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ABSTRACT Math anxiety (MA), i.e. a trait factor describing the feelings of tension, apprehension, and
fear during mathematics-related situations, has attracted increasing interest in recent years, due to its
importance in people’s daily life and career development, especially in our modern digital world. Although
the measurement of individuals’ trait MA has mostly relied on self-reported psychological scales, emerging
studies are seeking for objective measurement by using behavioral or neurophysiological data. The present
study, for the first time, investigated the neurophysiological signatures of trait MA in a cohort of high school
students during their 90-minute real final-term math exam. Wrist-worn wearable devices were used for
recording their autonomic nervous system activities, including skin conductance (SC) and heart rate (HR).
The calculation of pairwise correlation revealed that both SC and HR could reflect the individual’s math
evaluation anxiety (MEA) score, which is one of the two sub-components of trait MA. Specifically, the tonic
level of SC was negatively correlated with MEA during the 5-minute pre-exam period when the students
were anticipating the exam, whereas HR was positively correlated with MEA at two later time windows
during the exam (63-65 minutes and 82-85 minutes, after the start of the exam). A leave-one-out regression
analysis revealed a correlation (r = .349, p = .094) between the self-reported MEA scores and the scores
predicted by these neurophysiological signatures. Our findings provide neurophysiological evidence of trait
MA in a real-life context and demonstrate the potential of implementing an objective measurement of trait
MA based on neurophysiological signals.

INDEX TERMS Ecological validity, heart rate, math anxiety, neurophysiological recordings, skin conduc-
tance, wearable sensing.

I. INTRODUCTION
Math anxiety (MA) is considered to be a trait-level dispo-
sition [1], which describes the general feelings of tension,
apprehension, and fear when dealing with a wide range of
mathematics-related tasks and situations [2], [3]. MA is a
kind of anxiety that is independent of general anxiety or test
anxiety [3]–[5]. An increasing number of students worldwide
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suffer from MA [6], which leads to their negative attitude
towards math, failure in math courses, the avoidance of learn-
ing and using math or numeric contents even in their future
work, etc. [3], [7], [8]. Negative correlations between MA
and math achievement have been reported across multiple
developmental stages [3], [6], [9], [10].

The measurement of trait MA is mainly based on self-
reported scales that require individuals to read MA-related
statements and make judgment about their degree of agree-
ment. The most widely used scales include the Mathematics
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Anxiety Rating Scale (MARS-A/E) [11], [12], and Math
Anxiety Scale for Children (MASC) [13]. While these self-
reported scales have the advantages of straightforwardness
and cost-effectiveness, they are prone to recall and social
desirability biases. For example, people may underestimate
their feelings during math-related situations when they fill
up the scales afterwards, and they could also deliberately
fake his/her responses for a variety of reasons. These issues
limit the effectiveness of the method for MA measure-
ment. Implicit methods like the arithmetic-affective priming
task [14], which measures the MA by how the affective
stimuli influence the reaction time to the arithmetic questions,
have been proposed to address these problems. However,
these measurements need participants to perform tasks and
therefore cannot be used for daily monitoring of MA, espe-
cially for high school students who suffered a lot in math-
demanding learning and tests.

Studying the neurophysiological basis of MAmay provide
a way to solve this issue, as the neurophysiological signals
could provide an objective description of people’s reaction
during math-related situations. Efforts in this direction date
back to at least 1984, when Dew et al. [15] examined the rep-
resentation of MA in the autonomic nervous system (ANS)
and reported significant correlation between self-reported
MA and ANS responses of skin conductance (SC) level
and heart rate (HR) in a test-like situation. Subsequently,
Faust [16] reported significantly higher HR for a group of
individuals with higher MA compared to a group of individ-
uals with lower MA when dealing with difficult math tasks.
However, recent studies have mainly focused on the central
nervous system (CNS) [17]. For instance, individuals with
higher MA have been shown to exhibit more fear-related
activation in the right basolateral amygdala [18], reduced
frontocentral and centroparietal processing of numeric infor-
mation [19], more diffused and unstructured functional net-
work related to corrupted working memory process [20],
as well as stronger gamma band activity relating to greater
attentional bias towards negative emotion during arithmetic
problem solving [21]. Although the above-mentioned stud-
ies are mostly focused on the math task performing stage,
researchers are beginning to pay attention to the anticipation
period. For instance, anticipation of a math task has been
reported to elicit activation in brain regions associated with
pain perception for people with higher MA [22]. Stronger
beta band oscillation and P300 amplitude associated with
increasing attentional resources usage [21] as well as more
effective brain functional organization in their attempt to reg-
ulate negative emotions [23] were also found in individuals
with higher MA when anticipating upcoming math tasks.

