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ABSTRACT Currently, liquid crystal displays (LCDs) are the most popular type of flat panel display
and are used in most applications. An LCD contains many critical optical film components that are
produced in highly automated and precisely monitored facilities throughout the complex manufacturing
process. However, defect detection and classification through visual inspection is very difficult during the
manufacturing process. To overcome this problem, a novel framework based on machine vision known as the
optical film defect detection and classification system is presented for use in the real-time inspection. First,
an image acquisition system equipped with a high-resolution camera and custom-made lighting field was
designed to obtain a high-quality optical film image. Second, the defects on an optical film were detected
using localized cross-projection based on proposed adaptive energy analysis. Finally, the defect images were
classified into four types by using the developed classification algorith—point, scratch, foreign material,
and stain. The quality of the products yielded after defect detection and classification of the optical film was
compared with the standard product quality of the manufacturer. Experiments were conducted using samples
collected from the largest manufacturer in Taiwan to validate the performance of the proposed framework.
The accurate defect detection rate is 99.6%, the classification accuracy rate is 100%, and the total operation
time is short whichonly 6.129s are required on average to perform the inspection for an optical film sample.
The results demonstrate that the proposedmethod is sound and useful for optical film inspection in industries.

INDEX TERMS Optical film, automatic optical inspection, color space, adaptive energy analysis,
cross-projection, Kirsch operator, bit-plane slicing, support vector machine.

I. INTRODUCTION
Currently, liquid crystal displays (LCDs) are themost popular
flat panel displays that have replaced traditional cathode ray
tube displays in most applications and become the main-
stream electronic display. An LCD is a device that utilizes
the electro-optical characteristics of a liquid crystal to con-
vert an electrical stimulus into a visual signal. Due to the
complicated manufacturing process and expensive equip-
ment, the LCDmanufacturing industry is highly competitive.
An LCD contains many critical optical film components,
such as a reflector sheet, light guide plate (LGP), diffuser
sheet, prism sheet, bottom polarizer, a bottom glass substrate
(backplane), and thin-film transistor. Each component inside
an LCD has a crucial role in ensuring LCD quality. Therefore,
highly automated and precisely monitored facilities are used
throughout the complex manufacturing process.

The associate editor coordinating the review of this manuscript and

approving it for publication was Donato Impedovo .

Visual defect inspection serves a pivotal role in the LCD
manufacturing process. However, the optical film industry
currently lacks an efficient defect inspection system, and
detection and classification are conducted and recorded
manually. Therefore, defect images are identified by expe-
rienced engineers or operators. However, this visual inspec-
tion method includes the following drawbacks: high time
consumption, subjective and hence variable defect detection,
and human fatigue that leads to misrecognition. In contrast
to human inspection, machine-vision-based techniques have
advantages such as high efficiency, low cost, and objectivity
and are widely applied for industrial defect inspection. The
automatic optical inspection system (AOI) is a key machine-
vision-based technique in industry 4.0 that is used for man-
ufacturing and testing products to ensure that high-quality
products are obtained from the production line and the items
are manufactured correctly without fault. AOI is an essential
tool that employs optics to capture images of an object that
is being tested using an integrated test strategy and ensures
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that costs are kept as low as possible by detecting faults early
in the production line. AOI has been increasingly used for
automatic defect detection in several industrial fields for the
quality control of products, such as printed circuit boards
[1]–[3], plastic products [4], steel products [5], [6], glass
products [7], [8], solar cells [9], [10], textiles and garments
[11]. Besides, AOI has also been used for counting blister
cards within drug packages [12] and checking the surface of
the lithium-ion battery electrode [13].

Variousmethods have been developed for defect inspection
of LCDs in the past decade based on machine vision. Based
on the monotonical relation of 3D sizes and grayscale value
of microdefects, Deng et al. [14] used the support vector
regression (SVR) algorithm to develop a vision-based 3D
shape measurement system for detecting and measuring the
transparent micro defects on the polarizing film. Kuo et al.
[15] used Fourier transform to detect and enhance defects
on polarizing films, which are the key component in LCDs.
Then, they extracted various features, such as maximum gray
level, eccentricity, contrast, and homogeneity of the gray level
co-occurrence matrix, from the defect images and input them
in the radial basis function neural network and backpropaga-
tion neural network (BPNN) for classification. To improve
the inspection quality of polymeric polarizers in thin-film
transistor LCD (TFT-LCD) panels, Lai et al. [16] used an
LCDmonitor as a structured light source to display the binary
stripe pattern of a polymeric polarizer before capturing its
images. Then, they used the robust principal component anal-
ysis algorithm for processing and characterizing the defect
images. Gan and Zhao [17] proposed a modified local binary
fitting model to initialize contour and competent features
for the extraction of defect boundaries. Tsai et al. [18] pro-
posed an automatic quantization of Mura panel defects in
terms of the crossing points of the interference pattern to
detect gap defects before injecting liquid crystals into the
cells of a TFT-LCD panel. For pretesting gap defects on a
TFT-LCD panel, Li et al. [19] proposed an optical interfer-
ence pattern-sensingmethod to detect the defects and then use
the neural network method to identify the types of defects.
To detect Mura defects on an LCD, Wang et al. [20] used
the first four singular values of the images captured to divide
the defect images into the following two categories—coarse
and fine. Then, they adopted two-dimensional (2D) discrete
wavelet coefficients combined with region growing to extract
defect regions. Li and Tsai [21] proposed a Hough transform
method for all individual row and column gray-level profiles
to identify Mura defects in LCD panels, which can be pre-
sented in the 2D inspection image. Chen et al. [22] proposed
a neural network with different learning methods such as
backpropagation (BP), radial basis function (RBF), learning
vector quantization 1 (LVQ1), and learning vector quanti-
zation 2 (LVQ2) for defect recognition. Bi et al. [23] first
eliminated global textured backgrounds and then used the
Chan-Vese model for segmenting Mura defects for TFT-LCD
panels. Chen and Chou [24] used discrete wavelet transform
and discrete cosine transform to detect blob Mura defects

