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ABSTRACT Generative Adversarial Networks (GANs) have achieved impressive results in various image
synthesis tasks, and are becoming a hot topic in computer vision research because of the impressive
performance they achieved in various applications. In this paper, we introduce the recent research on GANs
in the field of image processing, including image synthesis, image generation, image semantic editing,
image-to-image translation, image super-resolution, image inpainting, and cartoon generation. We analyze
and summarize the methods used in these applications which have improved the generated results. Then,
we discuss the challenges faced by GANs and introduce some methods to deal with these problems. We also
preview some likely future research directions in the field of GANs, such as video generation, facial
animation synthesis and 3D face reconstruction. The purpose of this review is to provide insights into the
research on GANs and to present the various applications based on GANs in different scenarios.

INDEX TERMS Generative adversarial networks, image synthesis, image-to-image translation, image
editing, cartoon generation.

I. INTRODUCTION
Artificial intelligence (AI) has aroused widespread interest in
both the press and on social media. Especially with the rapid
development of deep learning, image processing has made
great progress. An enormous amount of images are applied
in social media, which make the generative models became a
hot topic in deep learning research.

Some generativemodels are promising unsupervised learn-
ing techniques with powerful semantic information represen-
tation capabilities, and are attractingmore andmore attention.
Among them, the Variational Auto-encoder (VAE) [1] cannot
generate clear enough images. The Glow [2] is a flow-based
generation model, which has not been widely used so far.
The Generative Adversarial Networks (GANs) have achieved
impressive results in image processing, and are attracting
growing interests in the academic and industrial fields.

The associate editor coordinating the review of this manuscript and
approving it for publication was Hongjun Su.

Nowadays, GANs are applied to various research and
applications, such as image generation [3], image inpaint-
ing [4], text generation [5], medical image processing
[6]–[13], semantic segmentation [14]–[17], image coloriza-
tion [18], [19], image-to-image translation [20], and art gen-
eration [21]. Besides, GANs are widely used in face synthesis
and face editing, such as face age [22]–[24] and gender
translation [25].

The research of GANs is divided into two directions:
1) Theoretical research onGANs based on information theory
or energy-based models, and focus on the unsolved problems
of GANs during training, such as mode collapse, unstable
training and hard to evaluate. We will briefly discuss this
aspect of problems and the challenges of GANs in Section IX.
2) The applications of GANs in various computer vision
tasks. Although there are still some unresolved problems,
various GAN-variants have improved the performance of
GANs by numerous research studies. In this work, we mainly
focus on the second aspect of current research on GANs.
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Although there have been some surveys on GANs so far,
like [26], in the field of deep learning, especially GANs are
developing fast. This paper focuses on the recent research
of GANs in image synthesis. It provides a comparison and
analysis in terms of the pros and cons of these applications
based on GANs. Besides, we analyze and summarize the
methods that have been used in these applications to improve
the generated images. Meanwhile, we discuss the challenges
faced by GANs in terms of training and evaluating of GANs.
Somemethods for stable training and evaluation of GANs are
provided. Then, we discuss the likely future research direc-
tions, such as video generation, facial animation synthesis,
and 3D face reconstruction. The rest of the paper is organized
as follows: Section II gives a brief introduction of GANs.
Section III introduces some applications of image synthe-
sis based on GANs. Section IV focuses on the supervised
and unsupervised methods for image-to-image translation.
Section V discusses several methods in the application of
image editing. Section VI describes several methods of car-
toon generation. Section VII reviews the current challenges
and limitations of GAN-based methods, as well as previews
likely future research work in the area of GANs. Conclusions
are given in Section VIII.

II. GENERATIVE ADVERSARIAL NETWORKS
GANs are especially successful in image tasks due to the
great potential in image processing. They are considered to
be the most effective method in the task of image generation
and play an important role in various applications.

The Generative Adversarial Network (GAN) is a model
that has been prevailing since Goodfellow et al. [27] proposed
it in 2014. GAN consists of a generator G and a discrim-
inator D, the general structure of a Generative Adversarial
Network is illustrated in Fig. 1.