The above-mentioned neurophysiological findings, how-
ever, may be undermined by the ecological validity of the
experimental paradigms. Most of the studies have used sim-
ple arithmetic tasks, such as numeric comparison, addition,
division and multiplication, to elicit MA in laboratory envi-
ronments [19], [21], [23]. These laboratory-based paradigms,
however, do not resemble real-life conditions in terms of task

complexity, duration, consequences of failure, etc. As a result,
the participants, most of whom are college students, might not
sufficiently engage in these math tasks. Such a concern calls
for the introduction of new paradigms that could provide a
better approximation of real-life MA. Although MA-related
neurophysiological studies have not adequately addressed
the ecological validity issue, there are good examples in
the fields of general anxiety and education. For instance,
classical general anxiety tasks, such as public speaking and
job interviews could mimic real-life anxiety scenarios very
well [24]–[26]. The recent education related studies have
moved even further into real-world classroom environments,
by recording neurophysiological signals while the students
are engaged in their actual classes [27]–[29]. Researchers
believe that our nervous system may have a stronger ‘tuning’
to naturalistic tasks than laboratory-based ones, and examin-
ing neural processing under dynamic and natural conditions
may facilitate a deeper understanding of adaptive human
neural mechanisms [30], [31].

Despite these potential advantages, the movement towards
high ecologically valid scenarios poses challenges to neuro-
physiological recording techniques. Traditional methods for
monitoring CNS activities. like functional magnetic reso-
nance imaging (fMRI) and electroencephalography (EEG).
are not suitable due to factors, such as immobility, inter-
ference with normal activities, etc., although there are
recent promising developments and preliminary applications,
as reviewed by Siddharth et al. [32]. In contrast, ANS signals,
such as HR and SC, which can be acquired with minimal
influence on the normal activities of the participants (e.g.
wristband-like or chestband-like devices), appear to be the
most feasible neurophysiological approach available. Besides
the above-mentioned ANS studies onMA, there is ample evi-
dence on the correlations between ANS activities and general
anxiety. For example, increases in HR and SC level (SCL)
are often observed during anxiety-induciing tasks, such as
stress interview [33], and public speech [24], [34]. Although
studies on MA-specific anticipation are lacking, the ANS
representation of other kinds of anticipation has been fre-
quently reported, but with inconsistent findings. For instance,
increased HR and SCL were reported when the participants
were anticipating a threat or future shock [35] or preparing for
a speech [34], [36]. Instead, others found HR reduction when
participant adults who stutter were anticipating a stressful
speech [35]. Furthermore, there are also studies focusing on
the neurophysiological signatures of individual differences
in anxiety. A positive correlation was reported between the
average HR and anxiety level during public speaking [24],
and a recent study reported a negative correlation between
the average electrodermal activity (EDA) and anxiety level
during public speech [26]. These inconsistencies may be
explained by the differences in the tasks (anticipating future
shock v.s. public speech) and populations (normal people v.s.
people who stuttered) [22], [26], [34]–[37]. Indeed, the map-
pings between physiological signals and psychological sta-
tus reported in previous studies have been problematic for
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cross-task and cross-population generalization [38], [39],
which further highlights the importance of ecological valid-
ity: if the experiment could be conducted in the typical scenar-
ios and population related to MA, the corresponding findings
are more likely to be valid and useful for possible practical
applications.

