divided into three
groups. The first one (i.e Pareto-based algorithms) allo-
cates priority on handling the convergence and the second
one (i.e decomposition algorithm) focuses on the diversity.
Meanwhile, the last group (i.e indicator-based algorithms)
considers both convergence and diversity by using an indi-
cator like Hypervolume (HV). Typical indicator-based algo-
rithms are IBEA (Indicator-based evolutionary algorithm
[5]); dynamic neighborhood MOEA based on HV indicator
(DNMOEA/HI) [8]; a HV estimation algorithm (HypE) [9];
and S-metric selection evolutionary multiobjective optimisa-
tion algorithms (SMS-EMOA) [10]. These algorithms have
an advantage that they do not require any additional diver-
sity preservation mechanisms. However, when the number of
objectives increases, the computational complexity of these
algorithms also increases very quickly. This is their biggest
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weakness. This drawback has limited its application in solv-
ing multi-and many-objective problems.

In general, using only a single algorithm to solve the
problem of balancing between convergence and diversity
in MOPs is not easy. Therefore, the current trend is to
combine multiple algorithms. This approach can be divided
into two main groups: Multi-algorithm approach [15] (i.e.
using multiple algorithms on the same population) and multi-
population approaches [16] (i.e. using multiple populations,
each corresponds to one objective). In [15], to balance
between convergence and diversity, the researchers intro-
duced a multi-algorithm based on Non-dominated Sorting
Genetic Algorithm II (NSGA-II) and IBEA (namedMABNI).
To be specific, NSGA-II and IBEA ran on the same pop-
ulation. After a series of test trials, especially the ZDT
and the DTLZ ones, the MABNI produced good results.
In [16], instead of using the same population, the authors
used multiple populations to cope with multiple objectives,
in which each objective was optimized by one population.
The authors adopted particle swarm optimization (PSO) for
each swarm and designed a co-evolutionary multi-swarm
PSO algorithm (named CMPSO). The experiment results
showed that CMPSO is suitable for solving MOPs with two
and three objectives.

The multi-population approach can be regarded as a
co-evolutionary algorithm (CoEA). The general idea of
CoEA is to break down a problem into a set of sub-problems
and uses multiple populations to optimize different sub-
problems. The CoEA can be categorized into two groups
[17] which are competitive and cooperative ones. In the
competitive approach, the fitness of each individual in one
population is measured by the competition with some indi-
viduals in other populations. With regard to the latter group,
a collaborative mechanism is used to determine the fitness of
each individual. The first version of cooperative co-evolution
was proposed in [18]. In [19] a framework of the CoEA
was used for the flexible pickup and delivery problem with
time windows. In this study, there are two separate popu-
lations; one is employed for diversification purpose while
the other is used for evolutionary intensification. In [20]
based on a cooperative CoEA with dual populations, a new
hybrid learning algorithm was introduced to design a radial
basis function neural network (RBFNN) models with fea-
ture selection. While the purpose of the first population
is to find out the most significant input characteristics of
RBFNN, the second one aims at discovering the optimal
RBFNN structure. Sharing the same idea, the authors in
[21] employed a 2-population cooperative CoEA (named
differential evolution-based coevolutionary multi-objective
optimization algorithm (DECMO)). In DECMO, SPEA2
(Strength Pareto Evolutionary Algorithm 2) and DEMO (DE
for Multiobjective Optimization)/GDE3 (Generalized Differ-
ential Evolution) models with a similar fitness mechanism
were used in the first and second population respectively.
In general, the cooperative mechanism between multiple
populations is favorably utilized by CoEAs to deal with

MOPs. To interested readers, papers ([16] and [22]) are
good references for further understanding on this area of
research. Unlike the cooperative CoEAs, there exists a lack
of research addressing the competitive CoEAs ( [22]–[24]).
In [23], the authors proposed a competitive and cooperative
co-evolutionary model (named CCPSO) for designing multi-
objective particle swarm optimization algorithm. In [24],
a combination of competitive and cooperative mechanisms
was proposed to solve MOPs in a dynamic environment.

Recently, there have been many studies addressing the
problem of balancing convergence and diversity in solv-
ing more complex problems such as constrained multi-
objective optimization problems (CMOPs) ([25]–[27]),
dynamic multi-objective optimization [28], many objectives
( [29], [30]), or ensemble learning problems (with the objec-
tives of maximizing accuracy and diversity of the ensemble).
The main idea of these studies is mainly based on a combina-
tion of two Pareto-based and decomposition-based methods.
In [25], the authors used a co-evolutionary algorithm using
the two-archive strategy (called C-TAEA) for solving the
CMOPs. In particular, C-TAEA utilized two populations,
one named convergence-oriented archive (CA) and the other
named diversity-oriented archive (DA). CA’s mission is to
maintain convergence and feasibility. The DA, meanwhile,
is responsible for preserving the convergence and diversity
of the evolution process. The empirical results on benchmark
and real-world problems showed the competitiveness of the
proposed method in comparison with other state-of-the-art
algorithms.

In [31], Ke Li et al. dealt with convergence and
diversity simultaneously by employing a dual-cooperative
co-evolution paradigm (DPP). With the first population,
a Pareto-based mechanism was operated in order to main-
tain a solution set with satisfactory. The solutions of this
population are randomly spread. Regarding the second pop-
ulation, diversity was preserved by the application of a
decomposition-based mechanism. In order to guarantee this
trait, solutions in this population are uniformly spread.
Finally, a restricted mating selection mechanism (RMS) was
employed to harmonize interactions between two co-evolving
populations. In the RMS, two mating parents are chosen from
both populations. Each of them is restrictively selected from
its neighboring sub-regions with a large probability. Because
of this selection, there is a possibility that the individual in the
first population may not be found. If this happens, an alter-
native individual can be taken from the corresponding sub-
region in the second population. In such a case, both mating
parents are selected from the same population, rendering the
co-evolutionary mechanism meaningless. To address these
shortcoming, Vu et al. [32] improved this model by proposing
a new restricted selection mechanism as well as some small
improvements in the DPP model to shorten the running time
as well as achieving better results. Li et al. [33] proposed
a dual-population approach for balancing convergence and
diversity. The authors utilized a grid dominance relation-
ship to maintain the convergence and a decomposition based
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FIGURE 1. The pseudo-code of the DPP algorithm.

FIGURE 2. The way to generate offsprings from mating parents using DE operators.

selection principle to preserve well distributed solutions like
the second population in the DPP.

Inspired by the co-evolution paradigm with encouraging
results [31], we continue to explore in this direction. Specifi-
cally, in our research, a competitive co-evolutionary approach
is developed to solve multiobjective optimization problems.
The difference between this paper and existing studies is
detailed as follows. First, we utilize an other mating selection
mechanism instead of the RMS mechanism to select two
mating parents. Second, to generate two offsprings from the
selected parents, we use a competitive model instead of the
co-operative one.

In summary, our main contributions are summarized as
follows:

(a) We present a new dual-population competitive
co-evolutionary approach (DPPCP) that uses a competitive
co-evolutionary mechanism instead of a co-operative one for
interaction between two populations.

(b)We propose a new neighbor-based selectionmechanism
(NBSM) to select mating solutions instead of using restricted
mating selection (RMS) mechanism like previous studies.

