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ABSTRACT The problem of portfolio management relates to the selection of optimal stocks, which results
in a maximum return to the investor while minimizing the loss. Traditional approaches usually model
the portfolio selection as a convex optimization problem and require the calculation of gradient. Note
that gradient-based methods can stuck at local optimum for complex problems and the simplification of
portfolio optimization to convex, and further solved using gradient-based methods, is at a high cost of
solution accuracy. In this paper, we formulate a nonconvex model for the portfolio selection problem, which
considers the transaction cost and cardinality constraint, thus better reflecting the decisive factor affecting the
selection of portfolio in the real-world. Additionally, constraints are put into the objective function as penalty
terms to enforce the restriction. Note that this reformulated problem cannot be readily solved by traditional
methods based on gradient search due to its nonconvexity. Then, we apply the Beetle Antennae Search (BAS),
a nature-inspired metaheuristic optimization algorithm capable of efficient global optimization, to solve the
problem. We used a large real-world dataset containing historical stock prices to demonstrate the efficiency
of the proposed algorithm in practical scenarios. Extensive experimental results are presented to further
demonstrate the efficacy and scalability of the BAS algorithm. The comparative results are also performed
using Particle Swarm Optimizer (PSO), Genetic Algorithm (GA), Pattern Search (PS), and gradient-based
fmincon (interior-point search) as benchmarks. The comparison results show that the BAS algorithm is six
times faster in the worst case (25 times in the best case) as compared to the rival algorithms while achieving
the same level of performance.

INDEX TERMS Portfolio management, constrained optimization, nature-inspired algorithms, beetle search
optimization.

I. INTRODUCTION
Portfolio selection is one the most important topic in
finance [1]–[4]. It deals with finding an optimal choice of
investments, which maximizes the profit for the portfolio
holder while minimizing the financial risk. Although the
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financial parameters are stochastic and hard to predict with
a high degree of accuracy [5]–[8], it is expected to find an
optimal selection of stock options to maximize the chance
of gaining monetary gain by leveraging the advances in
the theory of mathematical modeling and optimization algo-
rithms. Modern approaches on portfolio optimization rely on
optimization-based algorithms to find the optimal proportion
of each stock in the portfolio [9]–[11]. These approaches rely
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on a fitness function, also called the objective function, which
takes a proportion of each stock in the portfolio and outputs a
fitness value. The goal is to find a specific proportion of each
stock that maximizes the fitness function. The performance
of the optimal solution depends on the formulation of the
fitness function. For example, the fitness function can be
formulated to maximize the expected profit regardless of the
risk in investing in specific stocks. Similarly, it can also be
formulated by considering both factors, i.e., maximize the
profit, while minimizing the risk. A holistic fitness function
accounting for all the relevant factors achieves better results.

A. BACKGROUND AND RELATED WORKS
Markowitz portfolio optimization method is one of the
most well-known methods in modern portfolio theory [12].
Markowitz proposed a method based on the historical per-
formance of stocks, i.e., estimate means and variances in
return rate of the stocks to formulate the fitness function.
In Markowitz’s model, the risk of a stock is directly propor-
tional to the variance of its return rate, while the expected
return is equal to the mean of return rates. For the case of
several stocks, covariances of stocks are also used in the
formulation to evaluate the risk. Another classical approach is
proposed by Elton et al. [13], which formulates a set of simple
rules to find an optimal portfolio, and does not require solving
an optimization problem. Easy availability of large-scale real-
life datasets of stock market prices, advent of fast computing
systems, e.g., general-purpose processors, digital signal pro-
cessors, and an increase in memory capacity have allowed the
researchers to study complex algorithms, which could not be
efficiently implemented in real-time on traditional computers
otherwise. With large processing and memory reservoirs at
hands, the researchers were able to process large real-world
datasets, allowing them to develop and train complex models
to model the efficiency of a portfolio.

Several factors are being considered for formulating a
holistic fitness function. Davis and Norman [14] introduced
the concept of transaction cost [15], [16], i.e., the cost for buy-
ing the stocks. However, they do not consider the other con-
straints to reflect the real-world market factors affecting the
stock prices. A later work by Chang et al. [17] introduced the
concept of cardinality constraint [18], [19], i.e., the final port-
folio can contain certain number of stocks. Machine learning-
based approaches have also been studied for the portfolio
selection problem [20]. Ledoit and Wolf [2] presented a new
perspective on the estimation of covariances matrices by real-
izing that for a small dataset, using traditional approaches to
estimate covariances matrices can lead to inaccurate results.
However, they did not address the problem of solving the opti-
mization problem. Baykasoğlu et al. [21] proposed a greedy
randomized adaptive search procedure (GRASP) to solve the
portfolio selection problem with cardinality constraints. The
GRASP based approach decouples the original problems into
two sub-problems: stock selection and proportion determi-
nation. The random search procedure only handles the first
sub-problem, which effectively reduces the holistic nature of

the optimization problem. However, in our work, the BAS
optimization algorithm treats the optimization problem holis-
tically and considers all the factors simultaneously while
searching for the optimal portfolio. Other approaches use
multiple criteria to evaluate the performance of a portfolio [4].
For example, Kalashnikov et al. [22] considers the multi-
objective approach to address the problem; however, their
work does not consider the problem of cardinality constraints
as considers in this paper.