The present study seeks to explore the neurophysiological
signature of MA using a highly ecologically valid paradigm.
To this end, we measured the SC and the HR in a cohort
of high school students using wearable neurophysiological
monitoring during their actual final-term math exam. The
math exam took 90 minutes and differed substantially from
simple math tasks in task complexity. More importantly,
the students were expected to be fully engaged, as it was
the most important test of the semester. The 90-minute exam
period as well as a 5-minute pre-exam period were recorded,
allowing us to investigate both the task stage and the antic-
ipation stage. As MA is a trait-level variable, in this study
the analysis was performed at a single participant level that
focused on individual differences, according to the major-
ity of previous studies on MA. To fully examine individ-
ual differences, we adopted a correlational approach to data
analysis, rather than dividing the students into groups. A neu-
rophysiological signal would be regarded as MA-related if it
was significantly correlated with the individual-based self-
reported MA scale scores. To take full advantage of our
95-minute long recordings, both the SC and HR were further
decomposed into 1-minute segments before performing the
correlational analysis, allowing us to inspect the temporal
dynamics of the neurophysiological activities. Ultimately, a
leave-one-out regression analysis was conducted to establish
an overall predictive model of trait MA by using these neuro-
physiological signals.

II. MATERIALS AND METHODS
A. PARTICIPANTS
All participants were from a regular high school in Beijing.
139 students (65 females; age: 15-17) from grade 11 were
invited to fill out the MA scale. Among them, 35 students
(15 females; age: 15-17) volunteered to wear a wristband
for recording their neurophysiological data during their final-
term math exam.

The study was conducted in accordance with the
Declaration of Helsinki and the protocol was approved by the
ethics committee of the Department of Psychology, Tsinghua
University. All the participants and their legal guardians gave
written informed consent.

B. MATERIALS
1) MATH ANXIETY SCALE
The Chinese version of the MASC [13] was used to measure
the self-reported MA of the participants. Two main factors,
Mathematics Learning Anxiety (MLA) and Mathematics
Evaluation Anxiety (MEA) [12], [40], [41], were extracted
from MASC: MLA involves anxiety and negative emotion

toward activities and processes of learning mathematics, and
MEA involves anxiety and negative emotion associated with
being evaluated or tested in mathematics. Together with the
MA total score from the MASC, three scores (MLA, MEA
and MA total) were obtained per participant.

2) NEUROPHYSIOLOGICAL DATA ACQUISITION
A custom-designed wristband (Psychorus, HuiXin, Beijing,
China) was used to record SC and HR. SC was measured
by surface electrodes with conductive gels at a sampling rate
of 40 Hz. HR was measured by the photoplethysmography
(PPG)method at a sampling rate of 20Hz. Three-axis acceler-
ation was recorded at 20 Hz as well but not used in the present
study.

3) ACADEMIC PERFORMANCES
The final-term math exam scores from all 139 participants
were collected. The duration of the final-termmath examwas
limited to 90 minutes. The exam covered topics of algebra,
geometry and calculus taught during the semester and the
problem types consisted of multiple-choice, filling-blanks,
and comprehensive problem-solving questions, which were
far more complicated than the simple laboratory-based math
tasks. To control for the specificity of the MA scales,
their Chinese exam scores were also collected. Overall,
the 139 students scored from 15 to 119 (full marks: 120) for
their math exam, and from 36 to 91 (full marks: 120) for their
Chinese exam. For the students involved in neurophysiolog-
ical recordings, their math and Chinese scores varied from
35 to 119, and 53 to 85, respectively.

C. PROCEDURE
The final-term math exam took place on January 16th, 2019.
The 35 participants who volunteered for the neurophysio-
logical recordings were asked to wear the wristbands on
their left wrist (right wrist for the 2 left-handed students)
10minutes before the examwith the help of the experimenters
(e.g. pasting the conductive gels, etc.). The recordings started
5 minutes before the exam and lasted until the end of the
90-minute exam. In the pre-exam period, the students were
sitting quietly waiting for the exam papers to be distributed.
According to the requirement of the school, the invigilator
announced the exam time at the 60th minute and 80th minute
of the exam, respectively.

All 139 participants completed the MASC on
January 2nd, 2019, during a psychology course two weeks
before their math exam. The scales were collected and ana-
lyzed by our experimenters. The students were explicitly
informed that their MASC scores would not be revealed to
their teachers, classmates, or parents.