(c) We perform extensive experiments on the proposed
algorithm to compare and analyze results with existing and
related algorithms.
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The rest of this paper is organized as follows. In Section II,
background algorithms are presented with two well-known
algorithms (NSGA-II andMOEA/D) and the dual-population
paradigm (DPP). Afterward, the detail of the proposed
method is shown in Section III. Then, experimental results
and discussions are given in Section IV. Finally, the paper is
concluded in Section V.

II. BACKGROUND
A. NON-DOMINATED SORTING GENETIC ALGORITHM II
(NSGA-II)
NSGA-II [3] is one of the most common algorithms among
Pareto-based EMO algorithms. This is an improved version
of NSGA [34]. In NSGA-II, based on the objective function
values, each solution knows howmany solutions it dominates
and how many solutions that dominate it. Thereafter, a non-
dominated sorting mechanism will be used to rank solutions
and assign them to Pareto-fronts (F0, . . . ,Fl, . . . ,Fp). All
solutions on the same front will not dominate each other or be
dominated by one another. Solutions on a front will dominate
solutions on other fronts with higher ranks. Both populations
of parents and offspring are joined in a hybrid population.
Half of them are selected for the new population. To construct
a new population, the selection will start from F0 (i.e. the
lowest rank front) to a front denoted as Fl . Because all solu-
tions on Fl have the same convergence, they need a diversity
mechanism to compare. NSGA-II used the crowding-distance
as a secondary selection strategy. This way, NSGA-II always
tries to keep the convergence as much as possible.

In Pareto-based algorithms, convergence and diversity are
considered in turn. In NSGA-II, for example, at each gen-
eration, solutions are ranked using a non-dominated sorting
method. As a result, a population is divided into multiple
fronts. Individuals with lower ranks (i.e. corresponds to better
convergence) are preselected. Then, solutions on the last front
are selected up to the full size of a population by using a diver-
sity selection approach (i.e. crowding distance). Therefore,
in NSGA-II, the preservation of diversity is secondary. It only
guarantees diversity for a limited number of solutions in the
population; the rest is selected mainly based on the conver-
gence regardless of their diversity. This causes a limitation in
solving problems with many-objective (i.e. more than three
objectives) or difficult problems with the complicated Pareto-
optimal set.

B. MULTIOBJECTIVE EVOLUTIONARY ALGORITHM BASED
ON DECOMPOSITION (MOEA/D)
To balance convergence and diversity, a decomposition-based
approach is also applied. In this approach, a complex MOP
is decomposed into several sub-problems and these sub-
problems are solved in a collaborative manner [11]. A MOP
may be divided into a group of single-objective problems
(e.g. MOEA/D [6] and MOEA/D-DE (MOEA/D based on
differential evolution) [12]) or a group of sub-MOPs with-
out using any aggregation function (e.g. NSGA-III [13] and

MOEA/D-M2M (a version of multiobjective optimization
evolutionary algorithm-based decomposition) [11]). Because
different solutions in the population are associated with dif-
ferent sub-problems, diversity is naturally maintained [6].
Whereas, by optimizing sub-problems, the convergence crite-
rion will be satisfied. However, the limitation of this approach
is that algorithms may struggle to preserve diversity in high
dimensional objective space. As discussed in [14] the reason
comes from the contour lines of aggregation functions used
in decomposition-based MOEAs.

MOEA/D [6] is a decomposition-based method. It decom-
poses MOPs into a set of single-objective optimization
sub-problems through an aggregation method (such as
the weighted sum, Tchebycheff and boundary intersection
approaches [35]). In order to address these sub-problems,
a population-based algorithm is applied. In MOEA/D, each
solution is associated with a sub-problem and the population
consists of the best solution for each sub-problem. There-
fore, the diversity among these sub-problems will result in
the diversity in the population. In addition, a set of evenly
spread weight vectors is used by MOEA/D to identify the
search directions. Therefore, MOEAD can produce a uniform
distribution of Pareto solutions.

C. THE DUAL-POPULATION PARADIGM (DPP)
Given in Fig.1 is the general architecture of DPP model [31],
which employed two co-evolving populations. The Pareto-
based mechanism is used in the first population (named Ap)
and the decomposition-based mechanism is used in the sec-
ond population (named Ad ). These populations engage in a
parallel evolution. At each generation, a restricted mating
selectionmechanism (RMS) allows them to interact with each
other. In the RMS, the mating parent include three solutions,
of which two are selected from Ad and the remaining one is
selected from Ap. Thanks to this, the parents could give all the
positive characteristics (i.e. the convergence and diversity) to
the offspring. To update both Ap and Ad , the offspring utilizes
the corresponding archiving mechanism.

In the RMS process, there exist two cases. In the first case,
if no solution is included in the selected sub-region in Ap,
an alternative solution will be chosen by the RMS in the
corresponding one in Ad . In the second case, if more than one
solution is found in the sub-region, only one solution will be
selected.

This algorithm gives some promising results. However,
there are two areas for possible improvements, as discussed
below:

1) RESTRICTED MATING SELECTION METHOD
The authors restrict the mating parents from neighboring
sub-regions with a high probability (and there is only a low
probability of these mating parents to be selected from the
whole population). However, they only randomly select a
neighboring sub-region from Ap regardless of whether this
sub-region contains any solutions in the Ap or not. This leads
to a high possibility that the selected sub-region does not
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FIGURE 3. A simple illustration of generating spring from mating parents.

contain any solutions (so an alternative solution has to be
borrowed from the corresponding sub-region in Ad ). This
may lead to an imbalance between the two populations.

2) THE INTERACTION BETWEEN TWO CO-EVOLVING
POPULATIONS
In DPP, the authors define the interaction as the way to
generate offspring from mating parents. To be specific, they
use differential evolution (DE) for offspring generation. This
means they need three solutions (such as, xGr1, x

G
r2, x

G
r3, where

xGr3 is the current solution, x
G
r1 is a solution selected from Ap

and xGr2 is a solution selected from Ad ) to create new offspring
(xG+1r3 ).

xG+1i = xGr3 + F ∗ (x
G
r1 − x

G
r2) (1)

It is worth noting that in Eq.1, F ∗ (xGr1 − x
G
r2) is a direction

vector. This vector is vital because it may help to direct the
current vector to a new location that is closer to the global
extremes or maybe even make it move further away from this
position. Take Fig.[2] as an example. In case 1, using Eq.1,
from the three parents xGr1, x

G
r2, x

G
r3, we can obtain an offspring

solution xG+1i whose position is closer to the global extreme
position (denoted by Min) than its parents. On the contrary,
in case 2, also using Eq.1, although the parents xGr1, x

G
r2, x

G
r3 are

close to Min, the offspring solution xG+1i is actually further
away from Min than its parents. In DPP, the authors select
xGr3 and xGr1 from Ad and xGr2 from Ap with the hope that xGr1
has good convergence properties and xGr2 has a promising
diversity. In this way, we have a large chance to generate
offspring having both of advantages. However, there still exist
two major drawbacks:

(+) Choosing two out of three solutions from the Ad
and only one from Ap may cause an imbalance in the co-
evolutionary process.

