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ABSTRACT As a part of the energy transmission chain, gearboxes are considered as important components
in rotating machines, and the gearbox failure results in costly economic losses. Therefore, it is necessary
to detect the appearance of incipient gearbox faults by implementing an appropriate detected model. The
incipient failure characteristics of the gearbox are weak and hidden in a set of time-varying series signals
the vibration signals, which is difficult to effectively extract under the background of strong noise. The
PCA method is not effective in detecting weak fault features in time-varying signals, so this paper proposes
a method based on Deep Recursive Dynamic Principal Component Analysis (Deep RDPCA) to detect
incipient faults in gearboxes. The proposed approach is modeled via both the deep decomposed theorems and
time-varying dynamic model based on traditional PCA to extract characteristic of time-varying and weak
fault information under the background of strong noise. The proposed method could get a better real-time
reflection for changed system by introducing ‘‘Moving Window’’ technologies, so that the incipient fault
of gearbox could be detected accurately, too. Finally, the effect of Deep RDPCA-based fault diagnosis is
compared with the results of PCA, DPCA, RDPCA, Deep PCA, and Deep DPCA methods. It is concluded
that the proposed method can effectively capture the time-varying relationship of process variables and
accurately extract the weak fault characteristics in the vibration signal, which effectively improves the fault
detection performance.

INDEX TERMS Gearbox, fault diagnosis, gear failure experiment, feature extraction, Deep RDPCA.

I. INTRODUCTION
Gearbox is the key component of mechanical transmission
and plays an important role in the transmission system
[1]–[3]. The internal structure of gear box is compact and
there are strong coupling effects between the components,
which can easily cause gear pitting and broken teeth [4], [5].
Compared with other components, the maintenance of gear-
box is more complicated and maintenance time is longer,
which leads to great economic losses. Therefore, it is of great
significance to identify the weak fault features at an incipient
stage before the fault develops to a serious degree. Incipient
fault detection is important to ensure the normal operation of
equipment and avoid economic losses [6]–[8].

The incipient failure features of the gearbox can be
described as following [9], [10]: (1) The dynamic response
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is not obvious due to the weak fault. (2) Signal modulation
appears under the influence of multiple gear meshes. (3) The
transmission path of the gearbox vibration signal is compli-
cated, which lowers the signal-to-noise ratio with the effect of
excessive noise. (4) The fault characteristics vary with time,
and it is difficult to identify the fault condition. Therefore,
how to extract incipient fault characteristic fromweak signals
that have been flooded by noise is the key to incipient fault
detection [11].

The model-based method is one of the early fault detec-
tion methods for gearboxes, which requires accurate prior
physical models of gears [12]–[15]. However, the motions
and internal forces in the gearbox are complicated, which
reduces the model accuracy and extends the calculation time.
Signal processing is also a common early-stage fault detec-
tion method [16]–[17] such as, the empirical mode decom-
position method [18] and wavelet transform method [19].
The feature extraction process contains some redundant
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information, the data dimension is high and the calculation
efficiency is low, too. Incipient fault detection methods based
on deep learning can compress signals [20]–[24] and reduce
the data dimension. But the computational intensity of its
model becomes larger, and the training speed of the system
decreases in large network structures.

During the actual operation of the gearbox, the variables
are driven by random noise and uncontrollable interference,
and show a certain degree of autocorrelation, which affects
the detection results of failures [25], [26]. Qin proposed an
incipient fault detection method based on Deep PCA [27]
which can accurately extract weak fault features and detect
the incipient faults. Deep PCA is mainly a diagnostic method
for the control process, which cannot extract and process
vibration signals of mechanical equipment to diagnose faults.
Meanwhile, Deep PCA ignores the time-varying feature of
the vibration signals in the actual process, which reduces the
performance of fault detection. Many scholars have proposed
various methods for time-varying feature [28], [29]. Tang
use the time-varying barrier Lyapunov function to model the
dynamic system [30]. Ku proposed dynamic PCA to delay
variables into the data array to construct a time-varying data
array, thereby extracting time-varying and eliminating data
sequence correlations [31].

