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ABSTRACT Existing Siamese network based trackers are easily disturbed by large deformation, occlusion
and distractor objects in the background. By comparing these trackers, we observe that the monotonous
positive pairs usually have limited challenging factors (Occlusion, Deformation, etc.), which may make
the learned features less robust. In addition, the foreground information of the substantial training data is
utilized directly without deeper exploration. Thus, the trackers cannot effectively discriminate the foreground
from the semantic backgrounds. In this paper, we focus on modifying the Siamese tracker by enriching
the positive pairs and taking further advantage of the foreground information. During the offline training
phase, a simple sampling strategy is adopted to enrich the challenging factors in positive pairs, which can
effectively enhance the robustness of the tracker. At the same time, we highlight the foreground information
by padding the background, and the information is utilized to generate a novel padding loss, which guides the
tracker to pay less attention to the distractors in the background. Moreover, an improved feature information
fusion is adopted to update the template, so that the tracker can adapt to the drastic appearance changes.
Comprehensive experiments on the OTB and the VOT benchmarks demonstrate that our proposed tracker
can achieve outstanding performance in both accuracy and robustness.

INDEX TERMS Visual tracking, Siamese network, foreground information, feature information fusion.

I. INTRODUCTION
Visual tracking is one of the most important directions in the
field of computer vision. In the most general setting, given
an arbitrary target specified by a bounding box, the goal of
the visual tracking is to locate the target in the subsequent
frames. Although visual tracking has been greatly improved
in recent research [1]–[7] and widely used in many applica-
tions [8]–[10], it has been regarded as a challenging task due
to numerous complex scenes such as occlusion, deformation
and background clutters, to name a few.

Recently, Siamese network based trackers [11]–[17] have
drawn great attention in the tracking field owing to their
balanced speed and accuracy. By defining the visual track-
ing as a matching problem, Siamese trackers aim to learn
a general similarity function offline from substantial train-
ing videos. Among these trackers, the SiamFC tracker [11]
first utilizes the fully-convolutional structure to achieve the
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end-to-end training, which allows the tracker can make full
use of the substantial offline training data. The GOTURN
tracker [13] integrates the regression method into the net-
work, and CFNet [14] introduces the correlation filter for
low level convolutional neural networks (CNNs) features
to improve the tracking speed. By combining the region
proposal network (RPN) with the Siamese network, the
SiamRPN tracker [15] achieves a better performance than
the above trackers. On the basis of SiamRPN, the DaSi-
amRPN tracker [16] generates more semantic pairs in the
offline training phase and adopts the distractor-aware mod-
ule to improve the discrimination power of the tracker.
The SiamRPN++ [17] successfully trains a ResNet-driven
Siamese tracker, which not only further improves the accu-
racy but also breaks the limitation of the shallow network
structures.

Although the aforementioned trackers have obtained out-
standing tracking performance, the Siamese network struc-
tures still suffer from some limitations. Firstly, during the
offline training phase, the challenging factors in the positive
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pairs are limited. Most Siamese trackers are trained on the
ImageNet VID [18], which consists of about 4,000 videos
and contains 30 categories. The limited categories of the
training datasets are not sufficient to obtain a high-quality
and robust tracker. Even though the DaSiamRPN [16] tracker
expands the positive pairs by introducing other large-scale
detection datasets, due to the long-tail distribution of some
challenging factors (Occlusion, Deformation, etc.) [19], these
factors may still not be included in those expanded positive
pairs. Secondly, Siamese trackers cannot keep their high per-
formance when the backgrounds are cluttered. Foreground
information used in most Siamese trackers can effectively
discriminate the target from the non-semantic background.
However, the semantic backgrounds which are usually con-
sidered as distractors are the key to influence the tracking per-
formance. When the backgrounds are cluttered, the bounding
boxwill drift to the distractors, so that the tracker cannot track
accurately. Though some recent works [16], [20], [21] aim to
address the issue, the robustness is yet to reach a high level.
Thirdly, most Siamese trackers cannot update the templates.
The constant templates used in Siamese trackers make the
methods lose the ability to adapt to the drastic appearance
changes. Despite the high processing speed of these trackers,
there is still a gap compared with the state-of-the-art tracking
approaches.