(+) Since the direction vector is made up of two solutions
in two different populations, it could lead to unpromising
outcomes, especially when the two populations are imbal-
anced (i.e. the convergence of a population is much better
than the other). Let us consider a simple example in Fig.3.
xGr2 is quite close to the Pareto front. Meanwhile, xGr1 is far
from the Pareto front. Suppose that we are running with the
Ad population, by iterating over each sub-region, for each
sub-region (assuming the current sub-region contains xGr3),
we make a random selection of two neighbour sub-regions
(e.g. NB1, NB2). In these 2 sub-regions, NB1 contains a
solution (e.g. xGr2), while NB2 does not contain any solution.
In this case, NB2 will borrow a solution in the corresponding
sub-region on theAp population(e.g. xGr1). After mating, based
on Eq.1,we might obtain the offspring xG+1i . It can be seen
that xG+1i has shifted to a position that is far from the Pareto-
front. This leads to poorer results.

This paper attempts to address the aforementioned draw-
backs. To do so, we propose a new dual-population co-
evolutionary approach named DPPCP (The dual-population
competitive co-evolutionary approach). This approach differs
from the DPP model in two ways. First, it uses a competitive
co-evolution rather than co-evolution to interact between two
co-evolving populations. Second, it uses a neighbor-based
selection mechanism (NBSM) instead of the RMS to select
three different solutions on each distinct population.

These two models are explained in more detail in the next
sections.

III. THE DUAL-POPULATION COMPETITIVE
CO-EVOLUTIONARY APPROACH (DPPCP)
The general diagram of the DPPCP is given in Fig.4
and the pseudo-code of the proposed algorithm DPPCP is
shown in Algorithm 1. There are two co-evolving popu-
lations: the first one (named Ap) is evolved by using the
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FIGURE 4. System architecture of the dual-population competitive co-evolutionary approach.

Pareto-based mechanism; the other one (named Ad ) uti-
lizes the decomposition-based mechanism to evolve. At each
generation, we use a neighbor-based selection mechanism
(NBSM) to select three candidate solutions from each of the
populations. After that, we use differential evolution (DE)
to create two offspring named ChildAp (i.e. the offspring in
population Ap) and ChildAd (the offspring in population Ad ).
Next, we let ChildAd compete with ChildAp using Pareto
dominance-based metrics and choose the winner to update
Ap. Similarly, we let ChildAp compete with ChildAd using
decomposition-based metrics and use the winner to update
Ad . At the end of the co-evolution process, the final pop-
ulation is a combination of both Ap and Ad populations.
The reason for this decision is that each of them uses a
different optimal mechanism.WhileAp uses true Pareto front,
Ad utilizes idea point (a solution with the best objective
values known since running the algorithm) as the best goal
to achieve. The roles of the two populations are the same.
Therefore, in order to preserve the good properties of both
populations (i.e. diversity and convergence), we decided to
keep both populations in the final selected population.

As mentioned above, there are two differences between the
DPPCPmodel and the DPPmodel: First, in the DPPCP, we do
not use a co-operative co-evolutionary mechanism. In other
words, we have eliminated themating parents step to generate
the offspring. Instead, we use a competitive mechanism to
make two offspring interact with each other. Second, we use
the NBSM mechanism to select three solutions in each pop-
ulation and use them to create two separate offspring.

In general, the model is divided into four main steps:
Initialization, NBSM selection, Competitive process, and
Update population.

A. INITIALIZATION
At the first step, Ap and Ad (with the same size N) are
randomly generated. However, the distribution of individuals
in the two populations is different. In Ad , N solutions are
assigned to different N sub-regions. To make sure that there is
only one solution for each sub-region, the algorithm divides
the original region into N sub-regions (denoted as Si) by using
N uniformly distributed unit vectors denoted as λi (See Fig.5).
Each λi will be identified corresponding to solutioni (or each
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Algorithm 1 DPPCP Algorithm
input : M: The number of generations.

T: The neighboring numbers
N: The population size

output: Final Population Ap and Ad

1 [Ap,Ad ] = initializePopulation()
2 W = InitializeUniformWeight()
3 B = InitializeNeighborhood()
4 Z∗ = InitializeIdealPoint()
5 Znad = InitializeNadirPoint()
6 m←0
7 while m < M do
8 offspringAp← ∅
9 for i← 1 to N do
10 ChildAp,ChildAd =

NBSMSelection(Ap,Ad , i,Bi)
11 Winner1 ==

CompeteDominate(ChildAp,ChildAd )
12 Winner2 ==

CompeteDecompostion(ChildAp,ChildAd )
13 UpdateAp(Winner1, Ap);
14 UpdateAd(Winner2, Ad );
15 Update Z∗ and Znad

16 m++;
17 end
18 end
19 Return P← Ap ∪ Ad

solution is assigned to only one sub-region). The algorithm
utilizes the λ vectors to calculate the Euclidean distance
between these vectors. Based on these distances, the algo-
rithm can determine which sub-regions are the neighbours
of a solution. In the next step (i.e. evolutionary step), when
a new solution is created, it is necessary to determine which
sub-region it belongs to. This is done based on the calculation
of the distance between the new solution and the λ vectors.
A sub-region will be selected if it contains the λ vector which
is closest to the new solution. However, it should be noted
that, instead of including this new solution in this sub-region
directly, a competition between the new solution and the
existing solution in this sub-region will take place. The better
solution (based on the fitness functions) will be selected to
assign to this sub-region. By this way, there is exactly one
solution in each sub-region and Ad is distributed evenly (i.e.
diversity) in the objective space. Unlike Ad , Ap does not rely
on the even spread of N unit vectors. Therefore, N solutions
in Ap are randomly assigned to N sub-regions (Fig.6 gives an
intuitive example of the distribution of solutions in each popu-
lation. Ap does not contain any solution in sub-regions 0, 1, 3,
5, while sub-regions 2 and 4 containmore than one solutions).
This leads to a situation that a sub-region may either not have
any solution or containmore than one solutions. Next, we find
the T closest neighborhood sub-regions for each solution(by

FIGURE 5. A simple illustration of initializing the population for Ad .

Algorithm 2 NBSMSelection(Ap,Ad ,i,Bi)

input : Ap: the pareto-based population
Ad : the decomposition-based population
i: the current sub-region index
Bi: a set contains neighborhood indexes of the

current sub-region.
T: the neighborhood size;
N: the population size

output: Q: Two mating parent

1 P1 = MatSelectionAp()
2 P2 = MatSelectionAd()
3 Solution1 = Ap[r1p]
4 Solution2 = Ap[r2p]
5 if SubRegion(r1p) does not contain any solutions then
6 Solution1 = Ad [r1p]
7 end
8 if SubRegion(r2p) does not contain any solutions then
9 Solution2 = Ad [r2p]

10 end
11 ChildAp = DE(Solution1, Solution2,Ap[i])
12 ChildAd = DE(Ad [r1d ],Ad [r2d ],Ad [i])
13 Return Q = (ChildAp ,ChildAd )

using the Euclidean distance). These neighborhoods play a
vital role in the next steps.

B. THE NEIGHBOR-BASED SELECTION MECHANISM
(NBSM)
In [6] the authors showed that: when solving continuous
MOPs, in some mild conditions, neighborhood solutions
should have similar structures. This means the neighborhood
information is very important and it should be better if we use
this important information in the orientation process for new
solutions. For that reason, we prefer to choose mating parents
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FIGURE 6. A simple illustration of distribution of solutions in sub-regions.

from several neighboring sub-regions. As for the traditional
DE operator [39], xGr1 and x

G
r2 (two components of the direc-

tion vectors in Eq.2) are randomly selected from the whole
population. This random mating selection mechanism can
explore well. However, since there is no guidance information
towards the Pareto set, it may lead to a degeneration problem.
The RMS mechanism in [31] improved this weakness by
using more information from neighboring sub-regions than
from the whole population. However, as mentioned above,
a drawback of the RMS mechanism is that the probability of
selecting a sub-region in Ap that contains at least a solution
is relatively low. At that time, the RMS borrows an alternate
solution in the Ad , which can lead to an imbalance between
two populations of the co-evolutionary process. This is the
reason why we propose another selection mechanism (i.e.
NBSM).