The characteristics of the incipient faults are not obvi-
ous, and it is hard to extract from excessive noise. This
paper proposes a dynamic incipient fault detection method
based on Deep Recursive Dynamic Principal Component
Analysis (Deep RDPCA) combined with the Moving Win-
dow algorithm. The main steps of Deep RDPCA method
are as follow: (1) Transform the observation matrix into
an augmentation matrix. (2) Update the latest samples to
the augmented matrix, discard the oldest samples, and
retain a fixed number of samples in the augmented matrix.
(3) Decompose the updated matrix into multiple subspaces
for detection and fully mine the fault information. On this
basis, the algorithm is improved, and a simplified recursive
formula of the autocorrelation matrix is given. The orig-
inal fourth rank one modifications are simplified to two
rank one modifications, which improves the online update
speed.

This paper is mainly divided into following parts. The
basic theoretical knowledge are introduced in the second part.
A complex nonlinear dynamic processmonitoringmethod for
gearboxes based on Deep RDPCA is proposed in the third
part. The performance of the scheme are verified through
simulation experiments using incipient fault data in the fourth
part. The proposed Deep RDPCA fault detection methods is
summarized in the fifth part.

II. FUNDAMENTAL THEORY
A. DPCA METHOD
The DPCA fault detection method adds variables to the data
matrix to construct a time lag matrix, and then improves
the PCA to extract time-varying relationships, eliminate
correlation of data sequences, and improve fault detection

performance [32]. The steps of the DPCA method are as
follows:

Give a training set X = [xT1 , x
T
2 , · · ·x

T
n ],xi ∈ Rm n is the

number of observed value, and m is the number of process
variables.

Step 1: Standardize the training set.
Step 2: Choose S, devoting to extend into an augmented

data matrix using the previous S observations.

XS =


xTt xTt−1 . . . xTt−S
xTt−1 xTt−2 . . . xTt−S−1
. . . . . . . . . . . .

xTt+S−n xTt+S−n+1 . . . xTt−n

 (1)

Step 3: Compute the covariance matrix of augmented data
matrix and eigenvalues are decomposed.

C =
1

n− 1
(XS)T XS = V6V T (2)

where diagonal matrix
∑

contains the non-negative real
eigenvalues of decreasingmagnitude (λ1 > λ2 > ··· > λn),V
is eigenvector corresponding to the eigenvalues.

Step 4: Use the Cumulative Percentage Variance (CPV) to
extract the principal component, a is the number of principal
component.

CPV =
[∑a

i=1 λi∑n
i=1 λi

]
×100% < 85% (3)

Step 5: Select load matrix P ∈ Rm×a, The original space is
divided into principal component subspace XS11 and residual
subspace XS12.

XS = XS11 + XS12 = TPT + XS12 (4)

Step 6: Calculate the statistics of T 2 and SPE :

T 2
= XTP3−1PTX (5)

SPE =
∥∥∥(I − PPT)X∥∥∥2 (6)

where3 is the principal component space characteristic value
matrix.

Step 7: Calculate the control limit of T 2 and SPE :
T 2 satisfies the F distribution, and its control limit is:

T 2
∼
a(n2−1)
n(n− a)

Fa,n−a (7)

Q satisfies the χ2 distribution, and its control limit is:

δ2 = gχ2(h) (8)

where, g = ρ2
/
2µ, h =

2µ2/
ρ2. µ and ρ2 is the mean and

variance of SPE .
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The specific process based on DPCA is shown in Fig.1:

FIGURE 1. The process of DPCA.

B. DEEP DPCA METHOD
Due to some fault features will be discarded during the
extraction of the principals, which may cause DPCA to fail
to accurately detect weak initial fault information. Combined
with the linear projection method, the Deep DPCA method
is proposed. Deep DPCA method decomposes the data set
into multiple data processing layers and retains more variance
information. At the same time, the Deep DPCA method can
effectively reveal the weak information hidden in the original
data set.