FIGURE 1. The overall of the automated optical film defect detection and
classification system (OFDDCS).

on TFT-LCD panels. Lee and Yoo [25] first used modified
regression diagnostics and Niblackthresholding to segment
the candidate Mura defect regions from a TFT-LCD panel
image and then quantified the Mura defect level for each
candidate region based on human eye sensitivity. In spite of
many kinds of researches proposed for detecting defects on
the LCD screen or the polarizing film, which are the key
component of LCD panels, most methods are only focused
on defect detection.

In this study, we propose a high-precision automated
optical film defect detection and classification system
(OFDDCS), which is based on machine vision for use in
real-time detection and classification. Our proposed system is
applicable to different components of the optical film, such as
reflector sheet, diffuser sheet, and LGP. The overall flowchart
of OFDDCS is shown in Fig. 1. First, we designed an image
acquisition system equipped with a high-resolution camera
and custom-made lighting field to obtain high-quality optical
film images. Second, the defects on the optical film were
detected by adopting localized cross-projection based on the
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proposed adaptive energy analysis method. Finally, the defect
images were classified into the following four types of defects
by the proposed classification algorithm—point, scratch, for-
eign material, and stain. The quality of the products obtained
after defect detection and classification of the optical film
was compared with the standard product quality of the man-
ufacturer. Optical films provided by a company in Taiwan
were used for experiments to demonstrate that the proposed
method is sound and useful for optical film inspection in
industries. Our proposedmethod not only reduces the number
of human inspectors, but also increases the yield rate, and
reduces material loss.

The remainder of this paper is organized as follows.
Section II describes the image acquisition system. The pro-
posed defect detection method is presented in Section III.
Section IV describes the classification algorithm. Section V
discusses the experimental results. Finally, the conclusions of
this study are presented in Section VI.

II. IMAGE ACQUISITION SYSTEM
This section introduces the system architecture of the optical
film inspection apparatus first and then presents particular
considerations regarding the illumination scheme. Moreover,
the image properties and the challenges of defect detection
are discussed.

A. OVERVIEW OF LCD PANEL
An LCD is a device that utilizes the electro-optical character-
istics of a liquid crystal to convert an electrical stimulus into
a visual signal. The signals help to bring your imagination
and ideas to life by displaying them on a screen. In general,
an LCD includes some panels that are arranged from top to
bottom in the following order: top chassis, top polarizer, glass
substrate, color filter, common electrode, liquid crystal, TFT,
glass substrate, bottom polarizer, prism sheet, diffuser sheet,
LGP, reflector sheet, and bottom chassis. As shown in Fig.2,
we investigated the following three panels and conducted
experiments on them in this study: reflector sheet, diffuser
sheet, and LGP.

The reflector sheet provides LCD backlight recycling
and is often known as a dual brightness enhancement film
(DBEF). DBEFs increase on-axis luminance, and thus, more
light is available for transmission through the LCD. Typi-
cally, one brightness enhancement film (BEF) can increase
the brightness level by 40%–60%. Two BEFs are used in
some applications for enhancing brightness transmittance.
The diffuser sheet is designed to evenly distribute light across
the screen to make a solid, evenly lit square and reduce
LED hotspots. The LGP is an acrylic panel that is typically
fabricated using pure poly (methyl methacrylate) resin, which
is extremely transparent and highly weather resistant. This
plate is an etched plastic sheet that contains a pattern of bumps
that reflect light in a particular direction. An LGP converts
a line-shaped light source into a uniform plane-shaped light
source. A matrix of lines is etched on the bottom of the
LPG panel to direct the light out from the front of the panel,
which is known as V cutting. The light that enters the light

FIGURE 2. LCD panels: (a) Reflector sheet, (b) diffuser sheet, and (c) LGP.

guide layer from the sides will exit through the front of the
layer.

B. IMAGE ACQUISITION SYSTEM
This subsection introduces the system architecture of the
optical film inspection apparatus first and presents particu-
lar considerations regarding the illumination scheme. Then,
the image properties and the challenges of defect detection
are discussed.

The lighting setup plays amajor role in ensuring the quality
of the images acquired using an image acquisition device.
This quality is related to the success or failure of the inspec-
tion task. When positive light is incident on an object surface,
some of the light gets reflected based on the refractive indices
of the material on the objects surface, angle of incidence, and
medium of the incident light (e.g., air). Conversely, the super-
fluous light that passes through the object is not only reflected
on the front surface but also on the back surface. The light
may be reflected back and forth several times, thus capturing
images with variable qualities. Therefore, resolving the issue
of how to design a suitable image acquisition system for each
type of object is crucial in the AOI system. This subsection
introduces the components of the proposed image acquisition
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FIGURE 3. A schematic layout of the proposed image acquisition system:
(a) front light system applied for reflector sheets and (b) background light
system applied for LGP and diffuser sheets.

system, such as the light source setting, camera parameter
setting, and image capture design.

