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ABSTRACT This paper presents the exponential synchronization for a class of memristive Cohen-Grossberg
neural networks (MCGNNs) with mixed delays via a new hybrid control strategy. This new hybrid control
strategy combines pinning control and periodic intermittent control. According to the feature of memristor,
the memristive terms of the MCGNNs with mixed delays are normalized by a simple linear transformation.
Then the designed periodic intermittent control is added to selected partial network nodes. Based on
the stability theory of memristive neural networks and the exponential synchronization rule, the new
synchronization conditions are given. Finally, numerical simulations are provided to show the effectiveness
of the theoretical method.

INDEX TERMS Memristive Cohen-Grossberg neural networks, exponential synchronization, pinning
control, periodic intermittent control.

I. INTRODUCTION
In the past few decades, neural networks have been exten-
sively studied in such diverse fields as associative mem-
ory, classification, parallel computation, pattern recognition,
signal processing, decision aid, and artificial intelligence
[1]–[4]. In 1983, Cohen-Grossberg neural networks (CGNNs)
were proposed by Cohen and Grossberg [5], which can be
described by:

żl(t) = cl (zl(t)) {−dl (zl(t)) zl(t)

+

N∑
k=1

alk (zl(t)) fk (zk (t))+ Jl}. (1)

where l, k = 1, 2, · · ·N , N ≥ 2 is the number of neurons
in the CGNNs. zl(t) is the state variable associated with the
l-th neuron at the time t . cl(·) and dl(·) represent the amplifi-
cation function and the behaved function, respectively. alk (·)
denotes the neuron interconnection weights. The activation
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functions fk (·) map the input of the neuron to the output.
The constants Jk represent the external inputs of the CGNNs.
Since it includes a large class of models from the view of
neurobiology, population biology, and evolutionary theory,
as well as the well-known Hopfield neural networks [6]–[10]
and recurrent neural network [11]–[18], the model of CGNNs
[19]–[32] is quite general.

Due to the speed limitations of amplifier processing, signal
transmission and conversion, time delays are ubiquitous in the
hardware implementations of neural networks. Marcus and
Westervelt pointed [33] out time delays were easily ignored in
theoretical models and firstly proposed the stability of Hop-
field neural networks with a constant time delay τ > 0. After
that, the stability of neural networks with multiple delays [19]
τk > 0 was studied. However, the unknown and bounded
delay 0 ≤ τlk (t) ≤ τ is more suitable in the neural net-
works. Thus, the dynamics of various neural networks with
the time-varying delays [15]–[17], [20]–[27], [34]–[37] are
taken into consideration. On the other hand, due to a special
characteristic of neural networks formed by a large number of
neurons through parallel channels, the distributed delay exists
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in signal transmission between the different axon size and
size of neurons. Thus, the unbounded distributed delay [18],
[28], [38], [39] has also attracted much attention and has been
extensively studied. Particularly, it can be used to solve some
practical problems such as the dynamics analysis of neural
networks with constant delays or time-varying delays [27],
[29]–[32], [40]–[42].

In 1971, Chua [43] proposed the fourth basic circuit
elements, called memristor. However, the physical model
of the memristor has not been proposed in the next few
decades. Until 2008, HP researchers observed memristance
in nanoscale electronic devices [44]. Due to its characteristic,
memristor has wide application prospect such as: non-volatile
random access memory (NVRAM), synapses of artificial
neural network, chaos control and secret communication.

Especially, the studies on memristive CGNNs (MCGNNs)
in the stability [27], [29], [30] and synchronization [24], [25],
[31], [32] attract more attention. Among them, it is worth
studying on synchronization for a class of MCGNNs in the
field of secure communications, image and data encryption.
Based on a simplified MCGNNs with mixed delays obtained
by a non-linear transformation, Yang et al. [32] deals with
the problem of exponential synchronization for the networks
through a state feedback controller. Abdurahman et al. [25]
proposed a controller consisting of three switching open-loop
controls and a linear feedback control to achieve exponential
function projective synchronization for MCGNNs with time-
varying delays. Chen et al. [31] designed a feedback control
to complete the finite-time synchronization for MCGNNs
with mixed delays by using the same non-linear transforma-
tion as Yang.

Noted that there are different control methods have been
applied to achieve synchronization for neural neworks such
as feedback control [13], [15], [23]–[25], [31], [32], adap-
tive control [45], pinning control [46]–[48], impulsive con-
trol [49], sliding mode control [50], fuzzy control [51] and
intermittent control [23], [51]–[54]. Abdurahman et al. [23]
studied that the exponential lag synchronization of CGNNs
with mixed time-delays via periodically intermittent con-
trol. In [53], the exponential synchronization of memristive
neural networks with time-varying delays was proposed via
designing a pinning aperiodic intermittent control. Feng et al.
[54] considered the asymptotic synchronization of memris-
tive neural networks with mixed delays via quantized inter-
mittent control. To achieve synchronization of MCGNNs,
the continuous control is added in every nodes of networks
[24], [25], [31], [32]. Obviously, in practical neural networks,
it is impossible to control each node. And the continuous
control may cost more. Thus, the use of pinning intermittent
control can solve this problem. Pinning control enables the
entire MCGNNs to have the desired behavior by selectively
applying control to partial nodes in the MCGNNs. In order to
further reduce resource consumption, intermittent control is
applied to selected nodes to achieve synchronization.

Based on the description above, the exponential synchro-
nization was presented via hybrid control for a class of

MCGNNs with mixed delays. Currently, the new study will
arise new challenges. (1)How to reduce the complexity of
theMCGNNs solution caused by the time-varying delays and
distribution delays. (2)How to determine the control gain and
the control duration to achieve exponential synchronization
for MCGNNs with mixed delays. In this paper, to balance the
control parameters, some new synchronization conditions are
given. The main contributions are described as follows:

(1) The memristive terms of the MCGNNs with mixed
delays are normalized by the feature of memristor and a
simple linear transformation. Compared with the previous
methods, the control gain is more accurate.

(2) The hybrid control is designed by pinning control
and periodic intermittent control. By selecting part of the
MCGNNs with mixed delays for periodic intermittent con-
trol, the exponential synchronization of the networks are
achieved. Moreover, the hybrid control is general. According
to changing the control parameter and amplification function,
the exponential synchronization of the MCGNNs with time-
varying delays or the memristive neural networks with time-
varying delays or mixed delays can be achieved.

(3) At present, there are few researches on the synchro-
nization control system by combining pinning control and
intermittent control. In addition, as far as we known, there
is no literature study the synchronization of MCGNNs via a
pinning periodic intermittent control. To expand synchroniza-
tion researches on memristive neural networks, it is of great
significance on the synchronization onMCGNNs with mixed
delays by a hybrid control.