Deep DPCA method has following advantages:
(1) Effectively extract weak fault information in the data
set. (2) Established accurate mathematical model. (3) Simple
calculation and easy implementation.(4) It has excellent
incipient fault detection performance. The steps of Deep
DPCA method are as follow:

Step 1: Collect the vibration data X and standardize X .
Step 2: Select the appropriate the time lag S, and building

augment matrixXS◦
Step 3: Obtain the principal element space and the residual

space of data set XS by DPCA method:

XS = XS11 + XS12 (9)

where,XS11 is the first order principal component subspace of
augment matrix XS ; XS12 is the first order residual subspace
of augment matrix XS . They can be obtained by:

XS11 = P11PT11XS
XS12 = (I − P11PT11)XS (10)

To obtain more information about the second order principal
component space and residual space. We repeat the above
process, then obtain that:

XS11 = XS21 + XS22
XS12 = XS23 + XS24 (11)

FIGURE 2. The process of deep DPCA.

Suppose P21 and P23 respectively are the principal vector
of XS11 and XS12; P22 and P24 respectively are the residual
vector of XS11 and XS12. Then the original data X can be
obtained by:

XS = XS11 + XS12 = XS21 + XS22 + XS23 + XS24 (12)

where,

XS21 = P21PT21XS11
XS22 = (I − P21PT21)XS11
XS23 = P23PT23XS12
XS24 = (I − P23PT23)XS12 (13)

By parity of reasoning, the augment matrix XS can be rep-
resented as the sum of 2j subspace, and j is the order. The
subspace XSjk can be expressed as:

XSjk =

{
PjkPTjkXSj−1(k+1)/2 k is odd(
I − Pjk−1Pjk−1T

)
XSj−1 k2

k is even
(14)

where I is the identity matrix SupposeXSjk is the kth subspace
of jth order,then XS =

∑2j
k=1 XSjk .

Next steps are similar to DPCA method. The specific
process based on Deep DPCA is shown in Fig. 2:

III. DEEP RDPCA METHOD
Most practical industrial processes are time-varying, and
their failure characteristics are weak for the incipient fail-
ures [33]. Incipient fault signals can be detected by Deep
DPCAmethod, but the fixed control limit to monitor the time-
varying system inevitably produce a certain false alarm rate.
This paper proposes a new method based on the Deep Recur-
sive Dynamic Principal Component Analysis (Deep RDPCA)
for real-time monitoring of non-linear dynamic processes.
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FIGURE 3. The adaptive update algorithm process.

A. MODEL UPDATE
In view of the time-varying relationship of the data, the data
model is adaptively updated by combining ‘‘Moving Win-
dow’’ technologies [34]. It enables the principal component
model to understand the changes of the system in real time,
has certain timing-related characteristics, and guarantees that
the length of the window does not change. N is the size of
moving window, Xk is the k-th moving window matrix, Xk+1
is the (k+1)-th moving window matrix, Xmid is the overlap of
Xk and Xk+1 The adaptive update algorithm process is shown
in Fig. 3:
S + 1 new data are used to construct an augmented data

matrix, and adaptive moving windows is 1 in this paper,
the covariance matrix is updated once when each S + 1
sampling values is recurred. Assuming that the mean X̄k and
variance CK of Xk are known, x0k+1 is the normalized xk
so RPCA recurrence updating formula of data block can be
simplified as:

X k+1 =
k

k + 1
X k +

1
k + 1

x0k+1 (15)

Xk+1 = [Xk
∑

k

∑−1

k+1
− 1k1X k+1

T∑−1

k+1
xTk+1]

T (16)

Ck+1 =
k − 1
k

Ck +
1
k
xk+1xTk+1 +

∑−1

k+1
1xk+11xTk+1

−1∑
k+1

(17)

Update the first step of adaptive moving windows, the updat-
ing model is as follows:

Xmid =
N

N − 1
X k −

1
N − 1

x0k−N+1 (18)

Cmid =
N − 1
N − 2

(Ck −
1

N − 1
xk−N+1xTk−N+1

−

∑−1

k−N+1
1Xmidk1Xmidk

T∑−1

k−N+1
(19)

where 1Xmidk = X k − Xmid , update the second step of
adaptive moving windows:

X k+1 =
N − 1
N

Xmid +
1
N
x0k+1 (20)

Ck+1 =
N − 2
N − 1

Cmid +
1

N − 1
xk+1xTk+1

+

∑−1

k+1
1Xmid(k+1)1Xmid(k+1)

T∑−1

k+1
(21)

FIGURE 4. The structure of deep RDPCA.

where 1Xmid(k+1) = X k+1 − Xmid . Substitute Eq.(15) into
Eq.(17):