In this work, we propose a foreground information
guidance for Siamese visual tracking (FIGSiam), which over-
comes the above limitations and promotes the tracking per-
formance. We focus on modifying the Siamese tracker by
enriching the positive pairs and taking further advantage of
the foreground information. During the offline training phase,
a simple sampling strategy is adopted to enrich the challeng-
ing factors in positive pairs, which can effectively enhance
the robustness of the tracker. Moreover, we highlight the
foreground information by padding the background, and the
information is utilized to generate a novel padding loss, which
guides the tracker to pay less attention to the distractors in
the background. Furthermore, we adopt an improved adaptive
feature information fusion to update the template, so that the
tracker can adapt to the drastic appearance changes.

In summary, the main contributions of our work are listed
below:

• We utilize a simple sampling strategy to enrich the chal-
lenging factors in positive pairs, which can effectively
enhance the robustness of the tracker.

• We highlight the foreground information by padding the
background, and the information is utilized to generate a
novel padding loss, which guides the tracker to pay less
attention to the distractors in the background.

• We adopt an improved adaptive feature information
fusion to update the template, so that the tracker can
adapt to the drastic appearance changes.

The rest of the work is organized as follows: We introduce
the related works in Section II. In Section III, we present
our proposed method. In Section IV, the experiments will be

discussed. In Section V, we reach the final conclusions of the
paper.

II. RELATED WORK
A. SIAMESE NETWORKS BASED TRACKING
Visual tracking hasmade astonishing progress in recent years,
with the development of various methods. Recently, Siamese
network based trackers have drawn great attention in the
tracking field owing to their balanced speed and accuracy.
Bertinetto et al. [11] first propose the fully-convolutional
structure to estimate the regional feature similarity between
the template and the search region. Tao et al. [12] use the
Siamese network to offline train a matching function from
substantial video sequences. In order to improve the tracking
accuracy, the tracker adopts the region of interest pooling
(ROI pooling) to deal with the stochastic size of the input,
and utilizes the optical flow algorithm to filter the candidates.
Held et al. [13] propose the GOTURN tracker by using the
regression method and training a motion prediction model
with the Siamese network. Thus, the tracker can run effi-
ciently at 100 fps. Valmadre et al. [14] successfully adopt the
Siamese network to learn the representation of the feature for
correlation filter, which makes the tracker shallower but more
efficient.

Although the above classical Siamese trackers have
obtained outstanding tracking performance, the Siamese net-
work structures still suffer from some limitations. In order
to overcome the limitation of scale variation, the SiamRPN
tracker [15] introduces the RPN into the Siamese network.
Thus, the traditional multi-scale test can be removed. For fur-
ther improving the tracking performance, the SiamRPN++
tracker [17] successfully trains a ResNet-driven Siamese
tracker, which not only further improves the accuracy but
also breaks the limitation of the shallow network structures.
In order to overcome the limitation of background clutter,
the DaSiamRPN tracker [16] combines a distractor-aware
module with the Siamese network, and expands the positive
pairs by introducing other large-scale detection datasets. The
TDAT tracker [20] develops a regression loss and a ranking
loss to learn target-aware features. The DSiam tracker [21]
adopts the feature transformation to suppress the background
and deal with the appearance variation. In order to overcome
the limitation of template updating, Zhang et al. [22] utilize
the CNNs called UpdateNet to update the templates. The
optimal template can be obtained by fusing the accumulated
templates and the template of current frame.