Algorithm 3MatSelectionAd(Ad , i,Bi)
input : Ad : the decomposition-based population

i: the current sub-region index
Bi: a set contains neighborhood indexes of the

current sub-region.
T: the neighborhood size;
N: the population size
θ : the neighborhood selection probability

output: [I,J]: Two sub-region indexes.

1 if rand < θ then
2 Randomly select two indices I, J, from Bi
3 end
4 else
5 Randomly select two indices I, J from {1, 2, . . . ,N }
6 end

The pseudo-code of the NBSM mechanism is presented in
Algorithm 2.

There are two underlying principles of the NBSM. Firstly,
we want fairness in choosing the number of solutions to
hybridize in the coevolutionary step. Secondly, the three
chosen solutions used in the DE operator must be on the
same population (in order to avoid the phenomenon as shown
in Figure 3).

Algorithm 4MatSelectionAp(Ap,i,Bi)

input : Ap: the pareto-based population
i: the current sub-region index
Bi: a set contains neighborhood indexes of

current sub-region.
T: the neighborhood size;
N: the population size
θ : the neighborhood selection probability

output: [I,J]: Two sub-region indexes.

1 listNeighborAp← ∅
2 if rand < θ then

// Select two sub-region indexes in
Ap

3 for i← 0 to T do
4 for j← 0 to N do
5 if Ap[j] ∈ Bi[i] then
6 Add j to listNeighborAp;
7 end
8 end
9 end
10 while size of listNeighborAp < 2 do
11 Randomly select an index r from 1, 2 . . . ,N
12 Add r to listNeighborAp
13 end
14 Randomly select two indices J and K from

listNeighborAp.
15 end
16 else
17 Randomly select an index from {1, 2, . . . ,N }
18 end

To generate new offspring (i.e. ChildAp or ChildAd ),
we imitate the idea from MOEA/D-DE [12]. Specifically,
in MOEA/D-DE, a solution y is generated from xr1 (i.e. the
current solution), xr2 and xr3 according to Eq.2, and a new
solution is generated by a mutation operator on ywith a small
probability, according to Eq.3

yk =

{
xr1k + F ∗ (x

r2
k − x

r3
k ), with probability < CR

xr1k , with probability 1-CR
(2)

where CR and F are two control parameters

yk =

{
yk + σk ∗ (uk − lk ), with probability pm
yk , with probability 1-pm

(3)

σk =

{
(2 ∗ rand)

1
η
+1
− 1, if rand < 0.5

1− (2− 2 ∗ rand)
1
η
+1
, otherwise

(4)

where rand is a uniform random number in [0,1]; pm is the
mutation rate; uk and lk are the upper and lower bound of the
k th decision variable, respectively.

Another major difference between the two RMS and
NBSM mechanisms is the solution selection procedure in
Ap. For each small partition, we conduct a search across the
entire T neighborhood sub-regions instead of just choosing
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FIGURE 7. The competitive mechanism.

a random sub-region as in the RMS mechanism. This way,
the probability of finding three solutions is much higher.
In the case of any individuals cannot be found in the neigh-
borhood sub-regions we borrow from the Ad .

C. THE COMPETITIVE CO-EVOLUTIONARY MECHANISM
(COMPETITIVE PROCESS)
In this step, two offspring solutions ChildAp and ChildAd
in each population are selected to participate in tourna-
ments. Fig.7 gives an intuitive explanation of this mech-
anism. Specifically, ChildAp competes against ChildAd
using the Pareto-based rule (i.e. CompeteDominance
method in Algorithm 1), a winner is selected to update
Ap. Meanwhile, ChildAd competes against ChildAp using
the decomposition-based rule (i.e. CompeteDecomposition
method in Algorithm 1). We would like to highlight the
benefits of competitive co-evolution by considering two pos-
sible cases:

(+) If two winning solutions belong to two different pop-
ulations. It means we have a solution which has good con-
vergence and another with good diversity. This is what we
expected.

(+) If two winning solutions belong to the same population
(e.g. Ap). It means, one solution in Ap has the convergence
better than its competitor (this is normal). Along with that,
the remaining solution in Ap is more diverse than its contes-
tant in Ad . It is interesting to note that, in this case, we have
one mating solution which has good convergence and the
other which not only good convergence but also excellent
diversity. Therefore, the offspring can get both of good traits.
This is very different from the cooperative co-evolution
in DPP.

D. UPDATE POPULATION
The update mechanism in each population will be different.
In research [31] the authors only updated Offspring to the

Algorithm 5 UpdateAp (winner1, Ap)

input : LimitedNum: The limited number of updated
times
N : the Population size

output: Ap after updated

1 isNonDominte= False ; Flag = False;
2 for i← 0 to N do
3 if winner1 dominate Ap[j] then
4 Update Ap[j] by winner1;
5 Flag = True;
6 Num++;
7 if Num==LimitedNum then
8 Break;
9 end
10 else if winner1 and Ap[j] are nondominated

then
11 isNonDominte = True;
12 end
13 ;
14 end
15 end
16 if isNonDominte = True and Flag = False then
17 Add winner1 to Ap
18 Ap = crowdingDistanceSelection(Ap)
19 end
20 else
21 Randomly select an index from {1, 2, . . . ,N }
22 end

nearest sub-region. This is to ensure the population diversity,
but the probability that this solution will replace the sub-
region is rather small (because it only compares to only one
sub-region, while there are some other sub-regions having
much worse solutions). This may lead to the possibility that
convergence will decrease. To improve this disadvantage,
we used the updated idea of the MOEA/D algorithm for both
populations. Specifically, we will iterate through all solutions
in the neighborhood sub-regions in question and update them
on a limited number of times (this helps to avoid having many
similar solutions as well as speeding up the convergence of
the population).

Specifically, the UpdateAd (winner2, Ad ) method in algo-
rithm 1 is used in the same way as the MOEA/D-DE algo-
rithm; whereas theUpdateAp (winner1, Ap)method is shown
in the algorithm 5.

It can be easy to see that, the way to update Ap is different
from the one in the NSGA-II algorithm. We update Ap as
soon as the winner dominates a solution in Ap and conducting
Ranking andCrowdingDistanceSelectionmethods every time
updating offspring. Meanwhile, the NSGA-II uses a list to
store all of the offspring and performing ranking when the
loop is finished.
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It is highlighted that the new offspring requires being
assigned to a certain sub-region. In this paper, to determine
the suitable sub-region, the authors first measure the distance
between its unit vector and the offspring’s objective vector.
Which sub-region has the minimum distance will be selected
to contain the offspring. It is also noted that the scaling of
each objective function differs from each other. It means the
value of objective functions can vary from low to high one.
This leads to a situation that in the calculation of the Euclid
distance, the low objective value is of no importance. There-
fore, it is essential to standardize the objective functions in the
same range of values. Here we perform the standardization
[2] to the interval [0, 1] as follows:

f normi =
fi − Z∗i

Znadi − Z∗i
(5)

where i ∈ {1, 2, . . . ,m}; m is the number of objective func-
tions.