The recent trends in the field of metaheuristic optimization
algorithms are specifically focused on nature-inspired algo-
rithms. The process of biological evolution has given inspira-
tion for a class of algorithms, called evolutionary algorithms
(EAs) [23]. Similarly, the structure of the human genome
has inspired the creation of genetic algorithms (GAs) [24].
Several algorithms have also been proposed based on the
behavior of macroscopic organisms; for example, Ant Colony
Optimization (ACO) [25], [26] is inspired by the work-
ing of an ant society. Similarly, the Cuckoo Search [27],
Grey Wolf Optimizer (GWO) [28], Artificial Fish Swarm
Algorithm [29], Honey Bee Algorithm (HBA) [30], [31],
Invasive Weed Optimization (IWO) [32], and Firefly Algo-
rithms (FAs) [33] are few of the recently proposed algorithms.
The common feature of these algorithms is that they are
inspired by the swarming behavior [34], [35] of insects, birds,
and animals. Although algorithms based on swarming behav-
ior have demonstrated excellent skills for searching optimal
solution, however, they are also computationally extensive
because each particle needs to evaluate the objective function
individually. This increases the overall complexity multiplied
by the number of particles in swarm. On the contrary, the BAS
algorithm, as used in this paper, mimics the behavior of bee-
tle, which are well-known for their skills for foraging the food
individually, by just using their sense of smell. Therefore,
the BAS algorithm only uses a single search particle, which
contributes to the computational efficiency while achieving a
comparable level of convergence performance.

B. AIM AND ORGANIZATION OF OUR WORK
Inspired by previously mentioned approaches, we have
adopted a nonconvex formulation of the portfolio selection as
a constrained optimization problem. The proposed problem
formulation uses Markowitz’s model to calculate the fitness
of a portfolio; however, it introduces several other constraints
absent from the original model. The goal of the proposed
optimization problem is to minimize the loss, mathematically
characterized as the variance of historical return values, and
maximize the potential profit, mathematically characterized
as expected value of the return. The constrained optimization
is transformed into an unconstrained one by using the penalty
term approach [36]–[40]. The unconstrained optimization
problem has the advantage of numerical and computational
efficiency. We propose a penalty function that penalizes the
violation of optimization constraints by adding a factor to the
objective function. The value of the penalty term is directly
proportional to the magnitude of the violation of constraints.
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An advantage of this approach is that the user can explicitly
specify the importance of each constraint by adjusting the
weight of the corresponding penalty terms.

To efficiently solve the reformulated optimization prob-
lem, we apply a nature-inspired metaheuristic algorithm;
called Beetle Antennae Search (BAS) algorithm. We lever-
age the properties of metaheuristic algorithms in general,
i.e., their well-known ability to efficiently solve com-
plex nonlinear non-convex optimization problems [41]–[45].
Metaheuristic algorithms have found application is several
practical situations [46]–[52]. The proposed algorithm is
inspired by mathematical modeling of the food foraging
behavior of beetles by Jiang and Li [53] and Zhang et al. [54].
The BAS algorithm have found practical applications in sev-
eral real-world scenarios [55]–[67]. In this paper, we explore
a new aspect of the application of beetle behavior and apply
it to the portfolio selection problem. The highlights of this
paper are as follow:

1) This paper adopts a nonlinear formulation of the port-
folio optimization problem with various constraints,
which comprehensively captures the nature of this
problem.Note that traditional methods usually simplify
this formulation to convex ones to reduce computa-
tional issues, but significantly degrades the quality of
the solution.

2) BAS is applied to solve this constrained optimization.
As verified by experiments, the solution is globally
superior to others.

3) For some portfolio selection problems, e.g., real-time
trading of stocks, it is critical to find the solution timely.
As observed in extensive experiments, BAS presented
in this paper is 6 times faster in the worst case than its
rivals in portfolio optimization.

The rest of this paper is organized as follows: Section II
formulates a constrained optimization for the portfolio selec-
tion problem by considering transaction cost and cardinality
constraint. Section III reformulates the constrained optimiza-
tion problem into an unconstrained one and mathematically
models the behavior of beetle as an optimization algorithm.
Section IV presents the experimental methodology, conver-
gence performance, and comparative results with Particle
Swarm Optimizer (PSO), Genetic Algorithm (GA) and Pat-
tern Search (PS). Section V concludes the paper

II. PROBLEM FORMULATION
In this section, we mathematically formulate the problem of
portfolio selection. First, we briefly introduce the classical
problem formulation by Markowitz [12] and then introduce
cardinality constraint and transaction cost, which are used in
modern portfolio selection. Additionally, we also present dif-
ferent variants of the problems and explain their advantages.