Despite the recent success of the aforementioned trackers,
the limitations still need to be further considered. By compar-
ing these trackers, we observe that the monotonous positive
pairs usually have limited challenging factors (Occlusion,
Deformation, etc.), which may make the learned features
less robust. In addition, the foreground information of the
substantial training data is utilized directly without deeper
exploration. Thus, the trackers cannot effectively discrimi-
nate the foreground from the semantic backgrounds. In this
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FIGURE 1. The architecture of the proposed tracker FIGSiam. The Extended Positive Pairs module
is adopted to enrich the challenging factors in the positive pairs. The Foreground Information
Guidance module is utilized to generate a novel Padding Loss. The Template Updating module is
used to update the output tensor of the Template Branch Ftemplate. Fsearch means the output of
the Search Region Branch, Fguidance means the output of the Guidance Branch and Fnew denotes
the feature tensor of the tracking result extracted by the Template Branch. Feature Pool is used to
store the credible features of the target.

work, we enrich the positive pairs and take further advantage
of the foreground information. The proposed tracker not only
overcomes the limitation to a certain extent, but achieves
outstanding performance in both accuracy and robustness.

B. TEMPLATE UPDATING
The target always suffers from drastic appearance changes
when tracking is on-the-fly, while the fixed template cannot
adapt to the changes since it only contains the previous
foreground information. On the other hand, if the template
is updated at high frequency, the distractor in the background
will be introduced to the tracker, and the error will accumulate
constantly. Thus, it is a significant research subject to adap-
tively update the template.

At present, most trackers usually adopt twoways to achieve
the template updating: linear interpolation andmulti-template
updating [23]. Linear interpolation mainly interpolates the
last tracking result into the current template linearly, such
as BACF [24], CFNet [14], KCF [25], and MOSSE [26].
Although this simple mechanism can enhance the tracking
performance to a certain degree, it is insufficient when the
target suffers drastic appearance changes given by occlu-
sion, fast motion, or deformation. To address this issue, the
multi-template updating is utilized to maintain templates
in previous frames. It adopts specific strategies to eval-
uate the reliability of the template and achieve adaptive
updating. Yang and Chan [27] use the Long Short-Term
Memory (LSTM) to evaluate the current template during
online tracking, which is computed by storing previous
templates in memory. Choi et al. [28] use the reinforce-
ment learning to select the optimal template stored in the

template memory. Yao et al. [29] efficiently use the stochastic
gradient descent (SGD) offline to learn the updating coeffi-
cients for the correlation filter tracker.

Inspired by the above research works, we propose an
improved feature information fusion to update the template.
We adopt an effective yet simple strategy to obtain the
important feature information not only based on the tracking
result in each new frame, but also based on the accumulated
templates in previous frames. By utilizing the information,
we can update the template and make the tracker more adap-
tive to the drastic appearance changes.

III. METHOD
A. OVERVIEW
The main purpose of this paper is to improve the robust-
ness of the tracker by enriching the positive pairs and take
further advantage of the foreground information. As shown
in Fig.1, our FIGSiam tracker mainly contains three modules,
i.e. extended positive pairs, foreground information guidance
and template updating. Then, we will briefly introduce these
modules respectively.

In the extended positive pairs module, a simple sam-
pling strategy is adopted to enrich the challenging factors
in the positive pairs. Firstly, during the offline training
phase, we utilize handcrafted occlusion masks which con-
tain 11 different directions to extend the positive pairs. Sec-
ondly, the random affine transformation is added into the
training. We adopt the rotation and the shear mapping to
simulate the deformation of the target. Thus, the datasets can
not only be enriched, but the robustness of the tracker in the
attribute of occlusion and deformation can also be improved.
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In the foreground information guidance module, we take
further advantage of the foreground information. The struc-
ture of the guidance branch used in this module is the same as
that of the template branch and the search region branch. The
input is the padding image with the size 255 × 255 × 3. For
improving the tracking performance, we use the improved
ResNet-18 in our previous work [30] as the embedding func-
tion to extract the features. In the guidance branch, we high-
light the foreground information by padding the background,
and the information is utilized to generate a novel padding
loss, which guides the tracker to pay less attention to the
distractors in the background. Moreover, the guidance branch
is enabled in training phase and disabled in tracking phase.

In the template updating module, we introduce an
improved feature information fusion for the proposed tracker.
We regard the tracking result of each new frame as the
undecided template in tracking phase. The feature pool is
utilized to store the credible feature tensors of the results in
previous frames, and the undecided template is extracted by
the template branch to obtain the new feature tensor. Further-
more, the global average pooling (GAP) is used to reduce the
dimensions of the feature tensors, and the correlation between
them can also be obtained. By utilizing the above important
information, we can update the template and make the tracker
more adaptive to the drastic appearance changes.