Ck+1

=Ck−
1

N−1
xk−N+1xTk−N+1

−

∑−1

k−N+1
1Xmidk1Xmidk

T∑−1

k−N+1
+

1
N−1

xk+1xk+1T

+

∑−1

k+1
1Xmid(k+1)1XTmid(k+1)

∑−1

k+1
(22)

According to the above formula, updating covariance avoid
calculation of a big block matrix and complexity time-
consuming of multiplication of matrices, however, it need to
4 times rank-one modification. In order to improve the online
update rate rapidly∑−1

k−N+1
1Xmidk1Xmidk

T∑−1

k−N+1
=

1
N 2 xk−N+1x

T
k−N+1

(23)∑−1

k+1
1Xmid(k+1)1Xmid(k+1)

T∑−1

k+1
=

1
N 2 xk+1x

T
k+1 (24)

Leading (19) and (20) into (18):

Ck+1 = Ck +
N 2
+ N − 1

N 2 (N − 1)
(xk+1xTk+1 − xk−N+1x

T
k−N+1)

(25)

The structure of Deep RDPCA incipient fault detection
method is shown in Fig. 4:
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FIGURE 5. The process of deep RDPCA.

FIGURE 6. The gear fatigue test bench.

B. THE STEPS OF DEEP RDPCA
The fault diagnosis method of Deep RDPCA is divided into
two parts: offline modeling and real-time online monitoring.
First, collect a large amount of normal data, determine S, and
use Deep DPCA to establish the initial model to obtain the
appropriate control limit. Then, as each new sampling value
of S + 1 is collected, the observation value of the amplified
data is reconstructed. Calculate its statistics and determine
if it is fault data. The specific offline training and online
diagnosis implementation steps are as follows:

a: OFFLINE MODELING
The method steps of offline modeling are as follows:

Step1: Collect vibration signals under normal conditions
Step2: Decompose the vibration signal by the EMD

method to obtain m IMF components and the remaining
terms Rn.
Step3: Composem IMF components to a newmatrix X and

standardize X .
Step4: Determine S and extend the data set to the augment

matrix XS .

FIGURE 7. The internal structure of gearbox.

FIGURE 8. Broken tooth fault of gear.

FIGURE 9. Pitting fault of gear.

Step5: Select the appropriate order j, and calculate the
corresponding XSjk according to formula (14)
Step6: Calculate the number of principal component of

each XSjk , the eigenvalue matrix 3jk , and the eigenvector
matrix Pjk .
Step7: Calculate the control limits TUCL jk and QUCL jk .

b: ONLINE MONITORING
The specific steps for online monitoring are as follows:

Step1: Collect S + 1 vibration data set.
Step2: Decompose the vibration signal by the EMD

method to obtain m IMF components and the remaining
terms Rn.
Step3: Compose m IMF components to a new matrix Xt

and standardize Xt .
Step4: Determine S and extend the data set to the augment

matrix XSt .
Step5: Calculate the corresponding XStjk according to

formula (14).
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FIGURE 10. Experimental results of PCA fault detection method for broken tooth faults.

FIGURE 11. Experimental results of DPCA fault detection method for broken tooth faults.

Step6: Obtain the statistics T 2
jk and SPEjk .

Step7: Compare the obtained statistic with the correspond-
ing control limit. If the statistic is greater than the control
limit, a failure occurs. Otherwise, the data is in a normal
state,then the new observation data is used to replace the old
observation data, recalculate the dynamic principal compo-
nent model, update control limits.

Fig. 5 depicts a flowchart of the fault detection method
based on Deep RDPCA:

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, the full life cycle data of gear pitting and
broken teeth collected by the gear fatigue test bench are used
for experiments. Gear fatigue test bench shown in Fig. 6.
Fig. 7 describes the internal structure of gearbox, and gear
3 is the position of the faulty gear. There are four gears in the
gear box, the number of teeth is 31, 25, 25, 31. The driving
shaft is shaft 1 and the driven shafts are shaft 2 and shaft 3.