A. MARKOWITZ MODEL
Suppose we have a total of N available stocks options, with
there names denoted by S1,S2, . . . ,SN . Let µ1, µ2, . . . , µN

be the mean return rate calculated from the past market price.
Similarly, σij where i, j ∈ {1, 2, . . . , n}, denote the covariance
between the return rate of stock Si and Sj; note that for i = j,
σij denotes the variance of the return rate of stock Si. Also
the covariance between two stocks is symmetric, therefore,
σij = σji. Let us define the following matrices for simplifying
the mathematical notation.

µ =
[
µ1 µ2 · · · µN

]
(1)

6 =


σ11 σ12 · · · σ1N
σ21 σ22 · · · σ2N
...

...
. . .

...

σN1 σN2 · · · σNN

 , (2)

where µ is a row matrix of mean return rates, and 6 is
the covariance matrix. Note that the covariance matrix is
symmetric.

Suppose the total investment amount is T, and we normal-
ize it to 1 for the sake of simplicity. Later, wewill denormalize
the final solution to calculate the actual investment amount in
each stock. If the normalized amount invested in each stock
is denoted by t1, t2, . . . , tN , then their sum should not exceed
the total normalized investment amount, i.e.,

N∑
i=1

ti = 1. (3)

Let t = [t1, t2, . . . , tN ] denote the normalized amount
invested in each stock. Based on the above definitions,
the expected return on the investment is given by

µ̄(t) = tµT , (4)

where µ̄(.) denotes the normalized expected return on
the investment. The amount of total expected return is
Tµ̄ = TtµT . Similarly, the risk on the invested amount is
dependent on the covariancematrix of all the stocks and given
by the following relation

6(t) = t6tT , (5)

where 6(.) denotes the variance of the entire portfolio.
In the original Markowitz mean-variance model, the objec-

tive is to minimize the risk, i.e., portfolio variance, while
obtaining a required value of normalized expected return,
say µreq. It can be expressed as the following optimization
problem

min
t
6(t)

Subject to: µ̄(t) = µreq
1tT = 1

0 ≤ ti ≤ 1, i ∈ {1, 2, . . . ,N } (6)

where µreq is the required value of normalized expected
return; this value is assumed to be known in the Markowitz
model. Symbol 1 is the second equality constraint is a row
matrix of ones, i.e., 1 ∈ {1}1×N . It is a compact form of (3).
The last inequality constraint is arises from the fact that the
normalized investment in each stock should be between zero
(no investment) and one (all amount invested).
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B. MODIFIED MODEL
Although the classical Markowitz model is useful for port-
folio selection, however, modern approaches consider addi-
tional factors, e.g., transaction cost and cardinality constraint.
Now we will incorporate these factors into the optimization
problem formulated above.

1) TRANSACTION COST
The amount required to buy or sell the shares of a particular
stock is called the transaction cost. A realistic portfolio selec-
tion model need to consider the transaction cost because of
their significance in the financial market. The transaction cost
for different stocks is different and plays an important factor
in deciding the final return rate for the stock. Suppose the
normalized transaction cost for investing ti amount in stock Si
is given by a function φi(ti). We can construct the following
matrix with transaction costs of all N stocks

φ(t) =
[
φ1(t1) φ2(t2) · · · φN (tN )

]
(7)

and the total transaction cost for investing in N stocks is
given by,

φ̄(t) =
N∑
i=1

φi(ti) (8)

where φ(.) denotes the sum of all transaction costs.
Several different cost models have been used in litera-

ture [68]. For example, φi(.) = 0, where i ∈ {1, 2, . . . ,N },
denotes a zero transaction cost model, i.e., the investor only
need to pay for the shares and no additional fee is charged.
However, a more realistic model is called a linear transaction
cost model, in which the investor needs to pay a transaction
fee proportional to the investment amount. Such a model can
be mathematically defined as

φi(t) = αit, i ∈ {1, 2, . . . ,N } (9)

where αi is the factor controlling the transaction cost for stock
Si. Using (7), (8), and the linear cost model of (9) the total
transaction cost can be compactly written as,

φ(t) = αtT (10)

where α = [α1, α2, . . . , αN ]. Based on the above discussion,
it can be seen that the total investment amount, is not only
spent on buying the shares in stocks, but also need to pay for
the transaction fee. Therefore, the second equality constraint
of (6) can be modified as follow

(1+ α)tT = 1, (11)

we will later use this updated constraint in the formulation of
the final optimization problem.

2) CARDINALITY CONSTRAINT
In the Markowitz model, it is assumed that the investor
will invest some amount in each of the N stocks. However,
in practical scenarios, it may be desirable to limit the num-
ber of stocks in the final portfolio. Such a limit is called

cardinality constraint. Suppose the limit on the number of
stocks in k(< n), i.e., at maximum, the investor can hold
a share of k stocks. To formulate it mathematically, con-
sider binary variables z1, z2, . . . , zk to denote which stock is
present in the portfolio. These binary variables can either hold
a value of zero or one. Let us denote z = [z1, z2, . . . , zN ].
According to a cardinality constraint

N∑
i=1

zi = k. (12)

Additionally, we need to make sure that the stocks for which
zi = 0, should also have ti = 0, i.e., no investment in those
stocks. It can be ensured using modifying the third inequality
constraint in (6) as follow

0 ≤ ti ≤ zi, i ∈ {1, 2, . . . ,N }. (13)

Note that if zi = 0, the condition (13) becomes ti = 0.Wewill
update the constraint in the final optimization problem.