The rest of this paper is organized as follows. The model of
the MCGNNs with mixed delays and some definitions, lem-
mas and assumption are given in Section 2. Then, in Section 3,
the exponential synchronization conditions are given. And
the control gain and the control duration are proposed.
In Section 4, to illustrate the feasibility of the main results,
some simulations are given. Finally, the conclusion is given
in Section 5.
Notation: R and Rn donate the space of real numbers and

the n-dimensional Euclidean space. exp{·}means exponential
function with base natural exponential e. ‖xi‖=

∑n
i=0(x

2
i )

1/2

means 2-norm.

II. PRELIMINARY
In this paper, the MCGNNs with mixed delays is chosen,
which can be described by:

żi(t) = c(zi(t))

−di(zi(t))zi(t)+
N∑
j=1

[
aij(zi(t))fj(zj(t))

+ bij(zi(t))gj(zj(t − τij(t)))+ wij(zi(t))

×

∫ t

t−τij(t)
hj(zj(s)) ds

]
+ Ji

}
, i, j = 1, 2, · · · ,N .

(2)

with the initial conditions: z(s) = 9z(s)∈ (9z
1(s), 9

z
2(s)), · · · ,

9z
n(s) ∈ C(s,Rn), s ∈ (−τ, 0], where term gj(zj(t − τij(t)))
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and hj(zj(s)) denote the activation functions. Term τij(t) rep-
resents the time-varying delay function. Term bij(zi(t)) and
wij(zi(t)) describe the connection weights of MCGNNs. And
di(zi(t)), aij(zi(t)), bij(zi(t)) and wij(zi(t)) can be described as
follows:

di(zi(t)) =
1
Ci

[
∑n

j=1
(Mf

ij +M
g
ij +Mh

ij)× sgnij +
1
Ri
],

aij(zi(t)) =
M

f
ij

Ci
× sgnij,

bij(zi(t)) =
M

g
ij

Ci
× sgnij, wij(zi(t)) =

Mh
ij

Ci
× sgnij,

sgnij =

{
1, if i = j
−1, if i 6= j.

where Mf
ij, M

g
ij and Mh

ij donate the memristance of memris-

torsW f
ij ,W

g
ij andW

h
ij respectively.W

f
ij represents the memris-

tor between fj(zj(t)) and zj(t). W
g
ij represents the memristor

between gj(zj(t − τij(t))) and zj(t − τij(t)). W h
ij represents

the memristor between hj(zj(t)) and zj(t), Ri represents the
resistance corresponding to the capacitor Ci.
According to the feature of the memristor and current-

voltage characteristics, we can brief these MCGNNs and get:

di(zi(t)) =

{
d◦i , if |zi(t)| ≤ Ti
d◦◦i , if |zi(t)| > Ti,

(3)

aij(zi(t)) =

{
a◦ij, if |zi(t)| ≤ Ti
a◦◦ij , if |zi(t)| > Ti

(4)

bij(zi(t)) =

{
b◦ij, if |zi(t)| ≤ Ti
b◦◦ij , if |zi(t)| > Ti.

(5)

wij(zi(t)) =

{
w◦ij, if |zi(t)| ≤ Ti
w◦◦ij , if |zi(t)| > Ti.

(6)

where d◦i , d
◦◦
i , a◦ij, a

◦◦
ij , b

◦◦
ij , b

◦◦
ij w◦ij, w

◦◦
ij and Ti are known

constants, Ti > 0 are the voltage thresholds.
To finish the main results in this paper, the MCGNNs

satisfies the following assumptions:
Assumption 1: The amplification functions ci(·) are con-

tinuous and bounded, i.e., for each i ∈ I there exist two
positive constants ci and ci such that: 0 < ci ≤ ci(u) ≤ ci,
∀u ∈ R.
Assumption 2: The activation functions fj(·), gj(·) and hj(·)

are Lipschitz continuous and bounded, i.e., for each j ∈ I ,
there exist positive constants L f1j , L

f2
j , L

g1
j , L

g2
j , L

h1
j and Lh2j

such that:

L f1j ≤
fj(u)− fj(v)
u− v

≤ L f2j ,

Lg1j ≤
gj(u)− gj(v)

u− v
≤ Lg2j ,

Lh1j ≤
hj(u)− hj(v)

u− v
≤ Lh2j .

Assumption 3: The delay functions τij(t) are bounded and
satisfy the inequations 0 ≤ τij(t) ≤ τ and τ̇ij(t) ≤ τij.

Based on previous works [29], [59], the memristive
behaved function is defined as follow:

di(zi(t)) = d◦i
1− sgn(zi(t))

2
+ d◦◦i

1+ sgn(zi(t))
2

,

where di(zi(t)) =

{
d1i, |zi(t)| ≤ 0
d2i, |zi(t)| > 0.

Let xi(t) = zi(t)− Ti and żi(t) = ẋi(t),

sgn(xi(t)) =

{
−1, |xi(t)| ≤ 0
1, |xi(t)| > 0.

Similarly, the memristive functions di(zi(t)), aij(zi(t)),
bij(zi(t)) and wij(zi(t)) can be rewritten:

di(zi(t)) = d◦i
1− sgn(xi(t))

2
+ d◦◦i

1+ sgn(xi(t))
2

=
1
2
(d◦i + d

◦◦
i )+

1
2
(d◦◦i − d

◦
i )× sgn(xi(t)), (7)

aij(zi(t)) = a◦ij
1− sgn(xi(t))

2
+ a◦◦ij

1+ sgn(xi(t))
2

=
1
2
(a◦ij + a

◦◦
ij )+

1
2
(a◦◦ij − a

◦
ij)× sgn(xi(t)), (8)

bij(zi(t)) = b◦ij
1− sgn(xi(t))

2
+ b◦◦ij

1+ sgn(xi(t))
2

=
1
2
(b◦ij + b

◦◦
ij )+

1
2
(b◦◦ij − b

◦
ij)× sgn(xi(t)). (9)

wij(zi(t)) = w◦ij
1− sgn(xi(t))

2
+ w◦◦ij

1+ sgn(xi(t))
2

=
1
2
(w◦ij+w

◦◦
ij )+

1
2
(w◦◦ij −w

◦
ij)×sgn(xi(t)). (10)

For simplicity, the notations shown below are given to brief
the parameters:

od1i =
1
2
(d◦i + d

◦◦
i ), od2i =

1
2
(d◦◦i − d

◦
i ),

oa1ij =
1
2
(a◦ij + a

◦◦
ij ), oa2ij =

1
2
(a◦◦ij − a

◦
ij),

ob1ij =
1
2
(b◦ij + b

◦◦
ij ), ob2ij =

1
2
(b◦◦ij − b

◦
ij),

ow1
ij =

1
2
(w◦ij + w

◦◦
ij ), ow2

ij =
1
2
(w◦◦ij − w

◦
ij).