The above analysis shows that basically Ap is similar to
NSGA-II; and Ad is similar to MOEA/D in terms of how
they work, but the details of the implementation are quite
different. In the experimental results, we will further analyze
these differences.

IV. EXPERIMENTAL STUDIES
In this step, we will perform experiments with the proposed
algorithm to clarify some following problems. First, we com-
pare the proposed method with some baseline algorithms
(i.e. NSGA-II and MOEA/D-DE) and the state-of-the-art
algorithms (ED/DPP in [31] and DPP2 in [32]). Via the
comparison results, we could see how good the performance
of the proposed method when comparing to the others. Next,
we develop a variant named DPPCP-Variant1 and compare
it to the DPPCP to know the effects of competitiveness.
In order to know the effects of the NBSM mechanism,
we create two variants namedDPPCP-Variant2 andDPPCP-
Variant3 and compare them to DPPCP. Finally, to know the
interaction between two co-evolving populations, we create
two other variants named DPPCP-Ap and DPPCP-Ad. After
that, we conduct three test cases between NSGA-II and Ap;
MOEAD and Ad ; and DPPCP-Ap and DPPCP-Ad.

A. TEST PROBLEMS
In this paper, 32 test instances (ZDT1 to ZDT6, UF1 to
UF10, WFG1 to WFG9 and DTLZ1 to DTLZ7) are used
as benchmark problems. Among these, UF1 to UF7 [38]
and WFG1 to WFG9 [36] and ZDT1, ZDT2, ZDT3, ZDT4,
ZDT6 [40] are the bi-objective test problems; and UF8,
to UF10 and DTLZ1 to DTLZ7 are tri-objective benchmarks.
More detailed properties of DTLZ problems are summarized
in Table 1.

B. PERFORMANCE METRICS
When measuring the performance of MOEAs, two common
factors considered are convergence (the closeness between
the obtained solutions set and the true Pareto optimal front)

TABLE 1. The DTLZ series test instances.

FIGURE 8. Several performance metrics used in MOEAs.

TABLE 2. The parameter setting of the MOEAs.

and diversity (the spread and distribution of solutions on the
Pareto front). There exists a number of performance metrics
to evaluate these factors such as generational distance (GD)
[10], spacing metric (SP) [10], hypervolume (HV) [11] and
inverted generational distance (IGD) [12], inverted genera-
tional distance plus (IGD+) or stability [13]. Fig.8 shows
the ability of each metric. The GD and SP metrics evalu-
ate the convergence and uniformity respectively. Meanwhile,
the IGD as well as the HV metrics measure are not only the
convergence but also the diversity of a solution set.

In this paper, the IGD and HV are chosen as the main
metrics. It is worth highlighting that the quality of a solution
depends on the HV value. The greater the HV value is,
the better the solution is. Besides, the lower the value of the
IGD is, the better.

C. PARAMETERS SETTINGS OF MOEAs
Given in table 2 are the parameters of the NSGA-II and
MOEA/D-DE. In each test trial, every algorithm is indepen-
dently run 20 times. The population size (N) is set to 300 and
the termination criterion of an algorithm is a predefined
number of generation (M), which is constantly set to 300.000.

D. DPPCP AGAINST BASELINE ALGORITHMS
As mentioned above, the DPPCP uses two populations,
one based on the Pareto mechanism (using the NSGA-II
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TABLE 3. Performance comparisons between the DPPCP with baseline algorithms using HV metric.

TABLE 4. Performance comparisons between the DPPCP with baseline algorithms using IGD metric.

algorithm), the other based on the decomposition mech-
anism (using MOEAD/DE algorithm). In order to assess
the effectiveness of using the co-evolutionary mechanism,
we compare the proposed algorithm with these two baseline
algorithms (i.e. NSGA-II and MOEAD/DE). Table 3 and
Table 4 provide the performance comparisons of DPPCP,

MOEA/D-DE and NSGA-II on 32 test instances, with respect
to the IGD and the HV metrics, respectively. Based on exper-
imental results, we can see that DPPCP achieves a better out-
come than both NSGA-II andMOEA-D/DE. It wins in 26 out
of 32 comparisons using the HV and the IGD metrics. It is
worth noting that although NSGA-II is the worst among
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TABLE 5. Performance comparisons between the DPPCP with state-of-art algorithms using HV metric.

TABLE 6. Performance comparisons between the DPPCP with state-of-art algorithms using IGD metric.

three candidates, it achieves the best IGD metric values on
the UF4 and the UF5. Meanwhile, MOEA/D-DE obtains the
best IGD metric values on the UF3, UF6, UF9, and WFG5.
By contrast, DPPCP shows a poor result on the UF5 test
instance. However, DPPCP shows better performance than
the baseline algorithm on all the ZDT and DTLZ instances.

These results indicate the effectiveness of DPPCP for achiev-
ing both convergence and diversity criteria.

E. DPPCP AGAINST STATE-OF-ART ALGORITHMS
In [31], the authors compared the DPP algorithm with some
state-of-the-art algorithms (e.g. MOEA/D-FRRMAB [41],
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TABLE 7. Performance comparisons between the DPPCP with
DPPCP-Variant1 using HV metric.

MOEA/D-RMS [11], MOEA/D-M2M [11],D2 MOPSO [42]
and HyPE [9]) with competitive results. Therefore, DPP can
be considered a state of the art algorithm. In this study,
we focus on comparing the DPPCP with the original algo-
rithm DPP (named ED/DPP) and the DPP2 algorithm [32],
a modified version of this algorithm.

The results in Table 5 and Table 6 show that the pro-
posed method (DPPCP) a is clearly better ED/DPP and DPP2
(it gives better metric value in 24 out of 32 comparisons).
In ZDT instances, DPPCP give results better than ED/DPP
in all instances, especially, in ZDT4 instance, DPPCP outper-
forms ED/DPP about 10.000 times. In UF instances, ED/DPP
achieves better performance on UF5 and UF6 instances.
However, DPPCP obtains better IGD metric values in other
UF instances, even with UF1 it is better about 100 times.
Similar to WFG instances, DPPCP achieves better metric
values in all of the comparisons (exceptWFG5). These results
show that the competitive co-evolution model proposed in
this paper outperforms the co-operative co-evolutionmethods
in ( [31], [32]).

F. EFFECTS OF COMPETITIVENESS
To verify the effect of the competitive co-evolutionary
approach, we have developed a variant (denoted as DPPCP-
Variant1). In DPPCP-Variant1, there is no interaction
between the two populations, except for a connection in the
selection stage (NBSM), where some individuals on the Ad
side can be borrowed from the Ap. Two offspring ChildAp and
ChildAd will be used to update the population immediately

TABLE 8. Performance comparisons between the DPPCP with
DPPCP-Variant1 using IGD metric.

instead of being used to compete in the DPPCP. The result is
a combination of output from each population.

The performance comparisons are shown in Table 7 and
Table 8 via the mean and standard deviation values. For each
row in the table, we highlight the best value in bold.