B. EXTENDED POSITIVE PAIRS
Training data with high quality is crucial for the success of
end-to-end learning in Siamese visual tracking. At present,
most Siamese trackers are trained on the large-scale detec-
tion datasets, such as ImageNet VID [18], COCO [31],
or Youtube-BB [32]. However, the limited categories of the
positive pairs are not sufficient to obtain a high-quality and
robust tracker. Even though some trackers expand the posi-
tive pairs by combining some large-scale detection datasets,
due to the long-tail distribution of some challenging factors
(Occlusion, Deformation, etc.), these factors may still not be
included in those expanded positive pairs. Thus, we adopt a
simple sampling strategy to enrich the challenging factors in
the positive pairs.

Firstly, we utilize the handcrafted occlusion masks to
extend the positive pairs. During the offline training phase,
we regard each exemplar image in positive pairs as the sample
need to be extended. More specifically, given the target in
exemplar image, we obtain the ground truth with size W×H.
Then, we can generate masks with fixed size W/2 × H/2 in
pre-designed directions, and drop out the values of each mask
in the corresponding spatial location. The 11 directions are
shown in Fig.2.

Secondly, we use the rotation and the shear mapping to
simulate the deformation of the target. Given the exemplar
image, we rotate the image in the range of θ = ±30◦. At the
same time, we also perform the shear mapping in both X
direction and Y direction. The range of each direction can
be denoted as φ = ±25◦ and ψ = ±25◦ respectively.
All the transformations are combined randomly, and we will

FIGURE 2. 11 directions of the handcrafted occlusion masks.

FIGURE 3. Representative samples of the random affine transformation.

FIGURE 4. Visualization of response maps w or w/o the foreground
information guidance.

select 6 samples at random for training. Some representative
samples can be seen in Fig.3.

C. FOREGROUND INFORMATION GUIDANCE
The extended positive pairs in the last subsection can improve
the robustness and the discrimination power of the tracker
in the offline training stage. However, it is still hard to dis-
criminate the foreground from the semantic backgrounds like
Fig.4. To address this issue, we take further advantage of the

55908 VOLUME 8, 2020



D. Li, Y. Yu: FIGSiam

foreground information and generate a novel padding loss,
which guides the tracker to pay less attention to the distractor
in the background.

In SiamFC [11], the AlexNet [33] is used as the embedding
function ϕ to extract the features of both template branch
and the search region branch. Meanwhile, the tracker learns a
similarity metric R(z,x) to compare the exemplar image z and
the candidate image x:

R(z, x) = ϕ(z) ∗ ϕ(x)+ b1 (1)

where ∗ denotes the cross correlation between the feature
maps, and b1 denotes the equal bias in every location. Fur-
thermore, the tracker defines the loss function losstraining as
follows:

losstraining(k, s) =
1
|M |

∑
p∈M

l(k [p] , s [p]) (2)

Here,M denotes the score map after cross correlation, k [p] ∈
{+1,−1} and s [p] indicate the label and the real-valued score
for each position p ∈ M in the score map, l is the logistic loss:

l (k, s) = log (1+ exp (−ks)) (3)

Inspired by SiamFC, we use the improved ResNet-18 in
our previous work [30] as the embedding function to extract
the features. However, we cut off most of the convolution
kernels with 1×1 size, and only maintain only one at the end
of the network to reduce the dimension. Moreover, in order
to lighten the heavy computational burden, the channel of the
final output tensor is adjusted to 256, and the size is cropped
to retain the central region (8×8 for template branch, 24×24
for search region branch). For breaking the restriction of the
strict translation invariance, we also adopt the spatial aware
sampling strategy which is first proposed in [17].