Three groups of data with healthy gears, broken teeth fault
and pitting fault were collected in the experiment. For the
faults of broken teeth and pitting, the faulty gear is located at
gear 3 in Fig.7. The broken teeth gear is shown in Fig. 8 and
the pitting fault gear is shown in Fig. 9. Broken tooth fault
was collected during the last 400minutes of the full life cycle;
pitting fault was collected during the last 600 minutes of the
full life cycle. The gear materials of the two experiments are
40Cr, the rotation speed is 500r / min, the torque is 1400N∗m.
This section uses the 80th group of the two types of faults in
the full life cycle for experiments. The fault characteristics of
the fault data at this stage are weak, and the fault at this time
is in the incipient stage. The vibration signal collected during
the operation of the gearbox reflects the change of the gear

with the running time. This time-varying characteristic is an
important feature. The experimental analysis uses the missed
detection rate and detection delay as the evaluation indicators
of early fault detection performance.

A. GEARBOX BROKEN TEETH FAULT SIMULATION
EXPERIMENT AND ANALYSIS
1) GEARBOX BROKEN TEETH FAULT SIMULATION
EXPERIMENT
Gearbox broken teeth fault is one of common gearbox failure
[37], [38]. Breaking of gear teeth usually occurs at the root of
the gear because the bending stress at the root of the tooth is
the largest. There are two main cases of broken teeth:

(1) Fatigue broken teeth: Because the bending stress gen-
erated by the root of the gear under load is a pulsating
cyclic alternating stress, the combined effects of stress con-
centration sources such as machining tool marks and material
defects will cause fatigue cracks. The cracks gradually spread
and propagate, eventually leading to fatigue and broken teeth.

(2) Overload broken teeth: For gearboxes made of brittle
materials such as cast iron or high-hardness alloy steel, due
to severe overload or impact load, the stress on the dangerous
section of the tooth root will exceed the limit value and the
teeth will suddenly break.

Broken teeth of the gearbox makes the torque transmission
unstable and produce impacts [37]. Such shocks will cause
the fracture of other gear teeth and affect the service life of
the gearbox. At the same time, the impact will also affect the
accuracy and life of the gearbox shaft. Affects the reliability
of the entire equipment operation and the normal operation
of the equipment. In this section, a simulation experiment
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FIGURE 12. Experimental results of deep PCA fault detection method for broken tooth faults.

is performed on the gearbox with broken teeth. The specific
results are as follows:

Fig. 10 and Fig.11 illustrate the results of traditional PCA
fault detection methods and DPCA fault detection meth-
ods on broken tooth faults. Among them, Fig. 10 (a) and
Fig. 11(a) describe the results of the T2 statistic detection, and
Fig. 10(b) and Fig(b) describe the results of the SPE statistics
detection. In the figures, the solid blue lines represent statis-
tics, and the red dashed lines represent control limits. It can
be known from the simulation results that the traditional fault
detection method can hardly detect the broken tooth fault.

Fig. 12 (a)-(h) respectively describe the T2 and SPE fault
detection results of the third layer data set X21 − X24 of gear
tooth broken, based on Deep PCA method. Fig. 13 (a)-(h)
respectively describe the T2 and SPE fault detection results of
the third layer data set X21 − X24 of gear tooth broken, based
on Deep DPCA method. It can be seen from the simulation

results that these two methods have certain incipient fault
detection capabilities, and the fault detection effect of Deep
DPCA is better than that of Deep PCA.

Fig. 14 illustrate the T2 and SPE fault detection result of
the broken tooth fault based on Deep RDPCA fault detection
method. Among them, Fig. 14(a) and Fig. 14(b) illustrate the
detection result of the first layer data set X01. Fig. 14(c)-(f)
describe the result of the second layer data sets data set
X11 and X12. Fig. 14(g)-(n) describe the third layer data sets
X21 − X24. The reduction in the number of samples on the
abscissa is due to the moving window size of update model
is 3, that is, every three sampling points obtain one result.
So the final result is 1/3 of the initial number of samples.
When the statistic exceeds the control limit, it indicates
that the data is detected as faulty. From Fig. 14(a) and (b),
we obtain that T2

01 and SPE01 are less affected by this fault;
In the Fig. 14 (f), the impact of SPE12 by this fault is more
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FIGURE 13. Experimental results of deep DPCA fault detection method for broken tooth faults.

obvious, other statistics are less affected by this fault; In the
Fig. 14 (l) and (h), SPE23 and SPE24 are more affected by
this fault. Therefore, the fault detection effect of the third-
layer Deep RDPCA is better, which proves that the method
has better incipient fault detection capability.