To normalize illumination variation and increase the con-
trast difference between defects and the background, lighting
systems, such as background lighting, parallel lighting, and
infrared lighting, were used in this study. Before selecting a
suitable light source, it is necessary to prioritize the influence
of the light source and the type of optical film. Because opti-
cal films that are provided by the manufacturer have variable
imaging functions, an image set is presented to conduct the
image acquisition task.

First, we designed a light source for the reflector sheet.
The reflector sheet reflects the light that leaks from the
bottom surface of the LGP back into the plate to increase
the light usage rate. Thus, front lighting is used for this
sheet. However, the main functions of the LGP and diffuser
sheet are to provide a uniform surface light source. Thus,
background lighting is used. In addition to the light source
setting, the distances among light, the camera with lens, and
test samples were examined to design an image acquisition
system. Fig. 3 displays the proposed optical film image acqui-
sition system. Fig. 3(a) shows the front lighting system used
for the reflector sheet and Fig. 3(b) displays the background
lighting system used for the LGP and diffuser sheet.

FIGURE 4. Example images of the optical film samples taken using the
proposed image acquisition system.

In general, defects of the optical films are small. Thus,
it is very difficult to detect them with human eyes.
Therefore, image acquisition is a critical step in the defect
inspection system. Moreover, we designed an image acquisi-
tion system to capture high-resolution images to make defects
clearer. Three image examples captured using the proposed
system are shown in Fig. 4. This figure displays the optical
film images that were examined in this study. The images
measure 2, 330 × 1.750 pixels with a 24-bit BMP format.
These images were not only tested for obtaining a high
defect detection rate but also reduced in size to decrease the
operation time and ensure synchronization with the factory’s
production line.

III. OPTICAL FILM DEFECT DETECTION
This section introduces the optical film defect detection
algorithm. We detected the defect contours by following the
defect shape to extract the correct position of the defect in
the image. First, the optical film RGB image is converted to
YCbCr color space to extract the Y color channel with only
8 bits to reduce the processing time. Next, a smoothing filter
was used to smooth the image and enhance the desired local
edge and then convert to binary image based on automated
Otsu’s method [26] to extract the object of interest from the
background. After that, localized adaptive energy analysis
was used to enhance the defect contour, and then, partial
cross-projection was used to cut out the defect image. Finally,
the defect is compared to the standard product quality of
the manufacturer to determine whether the manufacturer’s
specification is met. Fig. 5 shows the overall of our defect
detection algorithm.

Traditional contour detection is based on edge detection
approaches [27], such as Sobel or Canny operator. In such
detection approaches, edges are usually extracted by adopting
a specific template or using a smooth function. The Sobel
edge detector is used for detecting vertical and horizontal
edges in an image. However, this detector has a major draw-
back insofar as it is very sensitive to noise. Moreover, the size
of the kernel filter and its coefficients are fixed and cannot be
adapted to a given image. Therefore, an adaptive edge detec-
tion algorithm is necessary to provide a robust solution that
can be adapted to the varying noise levels in the image and to
help distinguish between valid image content and visual arti-
facts introduced by noise. The Canny edge detector is an opti-
mal edge detector that has high performance: high detection
accuracy, high localization accuracy, and a unique answer to
a true edge. The Canny edge detection algorithm performs
better than the Sobel detector and gradient-based operators
under almost all scenarios. However, the performance of the
Cannyalgorithm primarily depends on adjustable parameters,
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FIGURE 5. Flowchart of the defect detection algorithm.

such as the standard deviation of the Gaussian filter and
the threshold value. Recently, an increasing number of edge
detection operators have been developed for specific types
of edges [28], [29]. Unfortunately, these approaches usually
require parameter tuning to adjust sensitivity throughout the
image based on the contrast and differences. In this study,
the proposed localized energy-based edge detector not only
can detect edge pixels in all directions equally well but also
has no parameter tuning requirement, has low sensitivity to
noise, and has high isotropy.

Contour detection is a technique used for detecting mean-
ingful discontinuities in the gray level and is often used in
subsequent image analysis for feature extraction and object
recognition. Color is an effective and robust visual cue for
distinguishing between objects. Recently, there has been
growing interest in color segmentation, which is useful in
preliminary processing for many vision-based tasks such as

object recognition, visual tracking, and vision-based robotics.
However, color variation is encountered in color segmenta-
tion due to uneven illumination and the view perspective of a
camera. In particular, changing illumination conditions and
complex environments containing surfaces or objects with
similar colors are major problems that limit the application
of color segmentation to visual inspection tasks. The former
changes the color characteristics, whereas the latter increases
the number of false-positive pixels. The YCbCr color space
is often used in digital image processing to take advan-
tage of the lower resolution capability of the human visual
system for color with respect to luminosity. In the YCbCr
color space, Y is the luma component and Cb and Cr are
the blue-difference and red-difference chroma components,
respectively. Because defects on an optical film are more
sensitive to illumination, we used the luma component Y of
the YCbCr color space as a gray level for conducting contour
detection. This component is not only more useful for defect
detection but also can considerably reduce the processing
time. We processed a Y channel image of the YCbCr color
space with only 8 bits instead of processing an optical film
color image of 24bits, thus reducing the operation time of the
proposed system.