Based on the description above, the MCGNNs(2) can be
rewritten as follows:

ẋi(t) = ci(xi(t)+ Ti)

{
− (od1i + o

d2
i × sgn(xi(t)))

× (xi(t)+ Ti)+
N∑
j=1

[
(oa1ij + o

a2
ij × sgn(xi(t)))

× fj(xj(t)+ Tj)+ (ob1ij + o
b2
ij × sgn(xi(t)))

× gj(xj(t − τij(t))+ Tj)+ (ow1
ij + o

w2
ij

×sgn(xi(t)))
∫ t

t−τij(t)
hj(xj(s)+ Tj) ds

]
+ Ji

}
,

i, j = 1, 2, · · · ,N . (11)
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Obviously, the differential equation of theMCGNNs(11) is
discontinuous at the right hand side and solutions of the clas-
sical sense are not applicable to all MCGNNs in this paper.
So in the following we define solutions of the discontinu-
ous MCGNNs in Filippovİŕs sense [55], [56]. By using the
theories of set-valued maps and differential inclusions [57],
[58], from the MCGNNs(11) we can obtain the following
differential inclusion:

ẋi(t) ∈ ci(xi(t)+ Ti)

{
− (od1i + o

d2
i × [−1, 1])

× (xi(t)+ Ti)+
N∑
j=1

[
(oa1ij + o

a2
ij × [−1, 1])

× fj(xj(t)+ Tj)+ (ob1ij + o
b2
ij × [−1, 1])

× gj(xj(t − τij(t))+ Tj)+ (ow1
ij + o

w2
ij × [−1, 1]

×

∫ t

t−τij(t)
hj(xj(s)+ Tj) ds

]
+ Ji

}
,

i, j = 1, 2, · · · ,N . (12)

Or equivalently, there exists ςx ∈ [−1, 1], such that

ẋi(t) = ci(xi(t)+ Ti)

{
− (od1i + o

d2
i ςx)(xi(t)+ Ti)

+

N∑
j=1

[
(oa1ij + o

a2
ij ςx)fj(xj(t)+ Tj)+ (ob1ij + o

b2
ij ςx)

× gj(xj(t − τij(t))+ Tj)+ (ow1
ij + o

w2
ij ςx

×

∫ t

t−τij(t)
hj(xj(s)+ Tj) ds

]
+ Ji

}
,

i, j = 1, 2, · · · ,N . (13)

Consider networks (2) as the drive networks and the
response networks are given as follows:

v̇i(t) = ci(vi(t))

− di(vi(t))zi(t)+
N∑
j=1

[
aij(vi(t))fj(vj(t))

+ bij(vi(t))gj(vj(t − τj(t)))+ wij(vi(t))

×

∫ t

t−τij(t)
hj(vj(s)) ds

]
+ Ji

}
+ Ui(t),

i, j = 1, 2, · · · ,N . (14)

with the initial conditions: v(s) = 9v(s)∈ (9v
1(s), 9

v
2(s)), · · · ,

9v
n(s) ∈ C(s,Rn), s ∈ (−τ, 0], where Ui(t) denotes the con-

trol law that will be designed to achieve the synchronization
between MCGNNs (2) and (14).
Let yi(t) = vi(t)− Ti and v̇i(t) = ẏi(t),

sgn(yi(t)) =

{
−1, |yi(t)| ≤ 0
1, |yi(t)| > 0

, we have:

ẏi(t) = ci(yi(t)+ Ti)

{
− (od1i + o

d2
i × sgn(yi(t)))

× (yi(t)+ Ti)+
N∑
j=1

[
(oa1ij + o

a2
ij × sgn(yi(t)))

× fj(yj(t)+ Tj)+ (ob1ij + o
b2
ij × sgn(yi(t)))

× gj(yj(t − τij(t))+ Tj)+ (ow1
ij + o

w2
ij

× sgn(yi(t)))
∫ t

t−τij(t)
hj(yj(s)+ Tj) ds

]
+ Ji

}
+Ui(t), i, j = 1, 2, · · · ,N . (15)

Similarly, we can obtain the following differential inclu-
sion from MCGNNs(15):

ẏi(t) ∈ ci(yi(t)+ Ti)

{
− (od1i + o

d2
i × [−1, 1])(yi(t)+ Ti)

+

N∑
j=1

[
(oa1ij + o

a2
ij × [−1, 1])fj(yj(t)+ Tj)

+ (ob1ij + o
b2
ij × [−1, 1])gj(yj(t−τij(t))+Tj)+(o

w1
ij

+ ow2
ij × [−1, 1]

∫ t

t−τij(t)
hj(yj(s)+ Tj) ds

]
+ Ji

}
+Ui(t), i, j = 1, 2, · · · ,N . (16)

Or equivalently, there exists ςy ∈ [−1, 1], such that

ẏi(t) = ci(yi(t)+ Ti)

{
− (od1i + o

d2
i ςy)(yi(t)+ Ti)

+

N∑
j=1

[
(oa1ij + o

a2
ij ςy)fj(yj(t)+ Tj)

+ (ob1ij + o
b2
ij ςy)gj(yj(t − τij(t))+ Tj)+ (ow1

ij

+ ow2
ij ςy ×

∫ t

t−τij(t)
hj(yj(s)+ Tj) ds

]
+ Ji

}
+Ui(t), i, j = 1, 2, · · · ,N . (17)

Remark 1: Usually, the neuron interconnection weights
of memristive neural networks [13], [15], [16], [24], [25],
[29]–[32], [34], [35] are expressed as co[aij(·)] or co[aij(·)]
in the sense of Filippov. To obtain more accurate control
gain, the memristive terms of MCGNNs with mixed delays are
normalized by a simple linear transformation. And the mem-
ristive terms can be expressed as ςx ∈ [−1, 1]. Moreover,
the control gain depends on ςx and each weight of MCGNNs
with mixed delays, instead of picking the maximum or mini-
mum value of the memristive terms.
Then, the synchronization error of networks (2) and (14) can
be represented by: ei(t) = vi(t) − zi(t) = yi(t) − xi(t) with
the initial conditions e(s) = 9v(s)−9z(s).
Definition 1: Networks (2) and Networks (14) are said to

be globally exponentially synchronized, if there exist con-
stants M ≥ 1 and % such that
|vi(t)− zi(t)| ≤ Mexp{−%t},i = 1, 2, · · · , n,

where M = γ ‖9v(s) − 9z(s)‖,γ is a constant and the
constant % > 0 is said to be the degree of exponential
synchronization.
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Lemma 1 ( [32]): If the Assumption2 holds,then for any
i, j ∈ I , f (0) = g(0) = h(0) = 0, there exist the following
inequations:
ςyfj(yi(t))− ςx fj(xi(t)) ≤ ςL

f
j |yi(t)− xi(t)|,

ςygj(yi(t))− ςxgj(xi(t)) ≤ ςL
g
j |yi(t)− xi(t)|,

ςy
∫ t
t−τij

hj(yi(s))ds− ςx
∫ t
t−%j

hj(xi(s))ds

≤ ςLhj
∫ t
t−τij
|yi(s)− xi(s)|,

where ς = max{ςy, ςx}, L
f
j = max{L f1j ,L

f2
j }, L

g
j =

max{Lg1j ,L
g2
j } and L

h
j = max{Lh1j ,L

h2
j }.