In Table 7, we conduct the comparison between DPPCP
and DPPCP-Variant1 using the HV metric. The DPPCP
attains better metric values in all of the comparisons (except
UF5, UF6, and UF9). Especially in Table 8, The DPPCP’s
results are about ten times as good as DPP’s are with ZDT1,
ZDT3, ZDT4, UF1, WFG3, WFG4, DTLZ5, DTLZ6 and
about 100 times with WFG1, WFG2.

It can be seen that DPPCP shows better performance than
DPPCP-Variant1 in most instances. Especially, DPPCP out-
performs DPPCP-Variant1 in the WFG series. Based on the
results, it can be clear to see the advantage of the competitive
co-evolutionary approach. It helps to achieve better results on
both criteria (i.e. convergence and diversity).

G. EFFECTS OF THE NBSM MECHANISM
To further understand the effects of the NBSM mechanism,
we extend this mechanism to two other variants as follows:
1. DPPCP-Variant2: This variant is different from DPPCP

in that it chooses two sub-regions in the Ap. If the sub-
regions do not contain any solution, it randomly selects from
the Ap instead of borrowing from the Ad such as DPPCP.
This experiment aims to show the importance of selecting
solutions in the neighborhood sub-regions.
2. DPPCP-Variant3: In Ap, instead of carefully selecting

two mating parents from all neighborhoods of the current
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TABLE 9. Performance comparisons between the DPPCP with DPPCP-Variant2 and DPPCP-Variant3 using IGD metric.

TABLE 10. Performance comparisons between the DPPCP with DPPCP-Variant2 and DPPCP-Variant3 using SPREAD metric.

sub-region, this variant randomly selects two neighborhood
sub-regions regardless of whether they contain any solu-
tion or not. If two sub-regions do not contain any solution,
they borrow from two sub-regions in the Ad respectively.
This experiment aims to show the importance of searching

for neighborhood solutions in the whole neighborhood sub-
regions.

The performance comparisons between DPPCP with two
variants, regarding the IGD and the SPREAD metrics, are
presented in Table 9 and Table 10. It is clear that DPPCP is
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TABLE 11. Performance comparisons between NSGAII with Ap using HV
metric.

TABLE 12. Performance comparisons between NSGAII with Ap using IGD
metric.

the best candidate: it obtains better metric values in 20 out
of 32 comparisons. On the contrary, DPPCP-Variant2 is the
worst among them with IGD metric. Meanwhile, DPPCP-
Variant3 obtains the poor spread.

In short, our proposed NBSM mechanism, which fully
utilizes the guidance information of the neighborhood, is
effective.

TABLE 13. Performance comparisons between MOEAD/DE with Ad using
HV metric.

TABLE 14. Performance comparisons between MOEAD/DE with Ad using
IGD metric.

H. INTERACTION BETWEEN TWO CO-EVOLVING
POPULATIONS
In this section, we clarify the effect of using dual populations.
Specifically, we consider two main points:

VOLUME 8, 2020 56941



V. T. Vu et al.: Competitive Co-Evolutionary Approach for the MOEAs

TABLE 15. Performance comparisons between DPPCP with DPPCP-Ap and DPPCP-Ad using the HV metric.

TABLE 16. Performance comparisons between DPPCP with DPPCP-Ap and DPPCP-Ad using IGD metric.

1. The effect of using competitive co-evolution on each
population.

2. The effect of the interaction between two
populations.

Specifically, we first compare Ap with the NSGA-II algo-
rithm and Ad with the MOEA/D-DE algorithm. As discussed
above, the algorithms used in Ap and Ad differ from baseline

algorithms (i.e. NSGA-II andMOEA/D) at three main points:
(a) the mating parent selection mechanism (i.e. NBSM);
(b) the way to generate offspring (i.e. competitive method);
and (c) how to update Offspring to populations. Through
this experiment, we will know whether co-evolution helps
individual populations to evolve better than independent
evolution.
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FIGURE 9. CPU time comparisons between for algorithms on different test instances (with the number of generations is 3000).

FIGURE 10. CPU time comparisons between for algorithms on different test instances (with the number of generations is 3000).

To implement this comparison, we create two new
variants of the DPPCP algorithm: DPPCP-Ad and DPPCP-
Ap. These variants are very similar to the DPPCP algo-
rithm, except that at the last step they only get the
results done by the Ap (for DPPCP-Ap) and by the Ad
(for DPPCP-Ad).

The performance of NSGA-II and DPPCP-Ap are pre-
sented in Table 11, Table 12; and Table 13, Table 14 show the
results of comparisons between MOEA/D-DE and DPPCP-
Ad. It is clear that DPPCP-Ap and DPPCP-Ad give bet-
ter results than NSGA-II and MOEA/D-DE respectively.
DPPCP-Ap wins in 25 out of 31 comparisons, DPPCP-Ad
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FIGURE 11. CPU time comparisons between DPPCP and ED/DPP on different test instances (with the number of generations is 300.000).

FIGURE 12. Plots of final solutions found by DPPCP algorithm on DTLZ test instances.

FIGURE 13. Plots of final solutions found by DPPCP algorithm on UF test instances.

obtains better in 22 out of 31 comparisons using the IGD
metric. Through experimental results, we realize that the
effectiveness of baseline algorithms is enhanced by utilizing
a competitive co-evolutionary approach.

We continue comparing the results of each independent
population (i.e. Ap and Ad ) using co-evolutionary mecha-
nisms with the result of combining both dual populations.
By this comparison, we would like to examine whether or not
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FIGURE 14. Plots of final solutions found by DPPCP algorithm on WFG test instances.

FIGURE 15. Plots of final solutions found by DPPCP algorithm on ZDT test instancess.

the use of dual populations combines the quintessence of both
populations.

Table 15 and Table 16 shows the results of comparisons
between DPPCP,DPPCP-Ap, andDPPCP-Ad. It is clear that
DPPCP achieves better values in most instances. This shows
that thanks to the co-evolution mechanism, with interactions
between solutions in two populations that the final population
can get the advantages from both populations. It can be
said that this population is likely to be able to balance both
convergence and diversity.

The final solutions obtained by the DPPCP algorithm and
the true PF on the DTLZ, UF, WFG and ZDT series are
plotted in Fig.12-15. From these figures, we find that the
proposed algorithm can find the approximation set that covers
entirely the true PF.

I. CPU TIME COMPARISON
To compare the runtime of the algorithms, we analysed
the CPU time cost of the proposed algorithm (DPPCP)
with two baselines (NSGA-II and MOEA/D) and the co-
evolution algorithms ED/DPP algorithm. We conducted
comparisons on 31 problems. To get the most accurate
assessment, all algorithms are implemented in jMetal5 (an
integrated JAVA framework). It can be downloaded from
http://jmetal.github.io/jMetal/. We run multithreading with

8 cores on computers configured as Intel Xeon E5-2620, 16gb
Ram. Experimental results are shown in Fig.9-11. We exper-
imented with two different generation parameters which are
3000 (Fig.9-10) and 300,000 (Fig.11).