Without loss of generality, f is assumed to be an optical
film color image with a resolution of M × N , where fA,A ∈
{R,G,B} represent the RGB color channels.Therefore, f ∈
RM×N×N3 and {fR, fG, fB} ∈ RM×N . The luma component
fY of f in the YCbCr color space can be computed as follows:

fY (x, y)=0.299 fR (x, y)+0.587 fG (x, y)+0.114 fB (x, y) .
(1)

Prior to the contour extraction of an object, a smoothing
filter was used to smooth the image and enhance the desired
local edge. The local standard average µY and energy fE
defined by the mask with 3 × 3 pixels are expressed in the
following equations:

µY =
1
η

1∑
i=−1

1∑
j=−1

fY (x + i, y+ j), (2)

fE (x, y) =
1
η

1∑
i=−1

1∑
j=−1

{fY (x + i, y+ j)− µY }2 , (3)

where η is equal to 9 and is a normalizing constant, µY is the
average value of the pixels in the mask, and fY (x, y) is the
luma component of an input image in the YCbCr color space.

A binary image obtained based on an automatic threshold
proposed by Otsu [26] was adopted to extract the object of
interest from the background. The Otsu algorithm used to
obtain the automatic binary threshold τOtsu is as follows:

τOtsu = Max
(
ω1(υ)ω2(υ) [µ1(υ)− µ2(υ)]2

)
, (4)

ω1(υ) =
υ−1∑
i=0

p (i), (5)

ω2(υ) =
255∑
i=(υ)

p(i), (6)
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FIGURE 6. Defect detection: (a) Original optical film image, (b) Y channel image, (c) localized energy image, (d) localized cross-projection, and (e) defect
detection result.

µ1(υ) =

∑υ−1
i=0 p (i) ∗ i
ω1(υ)

, (7)

µ2(υ) =

∑255
i=(υ) p (i) ∗ i

ω2(υ)
, (8)

where υ is the current histogram level value from 0 to 255,
ω1(υ) is the cumulative probability from 0 to υ − 1, ω2(υ) is
the cumulative probability of υ to 255, µ1(υ) is the cumula-
tive expected average of 0 to υ − 1, µ2(υ) is the cumulative
expected average of t to 255, and p(i) is the probability of
distribution in the image. The binary image based on an
automatic threshold value τOtsu, denoted as fB, is selected
from the energy fE as follows:

fB (x, y) =

{
255, fE (x, y) ≥ τOtsu
0, otherwise

, (9)

where pixel values labeled 255 are objects of interest, and
pixel values labeled 0 are undesired ones.

Variable types of defects are observed in optical films in
the production line. Some defects are minute, and there is a
low contrast difference between the defects and background.
Thus, the localized energy analysis was adopted to enhance
the contrast of the defects in the optical film. The localized
energy image fE of a binary image fB is calculated as follows:

fE (x, y)=
1
η

r∑
i=−r

r∑
j=−r

{fB (x + i, y+ j)−µM }2 , (10)

µM =
1
η

r∑
i=−r

r∑
j=−r

fB (x + i, y+ j) , |i| + |j|<
d
2
, (11)

where η is the number of pixels, µM is the average value of
the pixels in the circular mask M , d is an odd number that is
greater than or equal to 3 and expressed as the diameter of the
circular mask, and r =

⌊ d
2

⌋
is the radius of the circular mask.

The circular mask with a diameter of 5 pixels is presented as
follows:

M=


fB (x, y− 2)

fB (x − 1, y− 1) fB (x, y− 1) fB (x + 1, y− 1)
fB (x − 2, y) fB (x − 1, y) fB (x, y) fB (x + 1, y)
fB (x + 2, y) fB (x − 1, y+ 1) fB (x, y+ 1)

fB (x + 1, y+ 1) fB(x, y+ 2)

 (12)

To fix the exact location of the defect in an optical film,
this study adopted the cross-projection method to determine
the detection range. The cross-projection method includes
two projection mirrors that are used interchangeably to detect

marginal points on the contour of the optical film in the
image. For a localized energy image fE , the first projection is
known as the forward projection and employs a mask that is
denoted as M1 and that spans from the top left to the bottom
right of the image to obtain the maximum value coordinate
in the projection. The second projection is known as reverse
projection and employs a mask denoted asM2 that spans from
the bottom right point back to the first left point of the image
to obtain theminimum value coordinate in the projection. The
mask M1 is defined in Eq. (13), and the mask M2 is defined
in Eq. (14).

M1=

 fE (x, y) fE (x + 1, y) fE (x + 2, y)
fE (x, y+ 1) fE (x + 1, y+ 1) 0
fE (x, y+ 2) 0 0

 , (13)

M2=

 0 0 fE (x, y− 2)
0 fE (m− 1, n− 1) fE (x, y− 1)

fE (x − 2, y) fE (x − 1, y) fE (x, y)

 . (14)

Based on the cross-projection results, the defects are
automatically extracted to record their numbers, sizes, coor-
dinates, and classification. The manufacturer’s specification
is then used to determine whether the manufacturer’s speci-
fication is met. Fig. 6 displays the proposed defect detection
method. Fig. 6(a) presents the original optical film used by
the proposed acquisition image system. Fig. 6(b) shows the
Y color channel of the original image in the YCbCr color
space and Fig. 6(c) displays the localized energy image of the
image presented in Fig. 6(b). Fig. 6(d) illustrates the results
of our localized cross-projection method and Fig. 6(e) shows
the defect detection result. The results indicate that the defects
are detected accurately.