To take further advantage of the foreground information,
we add a guidance branch into the framework and combine
a novel padding loss with the logistic loss used in SiamFC.
As can be seen from Fig.1, the input of the guidance branch
is a padding image with size 255× 255× 3. We highlight the
foreground information by padding the background with the
mean value of the whole image:

Im age =

{
Im age(a, b) (a, b) ∈ fg
Mean(Image) (a, b) ∈ bg

(4)

Here, a and b denote the ath row and bth column of the image,
fgmeans the foreground, bgmeans the background. Given the
feature tensors extracted by the improved ResNet-18, we cal-
culate the Depthwise Cross Correlation (DW-XCorr) [17]
between the output tensors of template branch and search
region branch, as well as the output tensors of template branch
and guidance branch. The result can be denoted as S and S ′.
The padding loss can be computed as:

losspadding=
C∑
c

H∑
a

W∑
b

∥∥∥∥∥ Sc,a,b
max(‖S‖ 2)

−
S ′c,a,b

max(‖S ′‖2)

∥∥∥∥∥
2

(5)

where C, H and W represent the channel, the height and the
width of the tensor respectively.

By using this padding loss, the tracker can be guided to fil-
ter the features of background and improve the discrimination
power of the tracker. The final loss can be formulated as:

lossfinal = (1− λ)losstraining + λlosspadding (6)

where λ means the weight of the padding loss.

D. TEMPLATE UPDATING
The constant templates used in most Siamese trackers make
the methods lose the ability to adapt to the drastic appearance
changes. In order to address this issue, we add an improved
feature information fusion into the tracker.

In the initialization stage, a feature pool is uti-
lized to store the credible feature tensors Fpool ={
F1,F2,F3, . . . ,Fj|j ≤ N

}
which are extracted from the

tracking results, and N denotes the upper limit of the pool.
Given the tracking result of a new frame, we first put it into
the template branch and regard the extracted tensor as the
new feature tensor Fnew with size 8 × 8 × 256. Moreover,
for lightening the computational burden, we use the global
average pooling (GAP) to reduce the dimension of Fnew
and features in Fpool . Thus, the size can be compressed to
1 × 1 × 256 (Fnew′ and Fj′). In the next step, we use the
L2 normalization to normalize the features, and calculate the
matching score between the Fnew′ and the Fj′:

S jmatching =
∣∣∣(F ′new)TF ′j ∣∣∣ (7)

Then, we can adaptively fuse the features as follows:

Ffinal = εFnew + (1− ε)
∑
j=1

Fjδj (8)

Here, δj =
S jmatching∑

j=1
S jmatching

means the adaptive weight of each fea-

ture tensor in the feature pool, ε denotes the weight of Fnew.
In ourmodule, when the number of the credible feature ten-

sors is less than N , we will directly add Fnew into the feature
pool if Mean(S jmatching) is higher than the threshold Thupdate.
However, when the number is more than N , we will use Fnew
to replace the feature tensor with the lowest matching score
in the feature pool.

IV. EXPERIMENTS
A. EXPERIMENTAL DETAILS
1) ENVIRONMENT
Our experiments are implemented using PyTorch-0.4.1 on
PC with Intel i7-9800X CPU (3.80GHz), 64GB RAM and
NVDIA TITAN RTX GPU. The average testing speed on
short-term benchmarks can reach 32 fps.

2) TRAINING
The improved ResNet-18 network is trained on ImageNet
VID [18] and COCO [31] datasets. Moreover, we augment
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FIGURE 5. The precision plots and the success plots of OPE for 10 trackers. Each tracker is ranked by the performance score. In the precision plot,
the score is at error threshold of 20 pixels. In the success plot, the score is the AUC value.

the positive pairs as described in Section ‘‘METHOD’’. The
momentum of 0.9 and the weight decay of 0.0005 are used.
The template branch, the search region branch and the guid-
ance branch are trained for 50 epochs, and the learning rate
is decayed in log space from 0.01 to 0.0001. In training
stage, the inputs of three branches are images with the size
127× 127× 3, 255× 255× 3, 255× 255× 3 respectively.
In testing stage, the guidance branch will be cut.

3) OTHER SETTINGS
The weight of the padding loss λ is set to λ = 0.5. For the
improved information fusion, we set the upper limit N = 20,
the weight ε = 0.6 and the threshold Thupdate = 0.65. All the
above parameters which represent the best performance are
selected by extensive experiments on short-term benchmarks.