D. DATA ANALYSIS
1) DATA PRE-PROCESSING
Given the specificity of the final-term exam, the experi-
menters were only allowed limited time before the exam
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to prepare the device, leaving no time to check the signal
quality before the start of the recording. Therefore, the sig-
nal quality was expected to be lower than laboratory-based
studies and it is crucial to apply proper post-hoc artifact
rejection procedures. In this study, the major issue was the
possible loose contact between the wristband and the skin,
which would result in an unchanged very small conductance
(correspondingly a very high impedance) of the measured SC
signals. In practice, such a situation will lead to a conduc-
tance level at the lower limit (.007 micro Siemens) of the
measurement range of the device. Accordingly, the data loss
ratio at the individual level, defined as the ratio of the lower
limit SC values to the whole recording time, was calculated to
evaluate the data quality for each subject. The data loss ratio
showed a clear separation of the participants into two groups:
24 out of the 35 participants had a data loss ratio below 10%
(average: 0.92%, range: 0.00-8.59%), while the other 11 par-
ticipants had at least 30% data loss (average: 72.02%, range:
32.18-100.00%). Such an segregation could be due to their
device preparation conditions: a tightly-worn device could
record high-quality data throughout the exam time, whereas
low-quality data might imply the device was loosely worn
from the beginning. Therefore, 30% was chosen empirically
as the threshold to reject data from the 11 participants whose
data loss ratio was >30% The data from the remaining 24
participants (10 females) were retained for further analysis.

The PPG signals were computed and translated into HRs
by a joint sparse spectrum reconstruction algorithm imple-
mented in the HuiXin software package, which is known for
its robust performance against daily activity artifacts [42].
The output HR data were organized at a 1 Hz pace. The SC
signals were decomposed into the tonic SCL and the tran-
sient SC response (SCR) using a continuous decomposition
analysis (CDA) method. Although the SCL mainly shows the
low-frequency drifts in the SC data, the SCR reflects the rapid
phasic changes [43]. Given the complexity of the math exam
task, the integration of SCRs (iSCR) was calculated to repre-
sent the overall SCR in a certain time period, in order to avoid
possible influences by the usually arbitrary decision of the
thresholds for peak detection and event definition [27], [44].
The SC signals were downsampled to 20 Hz and then decom-
posed into the SCL and SCR. The output SCL and iSCR data
were organized at the 20 Hz sampling rate.

Afterwards, both the HR and SC (SCL and iSCR) data
were further averaged over non-overlapping 1-minute time
windows, resulting in 95 samples per participant for each of
the neurophysiological indicators (i.e. HR, SCL, iSCR). The
samples influenced by the loose contact issue were rejected,
resulting in a total of 55 samples out of the 95 (samples
per participant) × 24 (participant) = 2,280 samples. In other
words, the data rejection rate of the 24 retained participants
was 2.4%.

2) CORRELATION WITH MATH ANXIETY
A simple Pearson’s correlation method was used to inves-
tigate the neurophysiological signature for MA. Pairwise

Pearson’s correlations between the MA scores and each of
the 1-minute-based neurophysiological indicators were com-
puted. The time scale of 1 minute was empirically selected,
as it provided a reliable neurophysiological measurement
(i.e. by averaging over 60 1-sec data points), yet having
a fine resolution to describe the temporal dynamics of the
MA-related neurophysiological activities over the 95-minute
period. Three types of neurophysiological indicators were
used, including HR, SCL and iSCR. Three types of MA
scores were used as well, including MEA score, MLA score
and MA total score. Pairwise correlations from all possible
combination of the neurophysiological indicators and theMA
scores were calculated, based on the 1-minute neurophysio-
logical data.

To control for multiple comparisons, statistical analyses
were performed on the basis of these correlations using a
nonparametric cluster-based permutation method [45]. This
method is based on the assumption that any neurophysi-
ologically plausible neural correlates should have a struc-
ture that is continuously represented in the signal domains
(temporal domain in the present study). In this study, neigh-
boring 1-minute time bins with an uncorrected p-value
below.05 were combined into clusters and non-parametric
statistical tests were performed to identify statistically sig-
nificant clusters. The clusters were defined with cluster size
≥3 time bins (corresponding to 3minutes) and the sum of cor-
relational t-statistics (corresponding to the correlation coeffi-
cient r-values) within one cluster was used as the to-be-tested
statistical value of this specific cluster. The statistical values
of the clusters were tested against a null distribution that
was created through permutations of data across participants.
The permutation was performed by randomly assigning the
neurophysiological data to the participants’ MA scores for
1, 000 times. Clusters were defined in the same manner for
the permutated data and the maximal cluster-based statistical
values per permutation (i.e. sum of t-statistics) were extracted
to generate the null distribution. The clusters from the original
non-permutated data were considered as statistically signif-
icant if their corresponding cluster-based statistical values
were larger than 95% of the statistical values from the null
distribution. The cluster-based permutation test has been
widely used in neurophysiological studies [46]–[50], and it
is regarded as an effective approach to address the multiple
comparison problem, resulting in both low Type II error rates
(high power) and nominal Type I (false positive) error rates.