IV. OPTIC FILM DEFECT CLASSIFICATION
After the defects are extracted using the proposed algorithm,
they are classified based on themanufacturer’s specifications.
As shown in Fig. 7, we can manually classify the defects
into the following four types based on our defect detec-
tion results—point, scratches, foreign material, and stain.
The defects have different sizes, and there is a low contrast
difference between the defects and background. Moreover,
a tiny defect present in an optical film image may only
differ slightly from the surrounding region. All these prop-
erties make the inspection extremely difficult. This section
proposes an effective method for classifying the defects in
the optical film with a high accuracy rate.
First, the defect images are classified into two

categories—dark and bright by analyzing the variation of the
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FIGURE 7. Types of defects: (a) point, (b) scratches, (c) foreign material,
and (d) stain.

horizontal line passing through the center of the defect image.
Next, the defect region is extracted and the background
is removed by using the Kirsch operator [30] and energy
analysis. At last, the dark category is classified into foreign
material and stain defects, whereas the bright category is
classified into point and scratch defects. The flowchart of
the proposed algorithm is presented in Fig. 8. The detailed
algorithm is described in the sub-sections as follows.

A. CLASSIFICATION FOR DARK AND BRIGHT DEFECT
IMAGES
Based on our observations, point and scratch defect regions
have the characteristic of photosensitivity. Following on
lighting effect, these regions have high reflections. This
causes a high contrast difference between defects and back-
ground. The point and scratch defect images look brighter
than the background. By contrast, foreign material and stain
defects do not reflect light. Thus, there is a low contrast dif-
ference between defect and background. The foreign material
and stain defects look darker against the background. There-
fore, an algorithm is designed to separate the dark defects
from the bright ones.

First, let a horizontal line pass through the center of the
defect, as shown in Figs. 9(a) and 10(a). Then, the gray level
of the defects crossing this line is computed and is denotedas
LGray [n], where n is the width of the defect image. As shown
in Figs. 9(b) and 10(b), we calculated the maximum value
coordinate Lmax

(
xmax,ymax

)
, which is denoted with a red cir-

cle in Figs. 9(b) and 10(b), based on the variation in LGray [n].
Moreover, the minimum value coordinate, Lmin

(
xmin,ymin

)
,

that is represented by blue circles in Figs. 9(b) and 10(b)
is computed based on the variation in LGray [n]. Then, the
line connecting the first point LGray [0] and the last point
LGray [n− 1] is denoted as g(x) and represented by a light
orange-brown color line in Figs. 9(b) and 10(b), which is the
boundary line for classification. The classifier boundary line
equation is computed as follows:

g (x)=
1y
1x

× (x−x0)+y0, (15)

where 1y=yn−1−y0 and 1x=xn−1−x0.
Next, the classification of dark or bright defect based on

the Euclidean distance of the maximum and minimum points
to the classifier boundary line is listed as follows:

d1 = d (Lmax, g (x)) , (16)

d2 = d (Lmin, g (x)) , (17)

Defect =

{
Bright color, d1>d2
Dark color, otherwise

. (18)

FIGURE 8. Flowchart of the defect classification algorithm.

The examples of the proposed classification are presented
in Figs. 9 and 10. In these images, the defect images are
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FIGURE 9. Classification algorithm for the dark image: (a) dark defect
image and the corresponding horizontal line passing through the center
of the defect, and (b) classification chart.

FIGURE 10. Classification algorithm for the bright defect image: (a) bright
defect image and the corresponding horizontal line passing through the
center of the defect, and (b) classification chart.

classified into two categories: 1) dark defects that include the
foreign material and stain defects and 2) bright defects that
include the point and scratch defects.

B. ENHANCEMENT OFDEFECT CONTOUR AND
BACKGROUND REMOVALOF DEFECT IMAGES
To classify the defect images into the foreign material, stain,
point, and scratch defect categories, we have to remove the
background of a defect image that contains noise because
the noise has a negative effect on the recognition rate of
the classification system. Moreover, we used the color defect
image, which contains more information compared with the

gray defect image, for classification. This subsection presents
the method that includes three steps for detecting the edge of
a defect in the defect image as follows.

The optical film color image f is first converted to the
YCbCr color space by using Eq. (1) to obtain the luma
component fY. Then, the Kirsch operator is used to detect
edges in the image fY. The Kirsch operator is a nonlinear
edge detector that can detect the maximum edge strength in a
few predetermined directions. The Kirsch operator rotates a
single kernel mask in 45◦ increments through eight compass
directions: north (N), northwest (NW), west (W), southwest
(SW), south (S), southeast (SE), east (E), and northeast (NE).
The edge magnitude f K of the Kirsch operator is calculated
as the maximum magnitude across all directions:

fK (x, y) = max
z=1,...,8

1∑
i=−1

1∑
j=−1

g(z)ij ·fY (x + i, y+ j) , (19)

where z enumerates the eight compass directions N, NW, W,
SW, S, SE, E, and NE, respectively, as follows:

g(1)ij =

+5 +5 +5−3 0 −3
−3 −3 −3

 , (20)

g(2)ij =

+5 +5 −3+5 0 −3
−3 −3 −3

 , (21)

g(3)ij =

+5 −3 −3+5 0 −3
+5 −3 −3

 , (22)

g(4)ij =

−3 −3 −3+5 0 −3
+5 +5 −3

 , (23)

g(5)ij =

−3 −3 −3−3 0 −3
+5 +5 +5

 , (24)

g(6)ij =

−3 −3 −3−3 0 +5
−3 +5 +5

 , (25)

g(7)ij =

−3 −3 +5−3 0 +5
−3 −3 +5

 , (26)

g(8)ij =

−8 +5 +5−5 0 +5
−3 −3 −3

 . (27)

The results of the edge detector are displayed in Fig. 11(b).
However, the defect contour is still unclear. In the second step,
the adaptive energy analysis that is discussed in Section IV is
used to enhance the contour of the defect. The energy image
is presented in Fig. 11(c). The defect region is presented in
white, and the background is presented in black. In the third
step, based on the contour of the defect that is detected in the
second step, the color defect region in the image is extracted,
as shown in Fig. 11(d). Then, the background is replaced by
black. These images are subsequently used for classification.
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FIGURE 11. Extraction of the defect region and removal of the
background in the defect image. (a) defect image, (b) edge detection by
the Kirsch operator, (c) energy image, and (d) color defect region in the
defect image.