III. MAIN RESULTS
In this paper, the hybrid control with periodic intermittent
control and pinning control is designed. The first n(1 ≤ n <
N ) nodes of the response networks (14) are selected and
pinned. Moreover, the periodic intermittent control is applied
to n nodes networks to achieve the synchronization between
drive networks (2) and response networks (14). The hybrid
control is designed as follows:

Ui(t) =

{
ui(t), |ei(t)| > 0
0, |ei(t)| = 0

(18)

where ui(t) = −βi(t)(vi(t)−zi(t))sgn(vi(t)−zi(t)), 1 ≤ i ≤ n,
the control gain

βi(t) =

{
βi, µT ≤ t < µT + θ
0, µT + θ ≤ t < (µ+ 1)T

, T > 0 is the

control period, θ is the control duration, µ = 0, 1, 2, · · · .
Remark 2: At present, the synchronization of neural

networks often uses global feedback control [13], [15],
[23]–[25], [31], [32]. And the control is continuously applied
to the response networks. Firstly, in practical applications,
the use of continue control will increase costs. Intermittent
control can reduce control costs. Secondly, in a large and
complex network, it is impractical to control each network
node. The use of pinning control can reduce network control
nodes and control complexity. Obviously, combining inter-
mittent control with pinning strategy can further reduce the
control cost and control complexity.
If |ei(t)| > 0 and µT ≤ t < µT + θ , the error dynamical
networks can be written:

ėi(t) = ci(yi(t)+ Ti)

{
− (od1i + o

d2
i ςy)(yi(t)+ Ti)

+

n∑
j=1

[
(oa1ij + o

a2
ij ςy)fj(yj(t)+ Tj)+ (ob1ij + o

b2
ij ςy)

× gj(yj(t − τij(t))+ Tj)+ (ow1
ij + o

w2
ij ςy

×

∫ t

t−τij(t)
hj(yj(s)+ Tj) ds

]
+ Ji

}
− βi|ei(t)|

− ci(xi(t)+ Ti)

{
− (od1i + o

d2
i ςx)(xi(t)+ Ti)

+

n∑
j=1

[
(oa1ij + o

a2
ij ςx)fj(xj(t)+ Tj)+ (ob1ij + o

b2
ij ςx)

× gj(xj(t − τij(t))+ Tj)+ (ow1
ij + o

w2
ij ςx

×

∫ t

t−τij(t)
hj(xj(s)+ Tj) ds

]
+ Ji

}
. (19)

If |ei(t)| = 0 or µT + θ ≤ t < (µ + 1)T , the error
dynamical networks can be written:

ėi(t) = ci(yi(t)+ Ti)

{
− (od1i + o

d2
i ςy)(yi(t)+ Ti)

+

n∑
j=1

[
(oa1ij + o

a2
ij ςy)fj(yj(t)+ Tj)+ (ob1ij + o

b2
ij ςy)

× gj(yj(t − τij(t))+ Tj)+ (ow1
ij + o

w2
ij ςy

×

∫ t

t−τij(t)
hj(yj(s)+ Tj) ds

]
+ Ji

}

− ci(Tixi(t)+ Ti)

{
− (od1i + o

d2
i ςx)(xi(t)+ Ti)

+

n∑
j=1

[
(oa1ij + o

a2
ij ςx)fj(xj(t)+ Tj)+ (ob1ij + o

b2
ij ςx)

× gj(xj(t − τij(t))+ Tj)+ (ow1
ij + o

w2
ij ςx

×

∫ t

t−τij(t)
hj(xj(s)+ Tj) ds

]
+ Ji

}
. (20)

Theorem 1: Let the Assumptions1–Assumptions3 hold,
under the hybrid control Ui(t), the drive networks(2) can
be globally exponentially synchronized with response net-
works(14), if there exists constants β > α2 + α3 + δ, ρ1 > δ

and ρ2 satisfying the following conditions:

(C1)− α1 + α2 + α3 + ρ1 − β < 0,

(C2)− α1 + α2 + α3 − ρ2 < 0,

(C3)% = ε − (ρ1 + ρ2)(1−
θ

T
) > 0. (21)

where ε > 0 is the unique positive solution of the equation
ε − ρ1 + δ exp{ετ } = 0. Proof: Consider a proper
Lyapunov function as follows:

V (t) = V1(t)+ V2(t) (22)

where

V1(t) =
n∑
i=1

∫ yi(t)+Ti

xi(t)+Ti

sgn(yi(t)− xi(t))
ci(s)

ds,

V2(t) =
n∑
i=1

n∑
j=1

(
ow1
ij + o

w2
ij ς

)
Lhj

×

∫ 0

−τij(t)

∫ t

t+s
eρ1(u−t)

yj(u)− xj(u)
sgn(yj(u)− xj(u))

duds.

According to Assumption1, the boundary values of∫ yi(t)+Ti
xi(t)+Ti

sgn(yi(t)−xi(t))
ci(s)

ds can be obtained:

|ei(t)|
ci
≤

∫ yi(t)+Ti

xi(t)+Ti

sgn(yi(t)− xi(t))
ci(s)

ds ≤
|ei(t)|
ci

.
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Firstly, calculating the upper right derivative of Vm(t),m =
1, 2 along the trajectory of error networks ei(t), we have

D+V1(t)

=

n∑
i=1

sgn(ei(t))
(

ẏi(t)
ci(yi(t)+ Ti)

−
ẋi(t)

ci(xi(t)+ Ti)

)

=

n∑
i=1

sgn(ei(t))

{
− (od1i + o

d2
i ςy)(yi(t)+ Ti)

+

n∑
j=1

[
(oa1ij + o

a2
ij ςy)fj(yj(t)+ Tj)+ (ob1ij + o

b2
ij ςy)