3) MEASUREMENT OF MATH ANXIETY
To conduct an overall evaluation of the feasibility of imple-
menting a predictive model of MA by using neurophysio-
logical signals, regression analyses were performed, using
the self-reported MA scores (MLA, MEA, and MA total)
as dependent variables and the 1-minute based neurophys-
iological data as independent variables. A leave-one-out
cross-validation (LOOCV) strategy as used in previous stud-
ies [51]–[53] was applied. Specifically, the predicted MA
scores of each participant was obtained by regression models
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TABLE 1. Correlations between MA scores and academic performance.

based on the data from the other participants. As the number
of independent variables was much larger than the avail-
able number of participants, a sparsity strategy was used:
only the 1-minute based neurophysiological samples showing
a significant correlation with the MA scores (uncorrected
p < .05) were selected and further averaged together for
temporally neighboring samples. SCL and HR data were
included for the regression analyses, as these two signatures
were found to be significantly correlated with MA (shown in
Results). The predictive performance was then evaluated by
calculating the Pearson’s correlation between all the cross-
validated prediction of MA scores and their self-reported
counterpart.

III. RESULTS
A. MATH PERFORMANCE AND MATH ANXIETY
Factors of MLA and MEA were derived from MASC by
factor analysis, according to previous studies [12], [40], [41].
MEA and MLA subscales consisted of 9 and 12 items of
MASC, respectively. Cronbach’s alpha was .945 for all items
in MASC, .916 for MEA subscale and .924 for MLA sub-
scale, indicating the good reliability of the MAmeasurement.

As summarized in Table 1, significant negative correlations
were observed between the participants’ math performance
(i.e. final-term math exam scores) and their MA, as reflected
by all three types of MA scores (MLA: r = −.328,
p < .001; MEA: r = −.269, p < .01; MA total: r = −.422,
p < .001). The negative correlations are in accordance with
previous research [3], [54]–[56]. No significant correlation
was observed between the Chinese performance and MA,
indicating the good specificity of our MA measurement.

To determine whether the volunteers who participated in
neurophysiological recordings were a representative sample,
the distribution of the MA scores (MLA, MEA and MA
total) and academic performance (normalized Math scores
and normalized Chinese scores) were summarized for all
the 139 students, the 35 students who agreed to participate
in the neurophysiological recording, and the 24 students
whose data were included in the data analysis, respec-
tively. The distributions of the MA scores of the 3 groups
are largely similar (Fig. 1a-1c). The math performance of
the 24-student group happened to have a distribution more
towards the higher score direction (Fig. 1d), but their perfor-
mance in Chinese remained similar to that of the 139-student
group (Fig. 1e).

B. NEUROPHYSIOLOGICAL SIGNATURES OF MATH
ANXIETY
The data in Fig. 2 show the temporal dynamics of the grand
average SCL, iSCR and HR during the 95-minute recording
time. While there was a continuous increase of the SCL as
the exam proceeded (Fig. 2a), the iSCR remained relatively
stable with transient peaks from time to time (Fig. 2b). The
HR increased rapidly during the 5-minute pre-exam period
and kept fluctuating in the subsequent 90-minute exam period
(Fig. 2c).