C. CLASSIFY DARK DEFECTS INTO FOREIGN
MATERIAL AND STAIN DEFECTS
In the previous section, the background information was
removed and assigned to zero. For classification, we focus
only on the color region, as shown in Fig. 11(d), that
represents the defect region.

Based on the usefulness of the CIELAB color space [31],
which describes the most complete color model visible to
human eyes, the color defect image is first converted from the
RGB color space to the CIELAB color space. The CIELAB
color space is derived from the prior master CIE 1931 XYZ
color space, which predicts the spectral power distributions
that will be perceived as the same color but is not perceptually
uniform. To convert the image from the RGB color space
to the CIE 1931 XYZ color space, the following equation is
employed:XY
Z

=
0.412453 0.357580 0.180423
0.212671 0.715160 0.072169
0.019334 0.119193 0.950227

RG
B

 . (28)

Moreover, the parameters of the CIELAB color space are
calculated as follows:

f L∗ (x, y) = 116× h
(
Y
Yn

)
−16, (29)

f a∗ (x, y) = 500

[
h
(
X
Xn

)
−h

(
Y
Yn

)]
, (30)

f b∗ (x, y) = 200

[
h
(
Y
Yn

)
−h

(
Z
Zn

)]
, (31)

where

h (q)=


3
√
q, q > 0.008856

7.787q+
16

116
, otherwise

. (32)

Here, f L∗ represents the lightness from black (0) to white
(100), f a∗ represents the lightness from green (−) to red (+),
and f b∗ represents the lightness from blue (−) to yellow (+).
The CIELAB color space was designed so that the amount of
numerical change in these values corresponds to roughly the
same amount of visually perceived change. Here, Xn, Yn, and
Zn are the CIE XYZ tristimulus values of the reference white
point (the subscript n suggests ‘‘normalized’’).

To classify dark defect images into foreign material and
stain defects, the Euclidean distance between the defect
region and background, denoted as 1E∗ab, is first calcu-
lated. Then, the just noticeable difference (JND) proposed
by Weber [32] is adopted for classification. JND represents
the minimum amount by which the stimulus intensity should
be changed to produce a noticeable variation in the sensory
experience. 1E∗ab is calculated as follows:

1E∗ab=
√
(f L∗b−f L∗ )

2
+(f a∗b−f a∗ )

2
+(fb∗b−f b∗ )

2, (33)

where f L∗b , f a∗b , and f b∗b are the average values of the L∗, a∗,
and b∗ components of the background in the CIELAB color
space, respectively.

Next, most of the stain defects are classified based on the
classification rules as follows:

Dark defect=


Stain, 1Edirt+JND> 1E∗ab

>1Edirt−JND
Undefined, otherwise

, (34)

where 1Edirt is the Euclidean distance between the defect
region and the background of the stain defect that is precal-
culated by manual detection. Moreover, JND is set to 2.3 in
this case.

Unfortunately, the classification rule that is based on the
JND concept can only classify most of the stain defects from
the image of the dark defect. However, some stain images
exist in the foreign material defect group. The reason for
this inaccuracy is that light transmission and reflection are
different for the reflector sheet, diffuser sheet, and LGP,
as shown in Fig. 12(a). In this case, a support vector machine
(SVM) [33] can solve the problem in a fast and easy manner.

First, the defect image must be adaptively compensated
before the defect structure analysis is conducted to com-
pensate for the lighting of all defect images. In this case,
we used the adaptive singular value decomposition (ASVD)
[34] method for illumination compensation of color defect
images. The singular value decomposition expression for
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FIGURE 12. Examples of dark defect images. (a) Foreign material defect
in the LGP, stain defect in the reflector sheet, and foreign material in the
diffuser sheet(from left to right) and (b) respective ASVD images of (a).

each color channel of the color image can be written as
follows:

f A=UA6AVT
A, (35)

where UA and VA are orthogonal matrices with singular
vectors, and 6 = [DA,O] contains sorted singular values
(SVs) on its main diagonal. Moreover, DA = diag(λA1,
λA2, . . . , λAk ), where λAi represents SVs, i = 1, . . ., k in
non-increasing order, O is a k× k zero matrix, and k is
the rank of f A. To reduce the influence of light variance
on the defect image, the SV matrix is multiplied by the
weighted compensation coefficient ρA to address the low
contrast problem that is caused by varying light.

ρA =
Max

(
6G(µ,σ)

)
Max(6A),

(36)

f CA = UA
(
ρA6A

)
VT
A, (37)

where G(µ, σ) is the Gaussian template with a mean
µ of 128 and standard deviation σ of

√
32. The results

of the ASVD method are denoted by f CA, as shown
in Fig. 12(b). The defect images are observed to have the same
illumination.