FIGURE 1. The general structure of a generative adversarial network.

The generator G is used to generate realistic samples from
random noise and tries to fool the discriminator D. The dis-
criminator D is used to identify whether the sample is real or
generated by the generator G. The generator and the discrim-
inator are competing with each other until the discriminator
cannot distinguish between real and fake generated images.
The whole process can be regarded as a two-player minimax
game where the main aim of GAN training is to achieve
the Nash equilibrium [28]. The loss function of the GAN is

formulated as follows:

min
G

max
D

V (D,G) = Ex∼Pdata(x)[logD(x)]

+Ez∼Pz(z)[log(1− D(G(z)))] (1)

where Pdata(x) denotes the true data distribution,
Pz(z) denote the noise distribution.

Due to the special network structure and the generation
performance of GANs, extensive research has produced
numerous applications based on GANs, as shown in Fig. 2.

FIGURE 2. Taxonomy of GANs.

III. IMAGE SYNTHESIS
Image synthesis has attracted people’s attention because of its
wide application in social media. The GANs have achieved
excellent results in the field of image synthesis, such as
GauGAN [29]. A variety of image synthesis methods have
emerged so far.
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A. TEXTURE SYNTHESIS
Image synthesis can be divided into fine-grained texture
synthesis and coarse-grained texture synthesis. The coarse-
grained texture synthesis pays attention to the similarity
between the input image and the output image while the
fine-grained texture synthesis pursues whether the synthetic
texture is similar to the ground truth.

1) PSGAN
Bergmann et al. [30] proposed a new method of texture
synthesis based on theGenerativeAdversarial Network called
Periodic Spatial GAN (PSGAN). The model of PSGAN is
illustrated in Fig. 3.

FIGURE 3. Illustration of the PSGAN model [30].

The loss function of the PSGAN is defined as:

min
G

max
D

V (D,G)

=
1
LM

L
6
λ=1

M
6
µ=1

EZ∼Pz(Z )[log(1− Dλµ(G(Z )))]

+
1
LM

L
6
λ=1

M
6
µ=1

EX ′∼Pdata(X )[logDλµ(X ′)] (2)

PSGAN can learn multiple textures from one or more
complex datasets of large images. The method can not
only smoothly interpolate between samples in a structured
noise space and generate novel samples that are perceptually
located between the textures of the original dataset, but also
accurately learn periodic textures. PSGAN has the flexibility
to handle a wide range of textures and image data sources. It is
a method of highly scalable and can produce output images
of any size.

2) TextureGAN
Xian et al. [31] proposed a texture synthesis method called
TextureGAN, which combines sketch, color, and texture to
synthesize images that people expect. The training process is
shown in Fig. 4 and Fig. 5.

FIGURE 4. TextureGAN pipeline for the ground-truth pre-training [31].

FIGURE 5. TextureGAN pipeline for the external texture fine-tuning [31].

The objective function of ground-truth pre-training is
defined as:

L = LF +WADVLADV +WSLS +WPLP +WCLC (3)

The objective function of external texture fine-tuning is
defined as:

L = LF +WADVLADV +WPL ′P +WCL ′C + Lt (4)

TextureGAN is an image synthesis method that can control
the texture of generated images. It allows the users to place a
texture patch anywhere on the sketch and at any scale to con-
trol the desired output texture. Besides, it can not only process
various texture inputs and generate texture compositions that
follow sketch outlines, but also achieve good results in the
sketch and texture-based image synthesis.

3) TEXTURE MIXER
Yu et al. [32] proposed a new method that can control texture
interpolation called Texture Mixer. The structure of Texture
Mixer is shown in Fig. 6.

The training objective is:

min
E`,Eg,G

max
Drec,Ditp

E
S1,S2∼S

(λ1Lrecpix + λ2L
rec
Gram + λ3L

rec
adv

+ λ4L
itp
Gram + λ5L

itp
adv) (5)

The method utilizes deep learning and GAN to realize con-
trollable interpolation of textures, which combines two differ-
ent types of texture patterns and makes the transition natural.
It proposes a neural network trained with a reconstruction
task and a generation task to project the texture of the sample
onto a latent space and project linear interpolation onto the
image domain to ensure the quality of the intuitive control
and realistic generated results. Furthermore, it is superior to
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FIGURE 6. A diagram of the texture mixer [32].

many baselinemethods and has a good performance in texture
synthesis in the dimensions of controllability, smoothness,
and realism.