The cluster-based permutation analysis indicated a signif-
icant correlation between the neurophysiological recordings
andMA, as represented in three clusters (all with permutation
p < .001) in the recorded data, as shown in Fig. 3. The earliest
neurophysiological signature was reflected by SCL at the pre-
exam period (Fig. 3a). The SCL negatively correlated with
MEA scores, with an average correlation coefficient close
to −.50 (p < .001), implying that the participants with a
higher level of MEA had lower SCL when anticipating the
upcoming math exam. The MEA and the SCL were also
negatively correlated during the exam period, although not
significantly. The HR, however, were positively correlated
with MEA scores at a later period (i.e. 63-65 minutes and
82-86 minutes, p < .001 for both clusters, Fig. 3c). The
higher MEA of participants was associated with a higher HR
at these time periods. No significant correlations were found
for iSCR (Fig. 3b). In addition, MLA and MA total scores
were not significantly correlated with the neurophysiological
recordings. The temporal dynamics of the correlation values
for MLA is shown in Fig. 4.

Due to the widely acknowledged correlation between MA
and math performance [3], [54]–[56], the neurophysiologi-
cal differences between higher and lower MEA participants
might be explained by their different math performance
levels. To rule out the possible influence of math perfor-
mance, partial correlations between MEA and SCL (or HR)
were calculated with controlled math performance (served
as a covariate) in the three clusters of interest. As shown
in Table 2, the correlations between these neurophysiological
signatures and MEA remain at the same magnitude when the
math performance was controlled. The scatterplots between
SCL (or HR) and MEA at typical time points are shown
in Fig. 5.

C. PREDICTION PERFORMANCE OF TRAIT MATH ANXIETY
WITH NEUROPHYSIOLOGICAL SIGNATURES
Regression analyses based on the 1-minute-based SCL and
HR data revealed a cross-validated correlation between the
predicted and self-reported MEA scores at a moderate posi-
tive level (r = .349, p = .094), although not significantly.
The scatterplot showing the individual’s predicted and self-
reportedMEA scores is shown in Fig. 6. However, the regres-
sion analyses for predicting the MLA and MA total scores,
however, only reached weak correlations (MLA: r = .113,
p = .600; MA total: r = .050, p = .815).
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FIGURE 1. The distribution of the MA scores (MLA (a), MEA (b) and MA total (c)), academic performance (normalized Math scores (d) and normalized
Chinese scores (e)) for all the 139 students, 35 volunteers who participated in the neurophysiological recording, and the 24 subjects whose data were
included in the data analysis.

IV. DISCUSSION
In the present study, the neurophysiological signatures of
MA were investigated by recording the SC and the HR
in a cohort of high school students during their real final-
term math exam. The calculation of the pairwise correlation
between the neurophysiological indicators and the MASC
scores revealed that both SC and HR could reflect the indi-
vidual’s MEA, but in different exam periods. Specifically,
SC was negatively correlated with MEA during the pre-exam
period when the students were anticipating the exam, whereas
HR was positively correlated with MEA at two later time
windows during the exam. These correlations remained sig-
nificant after controlling for the students’ math performance.
By using these neurophysiological signatures in a regression
model for predicting students’ MEA scores, a correlation
(r = .394, p = .094) was found between the predicted scores

and their corresponding self-reported scores. Our findings,
thus, provide neurophysiological evidence of MA in a real-
life context and indicate the potential of implementing an
objective measurement of trait MA using neurophysiological
signals.

Unlike previous studies that often adopted a binary
level approach dividing participants into high and low MA
groups [16], [21], [23], the present study adopted a cor-
relational approach to investigate the neural signatures of
trait MA. Indeed, scatterplots, as shown in Fig. 5, clearly
show that the neurophysiological signatures were related to
trait MA in a graded manner, which illustrate the impor-
tance of using the correlational approach. Since the cor-
relational approach places greater emphasis on individ-
ual differences, it can better facilitate individual assess-
ment of MA. With these MA-related neurophysiological
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FIGURE 2. Temporal dynamics of the grand average SCL (a), iSCR (b) and HR (c).

FIGURE 3. Temporal dynamic of the correlation values between MEA and SCL (a), iSCR (b), HR (c) during the experiment. The solid lines
indicate the r values and the shadows indicate the 95% confidence intervals by bootstrapping. Significant clusters are indicated with black
stars ∗∗∗, p < .001.

signatures as independent variables, regression models with
cross-validation indeed revealed a moderate positive corre-
lation between the predicted and self-reported MEA scores
(r = .349). Although the correlation was non-significant
(p = .094), possibly due to the relatively small number of
participants, our results demonstrated the possibility to mea-
sure individual’s trait MA using neurophysiological signals.