B. OTB DATASET
1) OVERALL PERFORMANCE COMPARISON
For testing the performance of our proposed FIGSiam
tracker, we adopt the standardized OTB [34], [35] datasets
to achieve the state-of-the-art comparison. We choose
Siamese network based trackers (SiamFC [11], SINT [12],
CFNet [14], SiamRPN [15], DCFNet [36]), recurrent neural
network (RNN) based tracker RFL [37], correlation filter
based trackers (ECO_HC [38], TRACA [39]) and deep rein-
forcement learning based tracker ADNet [40] to implement
the comparison.Moreover, the success plots and the precision
plots are used to present the results of the evaluation which
are shown in Fig.5.

As can be seen from Fig.5 (a), FIGSiam is able to pro-
duce leading results in both precision and the area under the
curve (AUC) score. Compared with the SiamRPN tracker,
FIGSiam improves 1% in precision and 2.1% in overlap
on OTB2013 dataset. Meanwhile, as shown in Fig.5 (b),
the precision of FIGSiam on OTB100 dataset is 0.866 and
the AUC score is 0.656, which improves 1.9% compared with
SiamRPN respectively.

Compared with other Siamese trackers, the superiority of
the FIGSiam tracker is more obvious. FIGSiam adopts the
handcrafted occlusion masks and the random affine transfor-
mation to enrich the challenging factors in positive pairs. The

extended positive pairs can effectively enhance the robustness
of the tracker. At the same time, the foreground information
is highlighted by padding the background, and the infor-
mation is utilized to generate a novel padding loss, which
guides the tracker to pay less attention to the distractor in
the background. Moreover, the constant templates used in
other Siamese trackers make the methods lose the ability to
adapt to the drastic appearance changes. Unlike these track-
ers, FIGSiam introduces an improved feature information
fusion to the framework, so that the tracker can overcome
the restriction and perform well when the target suffers dras-
tic appearance changes given by occlusion, fast motion, or
deformation.

Compared with the correlation filter based trackers
(ECO_HC and TRACA), FIGSiam still achieves an outstand-
ing performance. By using this padding loss, the tracker can
be guided to filter the features of background and improve the
discrimination power of the tracker. Furthermore, the adap-
tive template updating strategy is also the key to compete with
these trackers in complex scenes

2) ATTRIBUTE COMPARISON
For further analyzing the performances of the trackers,
we compare these trackers by using 11 annotated attributes
in OTB100 dataset, and the success plots are shown in Fig.6.

As can be seen from Fig.6, FIGSiam can achieve leading
results in most challenging scenes. However, compared with
the SiamRPN and ADNet, it attains much inferior tracking
performance in the attributes of low resolution and scale
variation. The ultimate reason lies in that FIGSiam utilizes
the strategy used in SiamFC to deal with the scale variation.
It only adopts the limited scale factors to find out the optimum
size of the tracking result. In addition, the target which only
contains no more than 400 pixels may lose the information
when extracted by the deep network.

3) FAILURE ANALYSIS
Although our proposed FIGSiam can achieve leading results
in most challenging scenes, it cannot perform well in all of
the OTB sequences. Some failure cases on Matrix and Soccer
sequences are shown in Fig.7.
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FIGURE 6. Attribute-based success plots on the OTB100 dataset. The later digits of the title denote the number of the sequences with that attribute.

FIGURE 7. Failure cases on Matrix and Soccer sequences. The red boxes are the ground truth and the green ones are results of
FIGSiam.

In Matrix sequence, our FIGSiam tracker can perform well
in the beginning, such as the 23-th frame. However, when the
target suffers more drastic appearance changes given by fast
motion and the deformation, the tracker will lose the target
and drift to the background. Though the handcrafted template
updating strategy can enhance the tracker to deal with these
challenges, it is not powerful enough to face complex scenes.