4) OTHER METHODS
Li and Wand [33] proposed an efficient texture syn-
thesis method called Markovian Generative Adversarial
Networks (MGANs). It can not only directly decode brown
noise to realistic texture but also decode the photo to the
painting, which improves the quality of texture synthesis.
Jetchev et al. [34] proposed an architecture called spatial
GAN (SGAN) which is well-suited for texture synthesis. It is
a method that can synthesize texture images with high quality
and can fuse multiple different source images in complex
textures.

The texture synthesis based on GANs adopts the method of
interpolation can produce realistic details of texture and real-
ize the natural transition of texture synthesis. Interpolation
and extrapolation are two approaches to enforce constraints
for GANs. The incorporation of constraints is built into the
training of the GAN while the constraints are enforced after
each step through projection on the space of constraints for
extrapolation [35]. However, sometimes the texture synthesis
model is difficult to converge during training and it can suffer
from ‘‘mode dropping’’.

B. IMAGE SUPER-RESOLUTION
The image generation model is designed to explore how
to generate a desired image, while producing high-quality
large images has always been a challenging task. The ability
to produce high-quality and high-resolution images is an
important advantage of GANs, and significant progress has
been made in generating high-quality and visually realistic
images. A series of models based on GANs are emerging in
the purpose of producing higher-resolution images.

1) ProGAN
Karras et al. [36] proposed an image generation method
called ProGAN. The structure of ProGAN is shown in Fig. 7.

FIGURE 7. The structure of ProGAN [36].

The key idea of this approach is to gradually increase
the generator and discriminator, which starts from a low
resolution and adds new layers as the training progresses to
make the model increase fine details. It is a method which
can not only speed the training up but also greatly stabilize it.
Compared with the earlier works on GANs, the quality of the
results using this method is generally high, and the training is
stable in high resolution. However, there are some shortcom-
ings in this method. For example, semantic sensitivity and
understanding depend on the constraints of the dataset.

2) PROGRESSIVE FACE SUPER-RESOLUTION
Kim et al. [37] proposed a novel face super-resolution (SR)
method which can generate photo-realistic face images with
fully retained facial details. The network architecture is
shown in Fig. 8.

FIGURE 8. The network architecture of [37].

The loss term is shown as:

LOurs = αLpixel + βLfeat + γLWANG (6)

LOurs = αLpixel + βLfeat + γLWANG + λLheatmap
+ ηLattention (7)

The authors use a progressive training approach that allows
stable training by dividing the network into successive steps,
each step producing an output of progressively higher reso-
lution. A novel facial attention loss has also been proposed
and applied at each step to focus on restoring facial attributes
in more detail by multiplying pixel differences and heatmap
values. They also proposed a compressed version of the
face alignment network (FAN) to extract suitable landmark
heatmaps for face super-resolution (SR), and the overall
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training time can also be reduced. Furthermore, it can learn
the restoration of facial details and generate super-resolution
facial images that are similar to real ones. The results are
superior to the earlier methods in terms of qualitative and
quantitative measurements, especially in perceptual quality.

3) BigGANs
Brock et al. [38] proposed models called BigGANs, which
realized the work of generating high-resolution and diverse
images from complex datasets. A typical network architec-
ture of BigGANs is shown in Fig. 9.

FIGURE 9. A typical network architecture of BigGANs [38].

This method achieves the goal of generating high-
resolution and diverse samples from the complex dataset
ImageNet successfully. It is the largest scale of Generative
Adversarial Networks that have been trained so far and can
generate images of unprecedented quality. It is far superior to
the earlier methods in terms of the realism of the generated
image. The authors applied orthogonal regularization to the
generator to handle the specific instability of such scale and
truncated the latent space to control the fidelity and variety of
generated images.