2) PERFORMANCE COMPARISON
This part compares the experimental results of PCA, DPCA,
RDPCA, Deep PCA, Deep DPCA, and Deep RDPCA by
analyzing the missed detection rate and detection delay of the
gearbox broken tooth experiment results.

Table 1 describes the performance comparison of six meth-
ods for gearbox broken teeth. From the perspective of missed
diagnosis rate, the PCA, DPCA and RDPCA method have a
missed detection rate about 80%. These three methods basi-
cally do not have the capability of incipient failure detection.
The missed detection rate of Deep PCA and Deep DPCA

TABLE 1. Gearbox broken teeth fault performance comparison.

are significantly reduced, which can basically detect incipient
failures. At the same time, compared with these two methods,
the fault detection effect of Deep DPCA is better than that of
Deep PCA. This is because Deep DPCA considers the time-
varying of data. The missed detection rate of Deep RDPCA
proposed in this paper is 16.73%, and the effect is the best.

From the perspective of detection delay, the PCA method
detects a failure at the 101st sampling point. The DPCA
method detects ruler failure at the 94th sampling point.
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FIGURE 14. Experimental results of deep RDPCA fault detection method for broken tooth faults.
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FIGURE 14. (Continued.) Experimental results of deep RDPCA fault detection method for broken tooth faults.

FIGURE 15. Experimental results of PCA fault detection method for pitting faults.

FIGURE 16. Experimental results of DPCA fault detection method for pitting faults.

The RDPCA method delays the detection of a failure at the
29th augmented data point, which is approximately at the
87th sampling point. The Deep PCAmethod detected failures
at the 31st sampling point, and the Deep DPCA method
delayed 28 sampling points. The Deep RDPCAmethod has a
delay of eighth, that is, a failure is detected at about the 21st
sampling point.

It can be seen that the amount of Deep RDPCA method
can quickly detect the fault for the other five methods, and
its missed detection rate is also the lowest among the six
methods. In summary, Deep RDPCA has good fault detection
performance.

B. GEARBOX PITTING FAILURE SIMULATION
EXPERIMENT AND ANALYSIS
1) GEARBOX PITTING FAILURE SIMULATION EXPERIMENT
When the gear teeth enter the meshing, the tooth surface
contact of the gear teeth under the action of the normal force
will generate a large contact stress, and the contact stress will
disappear after disengaging [38], [39]. For a fixed point on

the working surface of the tooth profile, it is subject to contact
stresses that are approximately pulsating. If the contact stress
exceeds the contact fatigue limit of the gearbox material,
irregular metal particles will peel off on the tooth surface and
form pits. This phenomenon is called tooth surface fatigue
pitting.

Pitting corrosion damages the working surface of the gear
box, disrupts the normal operation of the gear box, causes
unstable transmission and noise, and the gear tooth meshing
situation will gradually deteriorate and be discarded [40].
In this section, a simulation experiment is performed on the
gearbox with broken teeth. The specific results are as follows:

Fig. 15 and Fig. 16 describe the results of experiments
on pitting faults based on PCA fault detection method and
DPCA fault detection method. Among them, Fig. 15 (a) and
Fig. 16(a) describe the results of the T2 statistic detection,
and Fig. 15 (b) and Fig. 16(b) describe the results of the SPE
statistic detection. It can be seen from the simulation results
that the missed detection rate of these two methods exceeds
50%, which shows that the traditional fault detection methods
can hardly detect the incipient pitting faults.
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FIGURE 17. Experimental results of deep PCA fault detection method for pitting faults.

Fig. 17 (a)-(h) respectively describe the T2 and SPE fault
detection results of the third layer data set X21 − X24 of
gear pitting, based on Deep PCA method. Fig. 18 (a)-(h)
respectively describe the T2 and SPE fault detection results
of the third layer data set X21 − X24 of gear pitting, based on
Deep DPCA method. Experimental results show that these
two methods can detect the fault better, both of which are
lower than 15%. At the same time, the fault detection effect
of Deep DPCA is better than that of Deep PCA, because the
Deep DPCA fault detection method takes into account the
time-varying relationship of data.