C. UNIFIED OPTIMIZATION PROBLEM
The classical Markowitz model in (6) can be updated by
considering the transaction cost model (11) and cardinality
constraint (12), (13). The updated optimization problem, can
be written in the expanded form as

min
t

t6tT

Subject to: tµT = µreq
(1+ α)tT = 1

0 ≤ ti ≤ zi, i ∈ {1, 2, 3, . . . ,N }

1zT = k

z ∈ {0, 1}1×N . (14)

Note that {0, 1}1×N denotes a binary matrix of dimension
1×N . Although the above-constrained optimization problem
is most commonly used in literature. However, some other
works [68], incorporate the expected return into the objective
function instead of an equality constraint. Such an approach
eliminates the need to specify the required value of expected
returnµreq. This approach is also intuitive since the goal of an
investor is not to earn a predefined return but to maximize the
final return. Therefore, by putting it into the objective func-
tion, we are informing the optimizer to achieve the maximum
possible value of expected return while minimizing the risk.
The user can explicitly control the trade-off between the risk
and the expected return by changing the objective function.
The modified problem can be written as

min
t

t6tT −3tµT

Subject to: (1+ α)tT = 1

0 ≤ ti ≤ zi, i ∈ {1, 2, 3, . . . ,N }

1zT = k

z ∈ {0, 1}1×N . (15)
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where the parameter 3 controls the tradeoff between the
expected return and the risk, the second term is incorporated
into the objective function with a negative sign so that when
the optimizer minimizes the value of the objective function,
the value of the second term tµT increases

III. OPTIMIZATION ALGORITHM
In this section, we will formulate the BAS optimization
algorithm, by mathematically modeling the food foraging
behavior of beetles. The BAS algorithm is designed for
unconstrained optimization problem, first, we will reformu-
late the constrained optimization problem in Section II into
an unconstrained optimization problem. Then we will derive
the optimization algorithm.

A. UNCONSTRAINED OPTIMIZATION PROBLEM
Observing the constraints of the optimization problem (15)
shows that satisfying third and fourth constraints are a combi-
natorial problem, which in itself is a computationally expen-
sive task. Additionally, each constraint requires a different
solving technique, which makes it complicated to incorporate
additional constraints into an existing solution. Therefore to
avoid the combinatorial problem and unify all constraints
into a single framework, we first need to convert the con-
strained optimization problem (15) into an unconstrained
optimization problem. In this paper, we will use the penalty-
term approach to incorporate the equality and inequality con-
straints into the objective function. Using the penalty-term
approach, the constrained optimization problem (15) can be
written as following unconstrained optimization problem

min
t,z

t6tT −3tµT + P(t, z) (16)

where P(.) is the penalty function for the constraints in (15).
The penalty function is composed of four terms correspond-
ing to the constraints in the optimization problem

P(t, z) = β1P1(t)+ β2P2(t, z)+ β3P3(z)+ β4P4(z). (17)

where Pi(.), i ∈ {1, 2, 3, 4} denotes the penalty terms and
βi denotes the weight of each term in the objective function.
The purpose of the penalty term is to add a positive value in
the objective function when the corresponding constraint is
violated. Since the optimizer is trying to minimize the objec-
tive function, therefore these terms penalize the violation in
constraints by adding additional value. If the constraints are
not violated, then these terms become zero.

First, we define the penalty term for the equality con-
straints, i.e., constraints corresponding to lines 2 and 4 of (15)

P1(t) = ((1+ α)tT − 1)2, (18)

P3(z) = (1zT − k)2. (19)

These functions define a non-negative term which add a pos-
itive value into the objective function of (16), thus penalizing
the violation of constraints. Next, the penalty term for the
cardinality constraint, i.e., constraint corresponding to line 5

of the optimization problem (15) can be defined as

P4(z) = z(1− z)T (1− z)zT (20)

which is equivalent to P4(z) =
∑N

i=1 z
2
i (1 − zi)2. This

function produces a small positive value when zi ∈ {0, 1},
otherwise it add a large penalty to the objective function (16).
Now, for the inequality constraint, i.e., constraint correspond-
ing to line 3 of the optimization problem (15), define the
following penalty term

P2(t, z) =
N∑
i=1

Q(ti, zi). (21)

where the function Q(.) is defined as

Q(t, z) =


−t, if t < 0
0, if 0 ≤ t ≤ z
t − 1 if z < t.

(22)

It can be seen that such a definition of P2 makes sure that
a positive number is added to the objective function (16)
whenever an inequality constraint is violated.
Based on the definitions of penalty function (17), and

replacing the value of individual penalty-term from (18), (21),
(19), and (20), the final form of the penalty function can be
written as

P(t, z) = β1((1+ α)tT − 1)2 + β2
N∑
i=1

Q(ti, zi)

+β3(1zT − k)2 + β4z(1− z)T (1− z)zT . (23)

This can be replaced in (16) to get the complete unconstrained
optimization problem. Now we formulate the optimization
algorithm to solve this unconstrained optimization problem.