× gj(yj(t − τij(t))+ Tj)+ (ow1
ij + o

w2
ij ςy

×

∫ t

t−τij(t)
hj(yj(s)+ Tj) ds

]
+

Ui(t)
ci(yi(t)+ Ti)

+ (od1i + o
d2
i ςx)(xi(t)+ Ti)−

n∑
j=1

[
(oa1ij + o

a2
ij ςx)

× fj(xj(t)+ Tj)+ (ob1ij + o
b2
ij ςx)

gj(xj(t − τij(t))+ Tj)+ (ow1
ij + o

w2
ij ςx

×

∫ t

t−τij(t)
hj(xj(s)+ Tj) ds

]}
(23)

According to Assumption1, Assumption2, Assump-
tion3 and Lemma1, we get

D+V1(t)

≤

n∑
i=1

−(od1i + od2i ς )|ei(t)| +
n∑
j=1

[
(oa1ij + o

a2
ij ς )

×L fj |ej(t)| + (ob1ij + o
b2
ij ς )L

g
j |ej(t − τij(t))|

+ (ow1
ij + o

w2
ij ς )L

h
j ×

∫ t

t−τij(t)
|ej(s)| ds

]

+
TiUi(t)
ci


= −

n∑
i=1

(od1i + o
d2
i ς )|ei(t)| +

n∑
i=1

n∑
j=1

[
(oa1ij + o

a2
ij ς )

×L fj |ej(t)| + (ob1ij + o
b2
ij ς )L

g
j |ej(t − τij(t))|

+ (ow1
ij + o

w2
ij ς )L

h
j ×

∫ t

t−τij(t)
|ej(s)| ds

]

+

n∑
i=1

Ui(t)
ci

. (24)

Let α1 = min{(od1i + o
d2
i ς )ci},

α2 = max{
∑n

j=1

(
oa1ji + o

2
jiς
)
L fi ci}, and

δ = max{
∑n

j=1

(
ob1ji + o

b2
ji ς

)
Lgi ci}, we have

D+V1(t) ≤ (−α1 + ρ1 + α2)V1(t)+ δ
n∑
i=1

|ei(t − τji(t))|
ci

+

n∑
i=1

n∑
j=1

(ow1
ij + o

w2
ij ς )L

h
j

∫ t

t−τij(t)
|ej(s)| ds

+

n∑
i=1

Ui(t)
ci
− ρ1V1(t). (25)

Based on Assumption3, we have

D+V2(t)

=

n∑
i=1

n∑
j=1

(
ow1
ij + o

w2
ij ς

)
Lhj

∫ 0

−τij(t)
|ej(s)|ds

−

n∑
i=1

n∑
j=1

(
ow1
ij + o

w2
ij ς

)
Lhj

∫ 0

−τij(t)
eρ1s|ej(t + s)|ds

− ρ1V2(t)

≤

n∑
i=1

n∑
j=1

(
ow1
ij + o

w2
ij ς

)
Lhj τ |ej(t)| −

n∑
i=1

n∑
j=1

(
ow1
ij

+ ow2
ij ς

)
Lhj

∫ t

t−τij(t)
eρ1s|ej(s)|ds− ρ1V2(t). (26)

Let α3 = max{
∑n

j=1

(
ow1
ji + o

w2
ji ς

)
Lhi τci}, we have

D+V (t)

≤ (−α1 + α2 + α3 + ρ1)V1(t)+ δ sup
t−τij(t)≤s≤t

(V (s))

+

n∑
i=1

n∑
j=1

(
ow1
ij + o

w2
ij ς

)
Lhj

∫ t

t−τij(t)
(1− eρ1s)|ej(s)|ds

+

n∑
i=1

Ui(t)
ci
− ρ1(V1(t)+ V2(t)). (27)

Obviously, 1− eρ1s < 0, we have

D+V (t) ≤ (−α1 + α2 + α3 + ρ1)V1(t)− ρ1V (t)

+ δ sup
t−τij(t)≤s≤t

(V (s))+
n∑
i=1

Ui(t)
ci

. (28)

Then for |ei(t)| > 0 and µT ≤ t < µT + θ, µ =
0, 1, 2, · · · , applying the control system Ui(t) = ui(t),
we have

D+V (t) ≤ (−α1 + α2 + α3 + ρ1 − β)V1(t)

− ρ1V (t)+ δ sup
t−τij(t)≤s≤t

(V (s)). (29)

where β = max {βi}.
Applying the condition C1, we have

D+V (t) ≤ −ρ1V (t)+ δ sup
t−τij(t)≤s≤t

(V (s)) (30)
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Similarly, for |ei(t)| > 0 and µT + θ ≤ (µ + 1)T , µ =
0, 1, 2, · · · , applying the control system Ui(t) = 0 and the
condition C2, we have

D+V (t) ≤ (−α1 + α2 + α3 − ρ2)V1(t)+ ρ2V1(t)

− ρ1V2(t)+ δ sup
t−τij(t)≤s≤t

(V (s))

≤ ρ2V (t)+ δ sup
t−τij(t)≤s≤t

(V (s)). (31)

Secondly, we will prove the MCGNNs (2) and (14) can
achieve the exponential synchronization, if there exist three
constants ρ1, ρ2 and δ such that:

D+V (t)

≤


−ρ1V (t)+ δ sup

t−τij(t)≤s≤t
(V (s)), µT ≤ t < µT + θ

ρ2V (t)+ δ sup
t−τij(t)≤s≤t

(V (s)), µT + θ ≤ (µ+ 1)T .

(32)

Define two functions q(ε) = ε−ρ1+δ exp{ετ } andW (t) =
exp{εt}V (t). Using ρ1 > δ, we have q(0) < 0. When ε →
+∞, we have q(ε) = +∞ and q′(ε) = 1+ δε exp{ετ } > 0.
There exists a unique positive solution ε > 0 satisfying the
equation ε − ρ1 + δ exp{ετ } = 0. Let M0 = sup

−τ≤s≤0
(V (s))

and P(t) = W (t)− hM0, where h > 1 is a constant. It can be
easily obtained:

P(t) < 0, for all t ∈ [−τ, 0] (33)

Step1. According to inequations (32) and Lemma1,
the exponential synchronization for MCGNNs (2) and (14)
can be proved in the first period 0 ≤ t < T .