4) StyleGAN
Karras et al. [39] proposed an alternative generator architec-
ture called StyleGAN. The network architecture of StyleGAN
is shown in Fig. 10.

The authors redesigned the generator architecture which
can adjust its image style based on the latent code in each
convolutional layer. It is able to control the entire image
synthesis process which starts with very low resolution
and generates high-resolution artificial images step by step.
Besides, it controls the visual features by modifying the input
of each level in the network separately, from coarse features to
fine details. The breakthrough of StyleGAN is that it not only
produces high-quality and realistic images but also provides
better control and understanding of the generated images.
The method implements automatic learning, unsupervised
high-level attribute separation, and stochastic variation of
generated images, which enables intuitive, scale-specific

FIGURE 10. The network architecture of StyleGAN [39].

control synthesis of the composition. The method is superior
to the traditional GAN generator architecture and can gener-
ate a high-resolution image that looks more realistic.

5) OTHER METHODS
Ledig et al. [40] proposed a generative adversarial net-
work for image super-resolution (SR) called SRGAN,
and can significantly improve the perceptual quality.
Wang et al. [41] improved SRGAN to derive an Enhanced
SRGAN (ESRGAN) which not only improved the problem
of artifacts in SRGAN and the visual quality of generated
images but also obtained more realistic and natural textures.
Wang et al. [42] proposed a method to recover natural and
realistic texture called SFTGAN, which is equipped with a
novel Spatial Feature Transform (SFT) layer and can generate
more realistic and visually pleasing textures.

The image super-resolution method which gets the
best results trains generators and discriminators from
low-resolution images, and adds a higher-resolution network
layer each time to generate artificial images step by step.
It can generate high-resolution and diverse images with high-
quality. However, the training time is long and more GPUs
are required.

C. IMAGE INPAINTING
In the past few years, deep learning technology has made
significant progress in the image inpainting. Image inpainting
refers to the technique of restoring and reconstructing images
based on background information. The generated images are
expected to look very natural and difficult to distinguish
from the ground truth. High-quality image inpainting not
only requires the semantics of the generated content to be
reasonable but also requires that the texture of generated
image clear and realistic enough. Recently, image inpainting
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methods based on deep learning have achieved promising
results, especially based on GANs.

1) Deepfillv1
Yu et al. [43] proposed a deep generative model-based image
inpainting approach called Deepfillv1. The framework of
Deepfillv1 is summarized in Fig. 11.

FIGURE 11. Overview of the improved generative inpainting
framework [43].

Deepfillv1 combines the solution of deep learning algo-
rithms concerning the advantages of traditional algorithms.
It further improves the generation network and can automati-
cally repair a picture with multiple holes or large holes, which
can produce images of higher quality than earlier methods.
The method can synthesize novel image structures and makes
use of surrounding image features to make better predictions.
The authors utilized a feedforward and fully convolutional
neural network to process images with multiple holes dur-
ing the test time. This method is a coarse-to-fine generative
image inpainting framework with a novel contextual attention
module that can improve the image inpainting results by
learning the feature representations for explicit matching and
attending to relevant background patches.

2) ExGANs
Dolhansky et al. [44] proposed a novel in-painting approach
called Exemplar GANs (ExGANs). The architecture of
ExGANs is shown in Fig 12.

The learning objective of reference image inpainting is
defined as:

min
G

max
D

V (D,G) = Exi,ri∼Pdata(x,r)[logD(xi, ri)]

+Eri∼pc,G(·)∼Pz[log1− D(G(zi, ri))]

+ ‖G (zi, ri)− xi‖1 (8)

The adversarial objective of code inpainting is defined as:

min
G

max
D

V (D,G)

=Exi,ci∼Pdata(x,c)[logD(xi, ci)]

+Eci∼pc,G(·)∼Pz[log1−D(G(zi, ci))]

+ ‖G (zi, ci)− xi‖1+‖C (G(zi, ci)− ci‖2 (9)

The authors use exemplar information as a reference image
of the region to inpaint a person with closed eyes in a nat-
ural picture which can produce high-quality and personal-
ized inpainting results. It can also describe the object with

FIGURE 12. General architecture of an exemplar GAN [44].

a perceptual code in the task of a closed-to-open eye to
produce a photo-realistic and personalized image in terms of
perception and semantics. ExGANs are a type of conditional
GAN that can increase the descriptive power by inserting at
multiple points within the adversarial network with the extra
information. It is a useful method for image generation or
inpainting that use reference images or perceptual codes as
identifying informationwhich has superior perceptual results.