B. BAS OPTIMIZATION ALGORITHM
The food foraging behavior of beetle inspires the BAS
optimization algorithm. The behavior of beetle is inspiring
because of their excellent ability to search for food in a
previously unknown environment by just using its olfactory
sense. The beetle senses the smell of food, and its goal is
to search for the region with the maximum smell. Therefore,
the behavior of the beetle can be characterized as an optimiza-
tion algorithm. Beetle has a pair of antennae, which is used
to measure the difference in intensity of smell in different
directions while searching way toward food. At each step,
beetle senses the intensity of smell at both antennae location
and, based on the difference, move toward a direction where
the intensity of smell is increasing. The mathematical model-
ing of this behavior leads to an efficient global optimization
algorithm. The behavior is visualized in Fig. 1

Suppose we want to solve following unconstrained
optimization problem

max
x

f (x), (24)

where f : Rn
→ R. The optimization variable x is an

n-dimensional vector. In beetle’s analogy, Rn is the space in
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FIGURE 1. A visual illustration of the beetle’s food foraging behavior.
Each step depicts a single iteration of the BAS algorithm.

which the beetle is searching and f (.) represents the intensity
of smell at each point. The goal is to find a vector x∗ such that
the intensity of smell f (x∗) is maximized.
Suppose that beetle starts from a random location x0. For

the sake of generality, consider it reaches a point xm at step
m. Generate a random direction vector Ed ∈ Rn with nor-
mally distributed elements. The random vector is generated
to represent the direction of the beetle’s antennae. Consider
both antennae of beetle are pointing in opposite directions;
therefore we can calculate the location of antennae’s end-
point using the following relations

xmL = xm + λmEd, xmR = xm − λmEd, (25)

where we used variables xmL and xmR to denote the position
of left antennae and right antennae, respectively. λm denotes
the length of antennae.

The next step is to calculate the value of the objective func-
tion at both these antennae locations, mimicking the sense of
smell of both antennae. Evaluate the objective function in (24)
using both vectors; xmL and xmR, as follow

fmL = f (xmL), fmR = f (xmR), (26)

where fmL and fmR denotes the value of objective function
at left and right antenna location respectively. By comparing
both values, we make the next step according to the following
update-rule

x′m+1 = xm + δm(λm) sign(fmL − fmR)Ed, (27)

where x′m+1 is the updated location of the beetle, δk (.) is the
parameter controlling the Euclidean length of actual step-
size. The step-size is a function of antennae length λk for
the sake of generality. Their relation is described later. The
function sign(.) is used in the above update-rule to make sure
that the updated location is in a direction toward which the
value of the objective function is increasing.

The objective function is then evaluated at updated location
x′m+1 to sense the intensity of smell at the new location

f ′m+1 = f (x′m+1), (28)

the value f ′m+1 is then compared to the value fm from the last
location. If there is an improvement, i.e., the new value f ′m+1
is higher, then the beetle remains at the new location x′m+1;
otherwise it returns to its previous location. The location
variable is updated as

xm+1 =

{
x′m+1 if f ′m+1 > fm
xm if f ′m+1 ≤ fm.

(29)

Similarly, the variable holding the value of the objective
function is updated

fm+1 =

{
f ′m+1 if f ′m+1 > fm
fm if f ′m+1 ≤ fm.

(30)

The above steps are performed repeatedly until an optimal
solution is reached. The steps of the algorithm are system-
atically presented in 1. Fig. 2 shows the schematic diagram
of the BAS algorithm to visually depict the functionality and
connection between different components of the algorithm.

FIGURE 2. Schematic diagram of the BAS algorithm visually depicting the
interconnections between different components of the Algorithm 1.

The value of parameters λm and δm(.) affect the conver-
gence rate of the BAS algorithm. By empirical observations,
we found that the following rules provide a reasonable con-
vergence rate

λm = c1
√
ne−αm, δm(λm) = c2λm, (31)

where m denotes the current step number, α controls the
speed of decay. c1 and c2 are constant values and generally
their default values are chosen as c1 ∈ (0, 2) and c2 = 1.
However, for a specific implementation, their values can be
further tuned. The rule starts the algorithm with a large value
of antennae length and slowly converges to a small value
according to the exponential decay law.
Remark 1: Note that although the above algorithm is for-

mulated for a maximization problem, it can equivalently be
applied to the minimization problem

min
x

f (x), (32)

by modifying the update-rule in (29) as follow

x′m+1 = xm − δm(λm)sign(fmL − fmR)Ed, (33)

and reversing the inequality conditions in (27) and (30).
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TABLE 1. NASDAQ symbols for the selected companies.

Remark 2: The unconstrained optimization (16) can be
written in the same form as (32) by defining x = [t z],
i.e., augmenting both row matrices to form a single large
matrix. In this case, the dimension of optimization problem
becomes n = 2N , i.e., x ∈ R2N .