Suppose thatM is the objective number; N is the population
size and T is the neighbour size. The time complexity of
MOEA/D in one generation (iteration) is only O(NTM),
where M, T�N. Meanwhile,O(MN 2) is the time complexity
of NSGA-II algorithm. The DPPCP and ED/DPP algorithms
maintain two coevolving populations. The main running
steps of these two algorithms are similar to the MOEA/D
algorithm. Thus, the complexity in these main steps is still
O(NTM). However, small steps in the algorithms often have to
be processed twice for two populations so the calculation time
will take more than baseline algorithms. Results with CPU
time show this clearly. As you can see in Fig.9, the MOEA/D
algorithm costs the least CPU time, followed by the NSGA-II
algorithm. These two baseline algorithms take less time than
the two DPPCP and ED/DPP algorithms. Fig.10 shows the
comparison of the two co-evolution algorithms. The white
boxes indicate that the DPPCP algorithm runs faster and
vice versa with the black boxes. It is evident that with a
loop count of 3000, the DPPCP algorithm runs faster than
ED/DPP in most test cases. The result is similar for these
two algorithms when the number of iterations increases to
300,000, as shown in Fig.11. The explanation for this result
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may be in the step of updating the child solution into the
Ad population. While DPPCP updates with a limited num-
ber (K<T) of neighbourhood solutions (the time complexity
is O(K)), in ED/DPP the author proceeds through all sub-
regions to calculate distances and find the nearest sub-region
and compare the child solution with solution in this sub-
region to update (the time complexity is O(NM)). This is the
main reason leading to the difference in CPU time between
these two algorithms.

V. CONCLUSION
In this paper, we presented a competitive co-evolutionary
approach (DPPCP) for balancing between convergence and
diversity in MOEAs. Specifically, we use dual-population
competitive co-evolutionary approach with a pair of popula-
tions evolved in parallel. One uses the Pareto-based mecha-
nism to obtain a better convergence and the other one uses
the decomposition-based technique to maintain the diver-
sity. These populations interact with each other via a new
neighborhood based selection mechanism (NBSMS) and a
competitive mechanism. We have evaluated the proposed
model on four sets of benchmark problems. The performance
of the DPPCP is compared with the baseline algorithms,
the original version DPP and some variants using the HV and
IGD metrics. The empirical outcomes show that the DPPCP
model is better on test instances. By comparing DPPCP with
baseline algorithms, the empirical results pointed out the
efficacy of the new competitive co-evolutionary approach in
balancing diversity and convergence in solving MOPs. This
is our first study of applying competitive co-evolution to
multi-objective optimization problems. The proposedmethod
can still be improved and expanded in several aspects such
as how to choose a final population that not only ensures
diversity but also approximates the Pareto optimal solution
set. Besides, in an extension of this work, we also plan to
apply the approach to finding optimal parameters as well as
features for machine learning models.

REFERENCES
[1] L. T. Bui, Ed., Multi-Objective Optimization in Computational Intelli-

gence: Theory and Practice. Hershey, PA, USA: IGI Global, 2008.
[2] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms,

vol. 16. Hoboken, NJ, USA: Wiley, 2001.
[3] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ‘‘A fast and elitist

multiobjective genetic algorithm: NSGA-II,’’ IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[4] E. Zitzler, M. Laumanns, and L. Thiele, ‘‘Improving the strength Pareto
evolutionary algorithm,’’ in Proc. Evol. Methods Design, Optim. Control
Appl. Ind. Problems (EUROGEN), 2001.

[5] E. Zitzler and S. Künzli, ‘‘Indicator-based selection in multiobjective
search,’’ in Proc. Int. Conf. Parallel Problem Solving Nature. Berlin,
Germany: Springer, 2004, pp. 832–842.

[6] Q. Zhang and H. Li, ‘‘MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,’’ IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712–731, Dec. 2007.

[7] L. T. Bui, J. Liu, A. Bender,M. Barlow, S.Wesolkowski, andH. A. Abbass,
‘‘DMEA: A direction-based multiobjective evolutionary algorithm,’’
Memetic Comput., vol. 3, no. 4, pp. 271–285, Dec. 2011.

[8] K. Li, S. Kwong, J. Cao, M. Li, J. Zheng, and R. Shen, ‘‘Achieving
balance between proximity and diversity in multi-objective evolutionary
algorithm,’’ Inf. Sci., vol. 182, no. 1, pp. 220–242, Jan. 2012.

[9] J. Bader and E. Zitzler, ‘‘HypE: An algorithm for fast hypervolume-based
many-objective optimization,’’ Evol. Comput., vol. 19, no. 1, pp. 45–76,
Mar. 2011.

[10] N. Beume, B. Naujoks, and M. Emmerich, ‘‘SMS-EMOA: Multiobjective
selection based on dominated hypervolume,’’ Eur. J. Oper. Res., vol. 181,
no. 3, pp. 1653–1669, Sep. 2007.

[11] H.-L. Liu, F. Gu, and Q. Zhang, ‘‘Decomposition of a multiobjective opti-
mization problem into a number of simple multiobjective subproblems,’’
IEEE Trans. Evol. Comput., vol. 18, no. 3, pp. 450–455, Jun. 2014.

[12] H. Li and Q. Zhang, ‘‘Multiobjective optimization problems with compli-
cated Pareto sets, MOEA/D and NSGA-II,’’ IEEE Trans. Evol. Comput.,
vol. 13, no. 2, pp. 284–302, Apr. 2009.

[13] K. Deb and H. Jain, ‘‘An evolutionary many-objective optimization algo-
rithm using reference-point-based nondominated sorting approach, part
I: Solving problems with box constraints,’’ IEEE Trans. Evol. Comput.,
vol. 18, no. 4, pp. 577–601, Aug. 2014.

[14] Y. Yuan, H. Xu, B. Wang, B. Zhang, and X. Yao, ‘‘Balancing convergence
and diversity in decomposition-based many-objective optimizers,’’ IEEE
Trans. Evol. Comput., vol. 20, no. 2, pp. 180–198, Apr. 2016.

[15] D. Xie, L. Ding, Y. Hu, S. Wang, C. Xie, and L. Jiang, ‘‘A multi-algorithm
balancing convergence and diversity for multi-objective optimization,’’
J. Inf. Sci. Eng., vol. 29, no. 5, pp. 811–834, 2013.

[16] Z.-H. Zhan, J. Li, J. Cao, J. Zhang, H. S.-H. Chung, and Y.-H. Shi,
‘‘Multiple populations for multiple objectives: A coevolutionary technique
for solving multiobjective optimization problems,’’ IEEE Trans. Cybern.,
vol. 43, no. 2, pp. 445–463, Apr. 2013.

[17] Q. Zhao and T. Higuchi, ‘‘Evolutionary learning of nearest-neighbor
MLP,’’ IEEE Trans. Neural Netw., vol. 7, no. 3, pp. 762–767, May 1996.

[18] M. A. Potter and K. A. De Jong, ‘‘A cooperative coevolutionary approach
to function optimization,’’ in Proc. Int. Conf. Parallel Problem Solving
Nature, 1994, pp. 249–257.

[19] H.-F. Wang and Y.-Y. Chen, ‘‘A coevolutionary algorithm for the flexible
delivery and pickup problem with time windows,’’ Int. J. Prod. Econ.,
vol. 141, no. 1, pp. 4–13, Jan. 2013.

[20] J. Tian, M. Li, and F. Chen, ‘‘Dual-population based coevolutionary algo-
rithm for designing RBFNN with feature selection,’’ Expert Syst. Appl.,
vol. 37, no. 10, pp. 6904–6918, Oct. 2010.

[21] A.-C. Zăvoianu, E. Lughofer, W. Amrhein, and E. P. Klement, ‘‘Efficient
multi-objective optimization using 2-population cooperative coevolution,’’
in Proc. Int. Conf. Comput. Aided Syst. Theory, 2013, pp. 251–258.