ImportantlyNotably, distinct ANS signatures for antici-
pation and task periods were found in the present study.
In fact, previous CNS-based studies [18], [19], [21]–[23]
have addressed possibly different neural processing in the
anticipation and task periods. For instance, fMRI studies
reported pain-related activity before math tasks and fear-
related activity during math task for individuals with higher

MA [18], [22]. EEG studies suggested that people with higher
MA tended to use more attentional resources while expect-
ing the arithmetic problems, and showed greater attentional
bias toward arithmetic problems during the math task [21].
Although the functional roles of SCL and HR have not been
directly contrasted in MA, SCL and HR have been sug-
gested to reflect independent neurophysiological mechanism
in studies in other research fields: SCL is believed to reflect
the engagement of attention [57] and consistent with arousal
level [58], while HR reaction is more related to task or stimuli
itself [24]. Regarding this study, our results provide ANS
evidence in support of the differentiation of the two periods
in the context of MA, at a 1-minute fine time scale. Details
are discussed below.
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FIGURE 4. Temporal dynamic of the correlation values between MLA and (a) SCL, (b) iSCR, (c) HR during the experiment. The shadow
indicates 95% confidence interval and the thicker lines indicate the average r values. Significant time clusters were indicated with black
stars.

TABLE 2. The correlation between SCL (or HR) and MEA in the minutes of identified time clusters.

The positive correlations between HR and MEA in the
exam period were consistent with many previous laboratory-
based studies on MA or general anxiety. For example, when
performing math tasks of increasing difficulty, students with
higher MA were reported to have increased HR, while HR
remained stable for the group with lower MA [16]. Regard-
ing general anxiety, increased HR was reported in anxiety-
induced tasks, such as stress interview [33] and public
speech [24], [59]. In such studies, HR was regarded as an
index of vigilance referring to the focus on external stimu-
lus events [24], [60], [61]. In the present study, as the stu-
dents received continuous stimuli of math problems during
the exam, the students with higher MA might experience a
higher level of vigilance, leading to increased HR for them.

Consequently, the correlations between HR and MEA
remained positive during most of the exam period and sig-
nificant correlations were found at the end of the exam. Our
results provide validation of the laboratory-based findings
on the relation between HR and MA in an actual exam
situation.

More importantly, the 1-minute-based analysis provided
more insights on the temporal dynamics of the cardiovas-
cular responses to MA. Specifically, the positive HR-MEA
correlation reached its peak value after about one-hour
exam time. As the students were supposed to be totally
devoted to the exam items from the beginning of the
exam, our non-significant HR-MEA correlations during the
first ∼60 minutes might suggest a possible suppression

VOLUME 8, 2020 57467



Z. Qu et al.: Measurement of High-School Students’ Trait MA Using Neurophysiological Recordings During Math Exam

FIGURE 5. Scatterplots showing the relationship between neurophysiological signals and MEA with controlled math
performance. X-axis refers to standardized MEA score with math performance controlled, and Y-axis refers to
SCL or HR. Each data point represents a student and the darker the color, the higher the math score. Scatter plots of
(a) SCL and MEA in the -4th minute at pre-exam stage, (b) HR and MEA in the 65th minute in the exam stage, and
(c) HR and MEA in the 85th minute at the exam stage are presented respectively.

FIGURE 6. Scatterplot for the correlation between the predicted and
self-reported MEA scores. Each dot represents the score from one
participant (N = 24). The predicted score for each dot was obtained by
using a leave-one-out cross-validation approach.

of MEA-related HR increases. The recruited high school
students had extensive experiences in exams. To prepare for
the National College Entrance Exam of China, they took
exams every week and small quizzes every day. This sup-
pression effect, therefore, could be explained by a coping
mechanism developed by the students in order to reduce MA
as reflected by the HR. Such a coping mechanism is not likely
to be developed by participants in the laboratory-based tasks
used in previous studies [16], [24], [33], in which the increase
of the HR by MA or general anxiety was normally reported
shortly after the onset of the tasks. Since the remaining time of
the exam would have been announced in the classroom at the
60th minute and 80th minute, students with higher MEA were
suggested to be more anxious than students with low MEA
when dealing with the time pressure, resulting in a weakened
suppression effect. The HR in students with higherMEA then
increases shortly, possibly leading to a significant HR-MEA
positive correlations at 63-65 minutes and 82-86 minutes.