Algorithm 1 BAS Algorithm - Portfolio Optimization
Input: Mean of return rate for all stocks µ, covariance

matrix of return rate 6, normalized transaction
cost α, number of stocks in final portfolio k ,
weight parameters: 3,β1, β2, β3, and β4.

Output: An optimal selection of stocks z∗ and optimal
investment amount in each stock t∗.

Construct the objective function in (16) according to
method given in Remark 2.
x0← Initial location
m← 0 kstop← maximum number of steps allowed
while m < mstop do

Generate a normalized random vectors, Ed ∈ Rn.
Calculate both antennae’s locations using using (25).
Evaluate the objective function at both vectors.
Use the calculated values to determine the new
location according to the update-rule (27).
Calculate the value of objective function at new
location as given in (28).
Update the location according to (29) and (30).
m← m+ 1

end

C. COMPUTATIONAL COMPLEXITY
Here the complexity analysis of the BAS algorithm is pre-
sented. Steps listed inside while loop of Algorithm 1 are
used to calculate the number of mathematical operations.
The first step of the algorithm, requires the generation of n
normally distributed random variables, which requires a total
of b1 n floating-point operations, where b1 denotes the opera-
tions required to generate a single random variable. The sec-
ond step, i.e., calculation of antennae’s end-point locations,
requires a 2n additions and 2n multiplication operations,
making up a total of 4n floating-point operations in this step.
The third step requires the evaluation of the objective function
twice. A careful analysis of the objective function tells that it
requires approximately n3 + 7n floating-point operations to
evaluate it once. The most complex part in evaluation of the
objective function is computation of t6tT , which contributed
the n3 term. Since we need to evaluate the objective func-
tion twice, it requires 2n3 + 14n floating-point operations.

The fourth step, i.e., updating the location according to the
rule (27), requires 2n+ 2 floating-point operations. The fifth
step, requires the evaluation of the objective function again,
therefore requiring approximately n3+7nfloating-point oper-
ations. The last step, i.e., updating the location according to
(29) and (30) requires 2 comparisons. Summation of floating-
point operations for all the steps make a total of: (b1 n+4n+
(2n3+14n)+2n+2+n3+7n+2) = 3n3+(27+b1)n+3α2+2.
It implies that the overall computational complexity of the
BAS algorithm is O(n3), i.e., polynomial with respect to the
dimensionality of optimization variable.

IV. RESULTS AND DISCUSSION
In this section, we will present the experimental methodology
and the optimization results using the BAS algorithm. First,
we will describe the processing of the dataset to obtain the
mean return rate and the covariance matrix from the historical
prices of stocks. Then we will describe the type of experi-
ments and then present their results along with the discussion.

A. EXPERIMENTAL METHODOLOGY
To evaluate the viability of the BAS algorithm in practical
scenarios, we used the real-world dataset [69] to calculate the
parameters for the optimization problems. The dataset [69]
contains the stock prices, up to 2017, for major companies
in the NASDAQ stock exchange. The dataset contains stock
prices for 7192 companies. Out of those, we selected 50 com-
panies to perform our experiments. We used the stock price
data for the year 2017 to calculate the mean return rate and
covariance matrix for the selected companies. The name of
the companies used in our experiments are listed in Table 1.
The dimension of mean return rate matrix µ is 1 × 50 and
covariancematrix6 is 50×50. Therefore, we have visualized
them as a grid of rectangular pixels and used colormap to
show their values. Fig. 4(a) and Fig. 4(b) visualize the matri-
ces µ and 6 respectively. To obtain a value of α, i.e., the
transaction cost vector for purchasing the shares, we gener-
ated a uniformly distributed random vector with a dimension
of 1 × 50, such that 1αT = 0.1. All the experiments were
conducted with MATLAB running on macOS Cataline with
2.2 GHz Quad-Core Intel Core i7 and 16 GB of RAM. The
MATLABwas chosen because it provided the environment to
quickly prototype and test the performance of the algorithm.
The real-world implementation of the algorithm will usually
require amore specialized embedded processor programming
using a low-level programming language, e.g., C or C++.
It must be noted that the since the optimal value of the
optimization variables, for the problem of portfolio selection,
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FIGURE 3. The return rate of the stocks of the companies listed in Table 1. Each figure corresponds to five companies. This return rate is used in the
calculation of mean and covariance matrices visualized in Fig. 4. The values of return rate are concentrated above one, i.e., company is giving profit. The
chaotic behaviour of these curves is expected from a real-world dataset.

FIGURE 4. Visualization of mean return rate and covariance matrix as grid
of rectangular pixels with values shown using colormap. (a) Visualization
for 1× 50 mean return rate matrix µ. (b) Visualization for 50× 50
covariance matrix. Most of the values are concentrated near the middle
(one for mean and zero for covariance) with only few outliers, which can
be expected from a real-world dataset.

lies in the range [0, 1]; therefore, the algorithmwas initialized
with uniformly distributed random values, i.e., x0 ∈ [0, 1]n,
where n is the dimensionality of the optimization variable as
explained in Remark 2.