Next, bit-plane slicing [35] is used to extract the most
significant bit (MSB) of f CA, which is denoted as f BP and
shown in Fig. 13. The purpose of using this method is not
only to extract the high-frequency signal but also to eliminate
the noise interference of the background. Then, the projection
color space (PCS) method [34] was used to integrate the three
RGB color channels of the MSB image to reduce the within-
class variance and simultaneously expand the between-class
difference. The PCS P of f BP can be computed as follows:

P = f BP,R·f
T
BP,G·f BP,B, (38)

where f BP,R, f BP,G, and f BP,B are the RGB color channels
obtained after using adaptive lighting compensation [34].
Moreover, ‘‘·’’ is the symbol for the inner product calculation
and represents the element-wise multiplication of the three
matrices.

FIGURE 13. Example image of the bit-plane segmentation: (a) stain
defect and(b)–(i) the lowest to the most significant bit-plane images.

FIGURE 14. SVM classification result.

Finally, the first two singular values of P are used to form
the feature vector for SVM. In this study, the RBF kernel
exp

(
−γ

∥∥xi−xj∥∥2) was used in SVM, and the parameter
γ is set to 20 with an experimental setting for SVM. The
classification rule for SVM is set as follows:

defect =

{
Foreign material, h (x)= 1

Stain, h (x)= −1
. (39)

The distribution of the stain and foreign material defects by
the first and second eigenvalues by using an SVM is shown
in Fig. 14. As can be seen, our method can efficiently separate
stain from foreign material defects.

D. CLASSIFICATION OF BRIGHT DEFECTS INTO
POINT AND SCRATCH DEFECTS
As discussed in Section IV.C, the color space and SVM
can be used to further classify the dark defects into foreign
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FIGURE 15. Classification of bright defects: (a) Bright defect images,
(b) separation of the defect region from the background, and (c) division
of the defect image into four equal parts.

material and stain defect categories. However, this method is
not effective for classifying the bright defect images into the
point and scratch defect categories. This section presents a
method that classifies defect images based on the shape.

First, the defect region is separated from the background
of the defect image f that has a size of m× n by using the
Kirsch operator, and the edge of the defect is detected. Then,
the adaptive energy analysis is used to enhance the defect
contour, as discussed in Section IV.B. Here, the white color
(grayscale value: 255) is set for the points within the defect
region, and black color (grayscale value: 0) is set for the
background, as presented in Fig. 15(b). The image in this
step is denoted as f B. Then, the image f B image is divided
into four equal parts along two axes through the center of
the defect image and perpendicular to the edges, as shown
in Fig. 15(c).

The classification of scratch and point defects is conducted
by calculating and comparing the ratio among the average
grayscale values of the four equal parts as follows:

qA =
m−1∑
i=0

n−1∑
j=0

f B (i, j), (40)

q1 =
1

qA
×

m−1∑
i=m

2

n
2−1∑
j=0

f B (i, j)×100%, (41)

q2 =
1

qA
×

m
2−1∑
i=0

n
2−1∑
j=0

f B (i, j)×100% , (42)

q3 =
1

qA
×

m
2−1∑
i=0

n−1∑
j= n

2

f B (i, j)×100%, (43)

q4 =
1

qA
×

m−1∑
i=m

2

n−1∑
j= n

2

f B (i, j)×100%, (44)

where qA is represents the average grayscale values of f B and
qi, i= 1, 2, 3, 4, is the average percentage of the ith quadrant
that is referred to as qA. Based on our observation, the defect
region of point defects is usually distributed across all four
parts of the defect image, whereas the scratch defect is usually
present in only one or two quadrants of the image. Moreover,
A and B set with qi,where i = 1, 2, 3, 4, that are defined
as follows:

A = {qi > 0.25, i = 1, 2, 3, 4,} (45)

µA =
1

n(A)

∑
qi∈A

qi, (46)

B = {qi ≤ 0.25, i = 1, 2, 3, 4,} (47)

where µA is the average value of all elements in set A, and
n (A) is the element number of A. The classification of point
and scratch defects is conducted as follows:

Bright defect=


scratch, if n (A) ≥ 2 and

(b < 1
2µA,∀b ∈ B)

point, otherwise
. (48)

V. EXPERIMENTAL RESULT AND DISCUSSION
In this section, the defect detection and classification algo-
rithms are tested on four types of optical films with a total
of 120 samples provided by a manufacturer in Taiwan. The
following are the specifications of the sheets used: reflector
sheet size: 354 × 197mm2 with a total of 22 samples, LGP
size: 354×197mm2 with a total of 19 samples, diffuser sheet
size: 177× 110mm2 with a total of 24 samples, and diffuser
sheet size: 157× 92 mm2 with a total of 21 samples.

A. IMAGE ACQUISITION PARAMETERS
The acquisition equipment system is displayed in Fig. 3.
The proposed system was implemented in Microsoft Visual
Studio C# 2010. The experiments were conducted on a PC
equipped with an Intel Core i7-4790 CPU@3.60GHz, RAM
DDR3 8GB, with a Windows 10 operating system.

The system employed a camera (avA2300-30kc, Basler,
Germany) with a camera-link interface and a KAI-4050
charge-coupled device sensor to provide 31 frames per sec-
ond at a resolution of 4 MP. The sensor has a size of 12.8 ×
9.6 mm2, resolution (H×V) of 2330× 1750 pixels, and pixel
size (H×V) of 5.5× 5.5 µm2. The camera adapted a 60-mm
microlens that had an aperture of 2.8 (Nikon, Japan). This
lens is an excellent normal and short telephoto lens and an
exceptional close-up lens, which focuses on life-size. Thus,
an object with a diameter of an inch can occupy an entire
frame. The light source used was PHILIPS Ambiance Globe
17W E27 Cool daylight. The distances between the camera,
light source, and optical films are listed in Table 1.