For |ei(t)| > 0 and 0 ≤ t < T , we prove that P(t) < 0
holds for all t ∈ [0, θ), otherwise there exist a 0 ≤ t0 < θ

such that 
P(t0) = 0,
P(t) < 0, −τ ≤ t < t0
Ṗ(t0) ≥ 0,

(34)

It can be easily obtain from (30) and (34) that

Ṗ(t0) = ε exp {εt0}W (t0)+ exp {εt0}D+V (t0)

≤ ε exp {εt0}W (t0)− ρ1 exp {εt0}W (t0)

+ δ exp {εt0} sup
t0−τ≤s≤t0

(V (s))

= (ε − ρ1)W (t0)+ δ exp {εt0} sup
t0−τ≤s≤t0

(V (s)) (35)

Using(34), we have W (t) < hM0, for all −τ ≤

t < t0, and W (t0) = hM0. Then we obtain V (t) <

hM0 exp {−εt}, for all −τ ≤ t < t0, and so
sup

t0−τ≤s≤t0
(V (s)) < exp {ετ } hM0 exp {−εt0}. Therefore,

we have exp {εt0} sup
t0−τ≤s≤t0

(V (s)) < exp {ετ } hM0 =

exp {ετ }W (t0).

It follows from (34) that

Ṗ(t0) < (ε − ρ1 + δ exp {ετ })W (t0) = 0. (36)

which contradicts with (34) and P(t) < 0 holds for all
t ∈ [−τ, t0). Therefore,

V (t) < hM0 exp {−εt} , for all t ∈ [−τ, θ). (37)

In the following, we prove that for all θ ≤ t < T ,

Q(t) = W (t)− hM0 exp {$ (t − θ )} < 0. (38)

where$ = ρ1 + ρ2.
Otherwise, there exist a t1 ∈ [θ,T ) such that

Q(t1) = 0,
Q(t) < 0, if θ ≤ t < t1
Q̇(t1) ≥ 0,

(39)

For τ > 0, if θ ≤ t1 − τ < t1, it follows from (39) that

sup
t1−τ≤s≤t1

(V (s))<exp {ετ }exp{−εt1} hM0 exp{$ (t−θ1)} . (40)

and if −τ ≤ t1 − τ < θ , by (34) and (39), we have

sup
t1−τ≤s≤t1

(V (s)) = max

{
sup

t1−τ≤s≤θ
(V (s)) , sup

θ≤s≤t1
(V (s))

}
< max {exp {ετ } hM0 exp {−εt1} ,

exp {ε(t1 − θ )}V (t)}

< exp {ετ }V (t1) = W (t1). (41)

Therefore, by (31) and (41), we have

Q̇(t1)

= εW (t1)+ exp {εt1}D+V (t1)− hM0$ exp {$ (t − θ )}

≤ (ε + ρ2 −$)W (t1)+ δ exp {εt1} sup
t1−τ≤s≤t1

(V (s))

< (ε + ρ2 −$ + δ exp {ετ })W (t1)

≤ (ε − ρ1 + δ exp {ετ })W (t1) = 0. (42)

which contradicts with (39) and Q(t) < 0 holds for all
t ∈ [−θ,T ). Therefore,

W (t) < hM0 exp {$ (t − θ )} < hM0 exp
{
$ (1−

θ

T
)T
}
,

for all t ∈ [−τ,T ). (43)

Step2. Similar to above proof, in the second period T ≤
t < 2T , the exponential synchronization for MCGNNs (2)
and (14) can be proved.

For all t ∈ [T , (1+ θ
T )T )

W (t) < hM0 exp
{
$ (1−

θ

T
)T
}
. (44)

and for all t ∈ [(1+ θ
T )T , 2T )

W (t) < hM0 exp {$ (T − θ )} exp
{
$ (t − (1+

θ

T
)T )
}

= hM0 exp {$ (t − 2θ )} . (45)
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Step3. By mathematical induction, in the µ + 1 period
µT ≤ t < (µ + 1)T , the exponential synchronization for
MCGNNs (2) and (14) can be proved.

For for all t ∈ [µT , µT + θ )

W (t)<hM0 exp
{
µ$ (1−

θ

T
)T
}
≤hM0 exp

{
$ (1−

θ

T
)t
}
.

(46)

and for all t ∈ [µT + θ, (µ+ 1)T ),

W (t)<hM0 exp {$ (t−(µ+1)θ )}≤hM0 exp
{
$ (1−

θ

T
)t
}
.

(47)

Setp4. Let h → 1, according to W (t) = exp{εt}V (t) and
$ = ρ1 + ρ2, we have

V (t) ≤ M0 exp
{
−(ε −$ (1−

θ

T
))t
}
, t > 0. (48)

Because of |ei(t)|ci
≤ V (t), we have

|vi(t)− zi(t)| ≤ M0ci exp
{
−(ε −$ (1−

θ

T
))t
}

= M exp {−%t} , t > 0. (49)

where M = M0ci and % = ε −$ (1− θ
T ).

According to C3 and Lemma1, the drive networks(2) can
be be globally exponentially synchronized with response net-
works(14) under the hybrid controlUi(t). Finally, the proof is
completed. �
Remark 3: Based on the existing works [13], [15], [16],

[24]–[32], [34], [35], the control parameters can be
expressed as follows:

a1 = min{d ici}, a2 = max{
∑n

j=1
ajiL

f
i ci},

d = max{
∑n

j=1
bjiL

g
i ci}, a3 = max{

∑n

j=1
wjiLhi τci}.

where

d i = min{d◦i , d
◦◦
i }, d i = max{d◦i , d

◦◦
i },

aji = min{a◦ji, a
◦◦
ji }, aji = max{a◦ji, a

◦◦
ji },

bji = min{b◦ji, b
◦◦
ji }, bji = max{b◦ji, b

◦◦
ji },

wji = min{w◦ji,w
◦◦
ji }, wji = max{w◦ji,w

◦◦
ji }.

In this paper, the control parameters can be expressed as
follows:

α1 = min{(od1i + o
d2
i ς )ci},

δ = max{
∑n

j=1
(ob1ji + o

b2
ji ς )L

g
i ci},

α2 = max{
∑n

j=1

(
ob1ij + o

b2
ij ς

)
Lgi ci},

α3 = max{
∑n

j=1

(
ow1
ji + o

w2
ji ς

)
Lhi τci}.

Obviously, d i ≤ od1i + o
d2
i ς ≤ d i, aji ≤ oa1ji + o

a2
ji ς ≤ aji,

bji ≤ o
b1
ji + o

b2
ji ς ≤ bji, wji ≤ o

w1
ji + o

w2
ji ς ≤ wji.

Therefore, the more small control gain β in this paper can
achieve the exponential synchronization onMCGNNs (2) and
(14). This shows the control is more accurate.