While further investigations are necessary to elucidate the
underlying mechanism, our study reveals a complicated but
practically useful result, as real-world MA inducing tasks
are very likely to be associated with significant previous
experiences.

The negative correlation between SCL and MEA in the
anticipation (i.e. pre-exam) period, however, requires more
efforts to interpret. Although the generally increasing trend of
SCL throughout the recording time (Fig. 2a) is consistent with
previous studies, for example, those about public speaking
anxiety and anxiety towards threat of shock [24], [25], [62],
people with a higher anxiety level is usually reported to
be associated with higher SCL [15], [24], [63], even at the
anticipation period [64], [65]. The increased SCL during the
anticipation period could be explained as an overall enhanced
level of engagement for a more devoted preparation of the
anxiety-related task [57], [61]. The seemingly inconsistent
results of the negative correlation, might be due to the nature
of the experimental paradigm in use. The real exam paradigm
used in the present study is substantially different from
these laboratory-based simulations, especially in terms of
the potentially more severe consequence of failure. Accord-
ingly, the students during the anticipation period could be
heavily distracted by negative emotions other than anxiety,
such as fear of failure, uncertainty about upcoming exam
content, etc. [21]–[23]. These negative emotions would in
general make the students less engaged, resulting in reduced
SCL [57], [61], [66]. The students with higher MA could
be more troubled by these negative emotions, leading to the
observed negative correlation. Note that although the stu-
dents might have developed their coping mechanism for math
exams, they might not be able to adjust themselves before
the actual onset of the exam (i.e. the anticipation period),
when the exam content is unknown. In support of our results,
a recent study based on real-world settings also reported a
negative correlation between the EDAmean and anxiety level
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during public speech, although no mechanistic interpretation
was given [26].

As the first study to evaluate MA in an actual exam
with neurophysiological recordings, there is room for further
improvements. First, compared to the rich neurophysiolog-
ical signals, the students’ behavioral activities during the
exam were very limited, making it difficult to further infer
the mechanisms of the observed neurophysiological signa-
tures. It would be preferable and feasible to obtain more
behavioral data by camera recording, post-exam interviews,
etc., for information such as when they actually finished
the papers, how they coped with the time pressure, etc.
Second, the neurophysiological indicators were defined
based on their correlational significance, but a control base-
line is missing. Although data from the non-significant time
bins could serve to highlight the functional importance of
these significant time points, ideally it is expected to have
a baseline period beyond the anticipation and exam periods.
Third, while the present study only used a simple corre-
lational analysis to investigate the neurophysiological sig-
nature for MA, a deeper understanding of the underlying
mechanisms of MA could benefit from the use of more
advanced analytical methods, such as modeling the temporal
characteristics of the neurophysiological signals by auto-
regression [67], exploring the spectral information of these
neurophysiological signals [68]–[70], etc. Last but not least,
our findings might be limited by the relatively smalle sample
size (due to feasibility concerns) and the biased distribution
of the math performance of the volunteers towards the high-
performing ends. Studies with a larger population and a more
balanced sampling strategy are anticipated to provide further
validation of the present findings.

In summary, in order to explore the neurophysiological
signatures for MA with a high ecological validity, instead of
conducting well-designed experiments in laboratories or set-
ting simple arithmetic tasks, the SC and theHRwere recorded
in a cohort of high school students during their actual math
exam. Neurophysiological signatures for MA are found in
the anticipation period and task period respectively. Given
the relatively few ANS-based studies, especially in recent
years, and the lack of paradigms with high ecological validity
on MA, our research offers a new perspective to reveal the
neurophysiological basis of MA and therefore provides an
avenue for further ANS-based exploration. Considering the
portability of the neurophysiological recording devices and
the potential to predict the MEA scores, our results suggest a
promising new approach for the measurement of trait MA in
a real-life context. Furthermore, with the rapid development
of wearable devices towards convenient EEG recording in
real-life scenarios [28], [32], the use of both ANS-based and
CNS-based neurophysiological signals is expected to provide
a more comprehensive understanding of trait MA.
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