In Soccer sequence, our FIGSiam tracker cannot adapt to
the scale variation and the out-of-plane rotation since the
56-th frame. Moreover, when the background becomes more

cluttered and the target suffers severe occlusion in the 110-th
frame, the tracker fails to locate the target. Thus, how to
improve the template updating strategy and optimize the net-
work to face more serious challenges still need to be further
researched.

C. VOT2016
The VOT2016 [41] dataset consists of 60 sequences. The
performance of the tracker is evaluated by using accuracy
(average overlap while tracking successfully) and robustness
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FIGURE 8. Expected average overlap performance on VOT2016.

TABLE 1. Detail information about the trackers.

(failure times). Furthermore, the overall performance of the
tracker can also be evaluated by utilizing EAO which takes
both accuracy and robustness into account. In our work,
we compare our FIGSiam tracker with 14 excellent trackers.
Fig.8 shows the EAO ranking and TABEL I lists the details
about the Accuracy, the Robustness and the EAO (red, blue
and green denote 1st, 2nd and 3rd respectively).
As can be seen from TABEL I, Although FIGSiam cannot

perform well in Failure, it is able to rank 1st in both accuracy
and EAO. Thus, we believe that the improvements used in our
tracker can achieve an outstanding performance.

D. VOT2018
We evaluate our FIGSiam tracker on the VOT2018 [42]
dataset in comparison with 14 state-of-the-art methods. The
VOT2018 dataset is developed by replacing some least chal-
lenging videos in VOT2016 with some more difficult ones.
It still contains 60 sequences and evaluates the trackers by

FIGURE 9. Expected average overlap performance on VOT2018.

TABLE 2. Detail information about the trackers.

using Accuracy, Robustness and EAO. The EAO ranking and
the results are shown in Fig.9 and TABLE 2 respectively.

Among these trackers, the LADCF tracker achieves the
best Failures and EAO. The SiamRPN tracker ranks 1st in
accuracy and 2nd in EAO. Though our FIGSiam tracker can
perform better than most Siamese trackers, it attains much
inferior accuracy and robustness compared to the outstand-
ing trackers. We believe the ultimate reason lies in that the
FIGSiam uses the handcrafted template updating strategy,
and the network needs to be further improved to face more
serious challenges, such as scale variation and low resolution.

E. ABLATION STUDY
In order to verify the contributions of each module in our
proposed tracker, we evaluate three variations of our method.
The evaluative results includeAUC score in OTB100 [35] and
EAO in VOT2018 [42].
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TABLE 3. Ablation analysis on OTB100 and VOT2018.

As shown in TABLE 3, we use the SiamRPN as the
baseline method. In OTB100, the AUC score increases to
0.641 from 0.637 when the extended positive pairs module is
added in training. Similarly, when the foreground information
guidance module is adopted in training, the performance
increases by near 1.5%. When the template updating module
is utilized in inference, the performance can increase by
near 2%. Though SiamRPN has a better performance than
FIGSiam in VOT2018, we can reduce the gap by adopt-
ing our proposed modules. The EAO criterion increases to
0.3361 from 0.2976 when the foreground information guid-
ance module is added. Moreover, when the template updating
module is adopted, the FIGSiam tracker can increase by 4%,
which represents the best tracking performance in VOT2018.

V. CONCLUSION
In this paper, we focus on modifying the Siamese tracker
by enriching the positive pairs and taking further advan-
tage of the foreground information. A simple sampling strat-
egy is adopted to enrich the challenging factors in positive
pairs. Meanwhile, we highlight the foreground information
by padding the background, and the information is utilized
to generate a novel padding loss. By using this padding loss,
the tracker can be guided to filter the features of background
and improve the discrimination power of the tracker. In addi-
tion, an improved feature information fusion is adopted to
update the template, so that the tracker can adapt to the dras-
tic appearance changes. Comprehensive experiments on the
OTB and theVOT benchmarks demonstrate that our proposed
tracker can achieve excellent performance in both accuracy
and robustness. However, the proposed tracker still attains
much inferior accuracy and robustness compared to some
outstanding trackers. In the next step, we will improve the
template updating strategy and optimize the network to face
more serious challenges. Moreover, we will also pay more
attention to the background appearance information rather
than ignore it.
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