Additionally, to evaluate the comparative performance
of the BAS algorithm, we also conducted the experiments
using PSO [70], GA [71], PS [72], and fmincon [73].
Among these, fmincon is a gradient-based optimizer avail-
able in MATLAB [73], while other are are well-tested

nature-inspired optimization algorithms and have the focus
of several studies [24], [72]. All major optimization libraries
have a robust implementation of these algorithms and, there-
fore, can be readily used to benchmark the performance of
a given optimization algorithm. We implemented the BAS
algorithm in MATLAB [73]. Since MATLAB also provides
an implementation of PSO, GA, PS, and fmincon, this
enabled us to conduct a fair benchmark and comparative
analysis of the BAS algorithm. To present fair and accurate
comparison results, we manually tuned the hyperparame-
ters of these metaheuristic optimization algorithms until we
reach a satisfactory level of performance. The execution time
present for each algorithm is estimated using code profiling
tools provided by MATLAB, which provide accurate tim-
ing information and take care of any biases caused by OS
scheduler.

Additionally, to evaluate the scalability of the BAS algo-
rithm, we considered the different number of companies to be
included in the portfolio. In this regard, we considered four
different cases. In the first case, we chose a total of 5 com-
panies out of the 50 companies initial selected, i.e., N = 5.
We used the mean return rate and covariance matrices for
those 5 companies to formulate an objective function accord-
ing to (16). The cardinality constraint was used to enforce
that only 3 companies can be present in the final portfolio,
i.e., k = 3. For the second case, we chose 10 companies,
i.e., N = 10 and k = 5 was used to formulate the objective
function. For the third case, the number of companies was
20 and k = 10. Similarly, for fourth case,N = 50 and k = 20
was chosen. Note that, 3 = 1, β1 = 5, β2 = 1, β3 = 2, and
β4 = 10 were used in all the experiments.

B. COMPARATIVE RESULTS AND DISCUSSION
First, we will discuss the convergence behavior of the BAS
algorithm for the four experimental scenarios, as described in
the previous subsection. Then we will compare the optimal
results obtained using the BAS algorithm with results from
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FIGURE 5. Convergence performance of the BAORNN algorithm for different experimental scenarios along with profile of important metrices. (a)-(d) show
the results for the case when 5 stocks were considered and k = 3, i.e., only 3 companies could be present in final portfolio. (a) shows the convergence of
the unconstrained objective function. (b) shows the value of two components of the unconstrained objective function. (c) shows the evolution of return
rate with number iterations. (d) shows the profile of individual constraint penalty term as defined in Section III-A. (e)-(h) show the similar results for the
case of 10 companies and k = 5. (i)-(l) show the results for 20 companies and k = 10. (m)-(p) show the results for 50 companies and k = 20.

PSO and GA. The comparison includes several metrics: opti-
mal value, optimal return rate and variance, execution time,
number of iterations, and number of evaluations of objective
functions.

Fig. 5 shows the convergence performance of the BAS
algorithm for the four different cases. Each row of fig-
ures show results for a single case. Fig. 5(a)-(d) shows the
results for the first case, i.e., N = 5, k = 3. Fig. 5(a)
shows the decay in the value of unconstrained objective
function along with the number of iterations of the opti-
mization algorithm. It can be seen that the value of objec-
tive function monotonically decreases until it reaches the
minimum optimal value. Additionally, it can be seen that
in the beginning, the value of objective function decreases

rapidly in large steps, however, as the number of iterations
increase, the reduction in value of the objective function
becomes small; it can be described in term of the rule (31),
which used to calculate the length of beetle’s antennae. In the
beginning, the length is λ0; however, with the number of
iterations increase, the length decreases by an exponential
decay factor. The smaller antennae length implies that the
algorithm is only able to take small steps; however, such a
decaying behavior is necessary to avoid overshooting near-
optimal points. Fig. 5(b) shows different two components of
the unconstrained objective function. It can be seen in (16),
that the objective function have two components; first compo-
nent is from Markowitz’s model and second is the combined
penalty term for the optimization constraints P(.) as defined
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TABLE 2. Summary of convergence profiles of the BAS algorithm.

in (17). We have shown the convergence of both of these
components to demonstrate that although the overall value
of unconstrained objective function decreases, the value of
individual components might not follow the same pattern. For
example, in Fig. 5(b), the value of the Markowitz’s model
term increases with the number of iterations; this can be
explained by considering that the initial point produced a
lower value of the first term, but it violated the constraints.
Therefore, such a point cannot be taken as solution of the
optimization problem. As the states of optimizer evolved with
iterations, the individual components also reached an optimal
solution. The violation of constraints at the initial point can
be seen in Fig. 5(d). Fig. 5(c) shows the profile of expected
return rate tµT . It can be seen that initially, the value of
expected return rate is quite high but achieving it is unrealistic
because the optimization variables violated the constraints at
the initial point. However, the expected return rate reaches a
realistic optimal value of 11.59%. Finally, Fig. 5(d) shows the
value of individual penalty term for optimization constraints.
These penalty terms are defined in Section III-A. The profile
of these penalty terms shows that in the beginning, the opti-
mization variable violated all the constraints, however, as the
optimizer minimized the value of objective function these
penalty terms also converged to an optimal minimum value.