B. OPTICAL FILM DEFECT DETECTION RESULT
To inspect whether the optical film satisfies the requirement
of the manufacturer, the region of interest on an optical film
was located and extracted first.
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TABLE 1. The distance between the objects and the image acquisition
system.

TABLE 2. Averagedefect detection rate and operation time.

To reduce the processing time, the color image was trans-
formed into the YCbCr color space to obtain the Y channel
image for contour extraction. Based on the localized energy
analysis of the Y channel image, the defects were extracted
one by one by using cross-projection in both the horizontal
and vertical directions, as discussed in Section III. The size
and number of the defects were then calculated to check
whether themanufacturer’s specification requirement is satis-
fied. Then, the object undergoes the classification process to
decidewhether it can achieve the quality standards or not. The
detailed algorithm is discussed in Section IV, and the results
of the defect images detected using our proposed method are
presented in Fig. 16.

In our experiments, we achieved a defect detection rate of
100% for the reflector sheets and LGP and achieved a rate of
98.7% for the diffuser sheets. The reason for the lower detec-
tion rate for diffuser sheets is that there are five low-quality
sheets. The defect on one sheet cannot be detected with the
human eye and can only be detected through tactile sense. The
average time for manual defect detection is 14.624 s/piece,
which is much longer than the average time required by the
proposed system (6.129s/piece). The defect detection rate,
Pass/No pass decision time, and the total operation time are
presented in Table 2 to demonstrate the effectiveness of our
method.

C. OPTICAL FILM DEFECT CLASSIFICATION RESULT
After detection, the defect images undergo the process to
classify the image into four categories—point, scratch, for-
eignmaterial, and stain. The proposed algorithm classifies the

FIGURE 16. Result of defect detection with the proposed method:
(a) point, (b) scratch, (c) foreign material, and (d) stain.

defect image into two categories—dark and bright. The dark
category includes foreign material and stain defects, whereas
the bright category includes point and scratch defects. First,
the defects are classified into dark and bright categories by
analyzing whether the horizontal line passes through the
center of the defect, as shown in Fig. 17. Before classification,
the defect region is extracted, and the background in the
defect image is removed using the Kirsch operator and energy
analysis, as shown in Fig. 18.

For the dark category, most of the stain defects are obtained
by computing and comparing the Euclidean distance between
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FIGURE 17. Classification based on analyzing the distribution of the
defect center: (a) dark defects and(b) light defects.

FIGURE 18. (a) Dark defect samples and (b) result after background
removal.

the defect region and the background of the defect images in
the CIELAB color space. The remaining defect images are
enhanced using the ASVD method. Then, the MSB images
are extracted for SVM classification. The ASVD images and
MSB images of dark defects are shown in Fig. 19.

For the bright defect images, the defect region sare
extracted, and the background in the defect image is removed
by using the Kirsch operator and adaptive energy analysis,
as shown in Fig. 20. Then, the defect image is divided
into four equal parts. Finally, the ratio between the average
grayscale values of the four equal parts is calculated to clas-
sify the bright defect images into scratch and point defects.
Our classification method has a classification accuracy rate
of 100%.

To show the effectiveness of our proposed method,
we did more experiments by using the supervised machine
learning technique for defect classification. Support Vec-
tor Machines (SVM) is a supervised learning technique
that is used to develop predictive models for classification.
Recently, SVM has been widely used in defects classifica-
tion [36]–[38]. In our problem, we classified the defects into
four categories by using the LIBSVM library [39] which
supports multi-class SVM classification. We used the his-
togram of oriented gradients (HOG) descriptors [40] as a
feature vector for SVM and the radial basis function kernel
exp(−γ ||xi − xj||2), where γ is a parameter that sets the
‘‘spread’’ of the kernel, xi and xj are represented as feature
vectors in input space. However, we only got a 94% true
classification rate. This is caused by using different sizes
of defects, illumination, types of optical films. Besides, the
classification using SVM also depends heavily on the scale,
parameter γ , and function kernel for each database.

The results reveal that the proposed system can detect
and classify defects in optical films with high efficiency
even when the size of a defect is very small and cannot be
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FIGURE 19. (a) Dark defects, (b) ASVD images of (a), (c) segmented
images of the MSB plane in (b).

FIGURE 20. (a) Dark defects and (b) separationof the defect region
fromthe background.

seen clearly by human eyes. Moreover, the operation time
is short; thus, the proposed framework can fully meet the
manufacturer’s requirements.

VI. CONCLUSION
We proposed an effective OFDDCS in this study that has
three sections. The first section includes an optical structure
for image acquisition that can remove environmental lighting
interference and then highlight defects. The second section
includes an efficient algorithm based on adaptive energy
analysis with cross-projection for detecting the defects on the
optical film. Finally, an efficient classification algorithm has
been proposed to classify the defects into four types—point,
scratch, foreign material, and stain defects. The experiments
were conducted on 120 optical film samples provided by a
manufacturer in Taiwan. The results revealed that the pro-
posed system can provide a 99.6% defect detection rate and a
100% classification accuracy rate. Moreover, only 6.129s are
required on average to perform the inspection for an optical
film sample.
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