From Theorem1, the control gain βi(t) satisfies β > α2 +

α3+ δ and β > −α1+ α2+ α3+ ρ1. If β > max{α2+ α3+
δ,−α1 + α2 + α3 + ρ1}, the C1 and β > α2 + α3 + δ can be
satisfied. Moreover, ρ1 is determined by ρ1 > δ and C3. ε =
2(ρ1) is yielded from the equation ε − ρ1 + δ exp{ετ } = 0,
then the Corollary1 can be obtained as follows:
Corollary 1: Let the Assumptions1–Assumptions3 hold,

under the hybrid control Ui(t), ρ1 > δ, the drive networks(2)
can be be globally exponentially synchronized with response
networks(14), if there exists constants, β and θ satisfying the
following conditions:

(C4)β > max{α2 + α3 + δ,−α1 + α2 + α3 + ρ1},

(C5)1−
2(ρ1)
ρ1 + ρ2

<
θ

T
≤ 1. (50)

where δ, ρ1 and ρ2 are same as in Theorem1.
Remark 4: In Corollary1, the control period and gain

can be quickly determined. After determining the control
nodes,to achieve the exponential synchronization for a class
of MCGNNs, it is feasible to just confirm the control period
and gain. This facilitates practical operation.

Let ci(xi(t)) ≡ 1, we have

żi(t)=−di(zi(t))zi(t)+
n∑
j=1

[
aij(zi(t))fj(zj(t))+ bij(zi(t))

× gj(zj(t − τij(t)))+ wij(zi(t))

×

∫ t

t−τij(t)
hj(zj(s)) ds

]
+Ji, i, j=1, 2, · · · , n. (51)

Networks (50), a special case of MCGNNs (2), are called
memristive neural networks. Let α′1 = max{od1i + od2i ς},

α′2 = max{
∑n

j=1

(
oa1ji + o

a2
ji ς

)
L fi }, δ

′
= max{

∑n
j=1(o

b1
ji +

ob2ji ς )L
g
i }, α

′

3 = max{
∑n

j=1

(
ow1
ji + o

w2
ji ς

)
×Lhj τ } Thus,

the Corollary2 can be obtained as follows:
Corollary 2: Let the Assumptions1–Assumptions3 hold,

under the hybrid control Ui(t), ρ1 > δ, the drive networks(2)
can be be globally exponentially synchronized with response
networks(14), if there exists constants, β and θ satisfying the
following conditions:

(C6)β > max{α′2 + α
′

3 + δ
′,−α′1 + α

′

2 + α
′

3 + ρ1},

(C7)1−
2(ρ1)
ρ1 + ρ2

<
θ

T
≤ 1. (52)

where ρ1 and ρ2 are same as in Theorem1, ε = 2(ρ1) is
yielded from the equation ε − ρ1 + δ′ exp{ετ } = 0.
Remark 5: In the synchronization conditions, the parame-

ter δ denotes the impact of time-varying delay and the param-
eter α3 denotes the impact of unbounded distributed delay.
If α3 = 0, the result can be applied in the synchronization
MCGNNs with time-varying delay [24], [25]. If δ = 0 and
α3 = 0, the result can be applied in the synchronization
MCGNNswithout delays. In corollary2, if ci(xi(t)) ≡ 1, mem-
ristive neural networks can be obtained. Similarly, the result
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can be applied in the synchronization MNNs with mixed
delays [16] or with time-varying delay [15] or without delays.
Thus, the method in this paper is universal.
Remark 6: The following steps can fastly determine the

parameters of the hybrid control (18) to achieve the expo-
nential synchronization on MCGNNs with mixed delays
(2) and (14):
Step1.Determine the parameters of MCGNNs with mixed

delays and choose some proper nodes to add the intermittent
control.
Step2.Calculate the value of α1, α2, α3 and δ. Recall α1 =

max{(od1i + od2i ς )ci}, α2 = max{
∑n

j=1

(
oa1ji + o

2
jiς
)
L fi ci},

δ = max{
∑n

j=1

(
ob1ji + o

b2
ji ς

)
Lgi ci} and α3 =

max{
(
ow1
ji + o

w2
ji ς

)
Lhi τci}.

Step3.Determine the value of ρ1, ρ2, θ
T and β. Firstly,

according to C2, ρ2 satisfies ρ2 > −α1 + α2 + α3. Then,
according to C3 and the equation ε − ρ1 + δ exp{ετ } =
0, the relationship between ρ1 and the control ratio θ

T can
be obtained. And choose ρ1 by the minimum value of θ

T .
Finally, according to C1 and C4, the control gain β satisfies
β > max{α2 + α3 + δ,−α1 + α2 + α3 + ρ1}. Therefore,
the parameters of hybrid control (18) are determined.

IV. NUMERICAL SIMULATION
The following numerical examples are given to show the
effectiveness of the above theoretical results.Cosider the
three-dimensional memristive Cohen-Grossberg neural net-
work model with mixed delays:

dz1(t)
dt

= c1(z1(t))
{
−d1(z1(t))+

∑3

j=1
[a1j(z1(t))

×fj(zj(t))+
∑3

j=1
b1j(z1(t))gj(zj(t − τij(t)))

+w1j(z1(t))
∫ t

t−τ1j(t)
hj(zj(s))]+ J1

}
dz2(t)
dt

= c2(z2(t))
{
−d2(z2(t))+

∑3

j=1
[a2j(z2(t))

×fj(zj(t))+
∑3

j=1
b2j(z2(t))gj(zj(t − τij(t)))

+w2j(z2(t))
∫ t

t−τ2j(t)
hj(zj(s))]+ J2

}
dz3(t)
dt

= c3(z3(t))
{
−d3(z3(t))+

∑3

j=1
[a3j(z3(t))

×fj(zj(t))+
∑3

j=1
b3j(z3(t))gj(zj(t − τij(t)))

+w3j(z3(t))
∫ t

t−τ3j(t)
hj(zj(s))]+ J3

}
.

(53)