[22] S. Luke, Ed., Essentials of Metaheuristics. 2009.
[23] C. K. Goh, K. C. Tan, D. S. Liu, and S. C. Chiam, ‘‘A competitive and coop-

erative co-evolutionary approach to multi-objective particle swarm opti-
mization algorithm design,’’ Eur. J. Oper. Res., vol. 202, no. 1, pp. 42–54,
Apr. 2010.

[24] C.-K. Goh and K. C. Tan, ‘‘A competitive-cooperative coevolutionary
paradigm for dynamic multiobjective optimization,’’ IEEE Trans. Evol.
Comput., vol. 13, no. 1, pp. 103–127, Feb. 2009.

[25] K. Li, R. Chen, G. Fu, and X. Yao, ‘‘Two-archive evolutionary algorithm
for constrained multiobjective optimization,’’ IEEE Trans. Evol. Comput.,
vol. 23, no. 2, pp. 303–315, Apr. 2019.

[26] L. Zhang, X. Bi, and Y. Wang, ‘‘Adaptive truncation technique for con-
strained multi-objective optimization,’’ KSII Trans. Internet Inf. Syst.,
vol. 13, no. 11, pp. 5489–5511, 2019.

[27] Y. Liu, X. Li, and Q. Hao, ‘‘A new constrained multi-objective optimiza-
tion problems algorithm based on group-sorting,’’ in Proc. Genet. Evol.
Comput. Conf. Companion (GECCO), 2019, pp. 221–222.

[28] J. Ou, J. Zheng, G. Ruan, Y. Hu, J. Zou, M. Li, S. Yang, and X. Tan,
‘‘A Pareto-based evolutionary algorithm using decomposition and trun-
cation for dynamic multi-objective optimization,’’ Appl. Soft Comput.,
vol. 85, Dec. 2019, Art. no. 105673.

[29] C. Bao, L. Xu, and E. D. Goodman, ‘‘A new dominance-relation metric
balancing convergence and diversity in multi- and many-objective opti-
mization,’’ Expert Syst. Appl., vol. 134, pp. 14–27, Nov. 2019.

[30] H. Seada, M. Abouhawwash, and K. Deb, ‘‘Multiphase balance of diver-
sity and convergence in multiobjective optimization,’’ IEEE Trans. Evol.
Comput., vol. 23, no. 3, pp. 503–513, Jun. 2019.

[31] K. Li, S. Kwong, and K. Deb, ‘‘A dual-population paradigm for evolution-
ary multiobjective optimization,’’ Inf. Sci., vol. 309, pp. 50–72, Jul. 2015.

[32] V. T. Vu, L. T. Bui, and T. T. Nguyen, ‘‘A modified dual-population
approach for solving multi-objective problems,’’ in Proc. 21st Asia Pacific
Symp. Intell. Evol. Syst. (IES), Nov. 2017, pp. 89–94.

56946 VOLUME 8, 2020



V. T. Vu et al.: Competitive Co-Evolutionary Approach for the MOEAs

[33] K. Li, K. Deb, and Q. Zhang, ‘‘Evolutionary multiobjective optimization
with hybrid selection principles,’’ in Proc. IEEE Congr. Evol. Comput.
(CEC), May 2015, pp. 900–907.

[34] N. Srinivas and K. Deb, ‘‘Muiltiobjective optimization using nondom-
inated sorting in genetic algorithms,’’ Evol. Comput., vol. 2, no. 3,
pp. 221–248, Sep. 1994.

[35] I. Das and J. E. Dennis, ‘‘Normal-boundary intersection: A new method
for generating the Pareto surface in nonlinear multicriteria optimization
problems,’’ SIAM J. Optim., vol. 8, no. 3, pp. 631–657, 1998.

[36] S. Huband, P. Hingston, L. Barone, and L.While, ‘‘A review of multiobjec-
tive test problems and a scalable test problem toolkit,’’ IEEE Trans. Evol.
Comput., vol. 10, no. 5, pp. 477–506, Oct. 2006.

[37] E. Zitzler and L. Thiele, ‘‘Multiobjective evolutionary algorithms: A com-
parative case study and the strength Pareto approach,’’ IEEE Trans. Evol.
Comput., vol. 3, no. 4, pp. 257–271, Nov. 1999.

[38] Q. Zhang, ‘‘Multiobjective optimization test instances for the CEC 2009
special session and competition,’’ Univ. Essex, Colchester, U.K., Nanyang
Technol. Univ., Singapore, Tech. Rep., 2008.

[39] S. Das and P. N. Suganthan, ‘‘Differential evolution: A survey of the state-
of-the-art,’’ IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 4–31, Feb. 2011.

[40] E. Zitzler, K. Deb, and L. Thiele, ‘‘Comparison of multiobjective evo-
lutionary algorithms: Empirical results,’’ Evol. Comput., vol. 8, no. 2,
pp. 173–195, 2000.

[41] K. Li, A. Fialho, S. Kwong, and Q. Zhang, ‘‘Adaptive operator selec-
tion with bandits for a multiobjective evolutionary algorithm based on
decomposition,’’ IEEE Trans. Evol. Comput. vol. 18, no. 1, pp. 114–130,
Feb. 2014.

[42] N. A. Moubayed, A. Petrovski, and J. McCall, ‘‘D2MOPSO: MOPSO
based on decomposition and dominance with archiving using crowding
distance in objective and solution spaces,’’ Evol. Comput., vol. 22, no. 1,
pp. 47–77, 2014.

VAN TRUONG VU received the B.S. degree in
geomatics and the M.S. degree in information
systems from Le Quy Don Technical University,
Hanoi, Vietnam, in 2010 and 2014, respectively,
where he is currently pursuing the Ph.D. degree in
information technology.

His research interests include the evolutionary
computations specialized with evolutionary multi-
objective optimization, machine learning, and GIS
and remote sensing.

LAM THU BUI received the Ph.D. degree in
computer science from the University of New
South Wales (UNSW), Australia, in 2007. He
was a Postdoctoral Training with UNSW, from
2007 until 2009. He has been involved with aca-
demics, including teaching and research, since
1998. He is currently an Associate Professor with
Le Quy Don Technical University, Hanoi, Viet-
nam. He is researching in the field of evolutionary
computation, specialized with evolutionary multi-

objective optimization. He was the co-editor of the book Multi-objective
Optimization in Computational Intelligence: Theory and Practice (Hershey,
PA: IGI Global Information Science Reference Series, 2008). He was a
member of the Evolutionary Computation Technical Committee, the IEEE
Computational Intelligence Society. He has been a member of the program
committees of several conferences and workshops in the field of evolutionary
computing, such as the IEEECongress on Evolutionary Computation and the
Genetic and Evolutionary Computation Conference.

TRUNG THANH NGUYEN has an interna-
tional standing in operational research for logis-
tics/transport. He is currently a Reader in
operational research (OR) with Liverpool John
Moores University, and also the Co-Director with
the Liverpool Offshore andMarine Research Insti-
tute. He has led more than 20 research projects
in transport/logistics, most with close industry
collaborations. He has published about 50 peer-
reviewed articles. All of his journal articles are in

leading journals (ranked 1st-20th in their fields). He co-organized six leading
conferences, was a TPC member of more than 30 international conferences,
edited eight books, and gave speeches to many conferences/events.

VOLUME 8, 2020 56947