Fig. 19 shows the results of pitting fault detection based
on the Deep RDPCA fault detection method. Among them,
Fig. 19(a) and Fig. 19(b) illustrate the detection result
of the first layer data set X01. Fig. 19(c)-(f) describe the

result of the second layer data sets data set X11 and X12.
Fig. 19(g)-(n) describe the third layer data sets X21 − X24.
As can be seen from Fig. 19(a)-(f), we can obtain that,
the affection of T 2

01, SPE01, T 2
11, SPE11, T 2

12 and SPE12 by
this fault is small; In the Fig. 19(f), Fig. 19(l), Fig. 19(m) and
Fig. 19(n), we can obtain that SPE22, SPE23, SPE24, and T 2

24
are relatively affected by this fault, especially this fault has a
very large impact on T 2

24, the missed detection rate is within
10%. Therefore, the effect on the third-layer of Deep RDPCA
is better, which proves that this method is more sensitive to
incipient failures.

2) PERFORMANCE COMPARISON
This part compares the experimental results of PCA, DPCA,
RDPCA, Deep PCA, Deep DPCA, and Deep RDPCA by
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FIGURE 18. Experimental results of deep DPCA fault detection method for pitting faults.

analyzing the missed detection rate and detection delay of the
gearbox pitting corrosion test results.

Table 2 describes the missed detection rates of the six
methods for two types of pitting failures. From the perspec-
tive of missed detection rates, the PCA, DPCA, and RDPCA
methods have a missed detection rates about 50%. The three
methods basically do not have the capability of incipient fault
detection. The missed detection rate of Deep PCA and Deep
DPCAmethods exceed 10%, significantly reduced compared
to the PCA, DPCA and RDPCA methods, which can basi-
cally detect incipient failure. At the same time, compared
with these two methods, the fault detection effect of Deep
DPCA is better than that of Deep PCA. This is because Deep
DPCA considers the time-varying of data. The missed detec-
tion rate of Deep RDPCA proposed in this paper is 7.14%,

TABLE 2. Gearbox pitting fault performance comparison.

respectively, and the detection effect is better than the other
five methods.

From the perspective of detection delay, the PCA and
DPCA methods detect failures at the 64th and 63th sampling
points, respectively. The RDPCA method delay is the 21st
augmented data point, that is, the failure is detected at the
63rd sampling point. The Deep PCA method detected a fault
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FIGURE 19. Experimental results of deep RDPCA fault detection method for pitting faults.
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FIGURE 19. (Continued.) Experimental results of deep RDPCA fault detection method for pitting faults.

at the 42nd sampling point Although in the simulation results
of pitting faults in this method, T 2

24 detected the fault earlier,
From the perspective of inspection rate, T 2

24 is not sensitive
to this fault, so determine the detection delay of this method
from SPE23. Deep DPCAmethod delay is 37 sampling point.
The Deep RDPCA method has a delay of 4th, which is
about 12nd sampling point. It can be seen that the Deep
RDPCAmethod can quickly detect the fault for the other five
methods. In summary, Deep RDPCA has good fault detection
performance.

V. CONCLUSION
Aiming at early failures with insignificant failure character-
istics, vibration signals with time-varying and unpredictable
characteristics, this paper proposes a Deep RDPCA fault
detection method. The following conclusions are obtained
through theoretical analysis and experiments:

(1) The Deep RDPCA method considers the temporal cor-
relation of data, and divides the data set more effectively.
The problem of incipient fault characteristics is weak and the
signal has time-varying is solved by Deep RDPCA method.

(2) This method combines the advantages of Deep PCA
and Moving Window algorithm, effectively removes noise
information and improves the incipient fault detection ability
by capturing the timing relationship between variables. The
feasibility of themethod is proved by simulation experiments.

(3) Comparing with PCA, DPCA, RDPCA, Deep PCA,
and Deep DPCA fault detection methods, the missed detec-
tion rate of Deep RDPCA fault detection method proposed
in this paper less than 17%, lower than other methods. The
detection delay time less than 24 sampling point. So the
DeepRDPCA fault detectionmethod has better incipient fault
detection effect.
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