where

J1 = 0.1, J2 = 0.2, J3 = 0.3,

d1 =

{
1.8 |z1(t)| ≤ 1
1.34 |z1(t)| > 1,

d2 =

{
1.65 |z2(t)| ≤ 1
2.95 |z2(t)| > 1,

d3 =

{
2.67 |z3(t)| ≤ 1
2.38 |z3(t)| > 1,

a11 =

{
−1.4 |z1(t)| ≤ 1
−2.1 |z1(t)| < 1

,

a21 =

{
1.2 |z2(t)| ≤ 1
1.5 |z2(t)| < 1,

a31 =

{
−3.6 |z3(t)| ≤ 1
−2.1 |z3(t)| < 1

,

a12 =

{
1.8 |z1(t)| ≤ 1
−0.92 |z1(t)| < 1,

a22 =

{
1.6 |z2(t)| ≤ 1
−1.2 |z2(t)| < 1,

a32 =

{
−2.1 |z3(t)| ≤ 1
1.3 |z3(t)| < 1,

a13 =

{
−4.3 |z1(t)| ≤ 1
3.2 |z1(t)| < 1,

a23 =

{
−2.6 |z2(t)| ≤ 1
1.1 |z2(t)| < 1,

a33 =

{
2.2 |z3(t)| ≤ 1
2.6 |z3(t)| < 1,

b11 =

{
−2.3 |z1(t)| ≤ 1
−2.6 |z1(t)| < 1,

b21 =

{
−1.1 |z2(t)| ≤ 1
−1.7 |z2(t)| < 1,

b31 =

{
−4.4 |z3(t)| ≤ 1
−4.3 |z3(t)| < 1,

b12 =

{
1.4 |z1(t)| ≤ 1
1.1 |z1(t)| < 1,

b22 =

{
1.8 |z2(t)| ≤ 1
−1.3 |z2(t)| < 1,

b32 =

{
−3.9 |z3(t)| ≤ 1
5.3 |z3(t)| < 1,

b13 =

{
−3.9 |z1(t)| ≤ 1
−1.5 |z1(t)| < 1,

b23 =

{
−2.7 |z2(t)| ≤ 1
−3.4 |z2(t)| < 1,

b33 =

{
−3.6 |z3(t)| ≤ 1
−1.8 |z3(t)| < 1,

w11 =

{
0.9 |z1(t)| ≤ 1
−0.7 |z1(t)| < 1,

w21 =

{
−3.5 |z2(t)| ≤ 1
−2.1 |z2(t)| < 1,

w31 =

{
−0.6 |z3(t)| ≤ 1
1.3 |z3(t)| < 1,

w12 =

{
0.3 |z1(t)| ≤ 1
−0.9 |z1(t)| < 1,

w22 =

{
1.3 |z2(t)| ≤ 1
−0.9 |z2(t)| < 1,

w32 =

{
−0.7 |z3(t)| ≤ 1
0.5 |z3(t)| < 1,

w13 =

{
−1.7 |z1(t)| ≤ 1
1.6 |z1(t)| < 1,

w23 =

{
1.7 |z2(t)| ≤ 1
0.3 |z2(t)| < 1,

w33 =

{
−1.2 |z3(t)| ≤ 1
−1.1 |z3(t)| < 1,

The amplifications function c1(z1(t)) = 2+sin(|z1(t)|−1),
c2(z2(t)) = 1.8+ 0.5

1+z22(t)
, c3(z3(t)) = 1+ 0.4

2+tanh(z3(t))
, the time-

varying delays τij(t) = 0.5 + 0.2 sin t, i, j = 1, 2, 3 and the
activation functions fj(x) = 0.5 tanh x, gj(x) = 1.18 cos(|x|−
0.2)+ 0.2sign(x), hj(x) =

|x+1|−|x−1|
2 , j = 1, 2, 3.

Consider networks (52) as the drive networks and cor-
responding response networks. Also from A1, A2 and A3,
we have c1 = 3, c1 = 1, c2 = 2.3, c2 = 1.8, c3 = 1.4,
c3 = 1.33 and L f1j = 0, L f2j = 0.5, Lg1j = −1.179,

Lg2j = 1.179, Lh1j = 0, Lh2j = 1 and 0.3 ≤ τij(t) ≤ τ = 0.7,
−0.2 ≤ τ̇ij(t) ≤ τij = 0.2. With the random initial conditions
z1,z2, z3 and v1,v2, v3. Let ς = 0.8. The chaotic attractor and
trajectory of networks(52) is shown in Fig.1.

Case(1): According to networks(52), Theorem1 and Corol-
lary1, we can obtain the following numerical results to show
the effectiveness of the hybrid control (18).
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FIGURE 1. The chaotic attractors and trajectory of MCGNNs.

FIGURE 2. The relationship between θ
T and ρ1.

By simple calculation, α1 = min{(od1i + od2i ς )ci} =

1.386, α2 = max{
∑n

j=1

(
oa1ij + o

a2
ij ς

)
Lgi ci} = 3.8171,

δ = max{
∑n

j=1(o
b1
ji + ob2ji ς )L

g
i ci} = 9.592, α3 =

max{
∑n

j=1

(
ow1
ji + o

w2
ji ς

)
Lhi τci} = 0.5586. The relationship

between θ
T and ρ1 are shown in Fig.2. From Fig.2, we have

ρ1 = 29.71, 0.9498 < θ
T ≤ 1. To satisfy C1 and C2, we have

β = 32.7 and ρ2 = 1. Choosing θ
T = 0.95 and the control

period T = 3s, the condition C3 hold.
The first two network nodes are selected and pinned. And

the corresponding response networks are controlled. More-
over, the C1, C2 and C3 can be satisfied. Therefore, the drive

FIGURE 3. The synchronization error curves of MCGNNs with mixed
delays.

FIGURE 4. The residual analysis curves of error between control gain
βg = 35.7 and control gain β = 32.7.

networks (52) can be be globally exponentially synchronized
with the corresponding response networks. Under random
initial conditions, the error curves are shown in Fig.3. The
initial conditions can be any value from −2 to 2.

Case(2): Considered the same networks(52), the accuracy
of control gain is shown by comparing the existingmethods of
processing memristive terms [16], [27], [29]–[32] for mem-
ristive weights and the work in this paper.

Based on the existing method, the control parameters are
given as follows:

a1 = min{d ici} = 1.34 < α1 = 1.386,

a2 = max{
∑n

j=1
ajiL

f
i ci} = 4.5885 > α2 = 3.8171,

d = max{
∑n

j=1
bjiL

g
i ci} = 18.0387 > δ = 9.592,

a3 = max{
∑n

j=1
wjiLhi τci} = 2.772 > α3 = 0.5586.

Considered the same ρ1 = 29.71 and θ
T = 0.95, the con-

trol gain is βg = 35.7 > β = 32.7. Under the same initial
conditions with any value ranging from -2 and 2, the two error
networks are compared by residual analysis. The analysis
results are shown in Fig.4. Obviously, the effect of control
gain β = 32.7 is almost the same as control gain βg = 35.7.
Therefore, under the same control effect, the control gain by a
simple linear transformation on the memristive terms is more
accurate.
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V. CONCLUSION
This paper addressed the issue of exponential synchroniza-
tion for a class of memristive Cohen-Grossberg neural net-
works with mixed delays by using a hybrid controller. Firstly,
according to the memristive characteristics, the memristive
terms were normalized by a simple linear transformation.
Then a hybrid controller is designed by the strategies of pin-
ning control and intermittent control. Based on the stability
theory of memristive neural networks and the exponential
synchronization rule, the new synchronization conditions are
established. Finally, to show the effectiveness of the theo-
retical synchronization conditions, numerical simulations are
presented. In the future, we will focus on practical appli-
cations of neural networks, such as traffic network control,
signal encryption, and image encryption.
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