Similar trends can be observed for the second, third, and
fourth experimental cases. Fig. 5(e)-(h) shows the results
for the case of 10 companies and cardinality constraint of
k = 5. It can be seen that for this case, the optimizer took
5000 iterations to converge to an optimal point. Results for
the case of 20 companies and 50 companies are summarized
in Fig. 5(i)-(l) and Fig. 5(m)-5(p) respectively. These experi-
mental results prove the scalability of the BAS algorithm on
the real-world dataset and demonstrate its efficacy in practical
scenarios. Value of different parameters at optimal point are
summarized in Table 2.

Next, we conducted experiments to perform the compari-
son of the BAS algorithm with PSO, GA, PS, and fmincon.
The comparison results are summarized in Table 3. The table
presents six different metrics to measure the performance of
an algorithm; the optimal value of the unconstrained objective
function, the value of expected return rate and variance at
the optimal point, the total execution time as measured in
MATLAB, the number of iterations of respective algorithm,
and the total number of evaluations of the objective function.
It can be seen that in almost all the cases, BAS and PSO
demonstrate almost identical performance in terms of the
final optimal point, i.e., the value of the objective function
and the expected return rate. The performance of the GA
algorithm deteriorates as the number of companies increases.
However, the computational efficiency of the BAS algorithm
is much higher as compared to the PSO and GA algorithms.
In terms of execution time, it can be seen that even in the
best performance scenario, the BAS algorithm is at least six-
folds (in case of 10 companies) faster than PSO and GA.
In other scenarios, the numerical efficiency of the BAS is even
higher. Remember that all the experiments were performed in
MATLAB, which provided a native implementation of PSO
and GA; therefore, the comparison of execution time is fair.
The authors even tuned the initial parameters of PSO and GA
to enhance their performance. The comparison of the number
of iterations is not directly important because each optimiza-
tion algorithm has a different formulation, therefore a more
holistic comparison is provided by the number of evalua-
tions of the objective function; which directly corresponds to
the computational complexity of the optimization algorithm.
It can be seen fromTable 3 that BAS clearly outperforms PSO
and GA in term of the number of evaluations of the objective
function.

In order to prove the robustness and consistency of the
proposed algorithm, statistical results were also generated by
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TABLE 3. Comparison of BAS with PSO, GA, PS, and fmincon for different number of companies in the portfolio.

FIGURE 6. The box and whisker plot showing the distribution of performance parameters under varying initial conditions. Each experiment was repeated
20 times, and the statistics were recorded in the form of the whisker graph. (a) shows the results for execution time for different number of companies.
Similarly, (b) and (c) shows the statistics for expected return and variance respectively.

TABLE 4. Standard deviation for the performance metrices using BAS algorithm.

repeating each experiment 20 times with different initial con-
ditions. The same initialization strategywas used as described
in Section IV-A. The value of performance metaheuristic,
i.e., execution time, expected return, and expected variance,
were recorded and presented in the form of the whisker graph,
as shown in Fig. 6. The graph shows the distribution of
performance metrics around median value and their overall
variation under different initial conditions. Fig. 6(a) shows
the results for execution time. It can be seen that the values
are tightly distributed in a narrow band, which shows the
consistency in the performance of the proposed algorithm and
demonstrate its robustness to the initial conditions. Similar
results can be observed for the expected return and expected

variance in Fig. 6(b) and 6(c) respectively. The value of
standard deviation for each parameter are also presented in
the Table 4. The value also demonstrates that there is little
influence on the performance of the algorithm if initial con-
ditions are changed

V. CONCLUSION AND FUTURE WORK
In this paper, we applied a nature-inspired metaheuristic opti-
mizer, called BAS, to the financial problem of portfolio selec-
tion. The BAS algorithm mimics the food foraging behavior
of a beetle, and therefore have a remarkable ability to search
for an optimal point in a computationally efficient manner.
To apply the optimization algorithm on the portfolio selection
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problem,we first formulated a constrained optimization prob-
lem inspired by the classical Markowitz model and enhanced
it to include the cardinality constraint and transaction cost.
Next, it is reformulated as an unconstrained optimization
problem using the penalty term approach. The parameters of
the optimization problem are calculated using the historical
stock price dataset. The portfolio selection problem is then
solved by considering a specific number of available stocks
to evaluate the scalability of the BAS algorithm. Additionally,
the performance is also compared to PSO, GA, and PS, which
are well-studied metaheuristic optimization algorithms. The
experimental results show that the BAS algorithm is, in the
worst case 6 times faster as compared to the other optimiza-
tion algorithm and about 25 times faster in the best case
with the comparable accuracy, which proves efficacy and
computational efficiency of the BAS algorithm.

The following topics for the extension of the proposed
study are potential future research directions. Investigating
and exploring the effect of different portfolio selection mod-
els, such as the Sharpe ratio, on the performance of the
proposed algorithm. Additionally, exploring hardware-level
implementation options, such as GPU and bare-metal pro-
cessing, to deploy the solution in a commercial environment
will also act as a potential future research direction.
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