3) Deepfillv2
Yu et al. [45] proposed a novel image inpainting system based
on deep learning which uses free-form masks and inputs
to complete images called Deepfillv2. The architecture of
Deepfillv2 is shown in Fig. 13.

FIGURE 13. The architecture of Deepfillv2 [45].

The objective function is:

LDsn = EX∼Pdata(X )[ReLU (1− Dsn(x))]

+EZ∼Pz(Z )[ReLU (1+ Dsn(G(z)))] (10)

LG = −EZ∼Pz(Z )[Dsn(G(z))] (11)

This method is based on gated convolutions and can handle
images with free-form masks anywhere or any shapes. The
authors proposed a GAN loss called SN-PatchGAN which
makes the training fast and stable. It is superior to the previous
methods and can produce more flexible results with higher-
quality. Furthermore, it can be used to remove distracting
objects, clear watermarks, edit faces and fill in missing
regions. Moreover, the image inpainting system which is
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based on an end-to-end generative network is useful to
improve inpainting results with user guidance input.

4) EdgeConnect
Nazeri et al. [46] proposed a two-stage adversarial model
called EdgeConnect, a novel approach for image inpainting.
The structure of the EdgeConnect is shown in Fig. 14.

FIGURE 14. The structure of EdgeConnect [46].

The training objective of the edge generator network is:

min
G1

max
D1

LG1=min
G1

(λadv,1max
D1

(Ladv,1)+λFMLFM ) (12)

The loss function of the image completion network is:

LG2 = λ`1L`1 + λadv,2Ladv,2 + λpLperc + λsLstyle (13)

EdgeConnect is an image completion network that uses
hallucinated edges as a priori to fill in the missing regions.
It consists of an edge generator and an image completion
network which can reproduce filled regions exhibiting fine
details. The edge generator is used to get edges of the missing
region of the image which can be regular or irregular, and
the image completion network is used to fill in the miss-
ing regions. The authors proposed a new image painting
method based on deep learning that can be used for image
inpainting task and reconstruct reasonable structures of the
missing regions. Furthermore, it does a good job of dealing
with images that have multiple or irregular shapes of missing
regions. It can be used for removing unwanted objects from
the images or as an interactive image editing tool and get a
good result in terms of quantitative and qualitative measure-
ments. However, the current problem is that the edge gen-
erating model sometimes fails to depict the edges accurately
when a large part of the image is missing or in highly textured
regions.

5) PEN-Net
Zeng et al. [47] proposed an image inpainting method based
on deep generative models called Pyramid-context ENcoder
Network (PEN-Net). The structure of the PEN-Net is shown
in Fig. 15.

The adversarial loss for the discriminator is denoted as:

LD = EX∼Pdata(X )[max(0, 1− D(x))]

+EZ∼Pz[max(0, 1+ D(z))] (14)

The adversarial loss for the generator is denoted as:

LG = −EZ∼Pz[D(z)] (15)

The PEN-Net is a method which is proposed for
high-quality image inpainting and is used to fill in the missing

FIGURE 15. The structure of PEN-Net [47].

regions of the image with plausible content. The authors put
forward the idea of a pyramid-context encoder which uses
a high-level semantic feature map as a guide and transfer the
learned attention to the previous low-level feature map so that
the network can learn the region affinity progressively. It can
be used to fill in the regions in a damaged image and get
a result both visually and semantically plausible. Moreover,
the main idea of the method is to encode the contextual
semantics learned from the full resolution input, and restore
an image by decoding the semantic features back. Both visual
and semantic coherence of the generated content can be
ensured with the attention transferred from deep to shallow
in a pyramid fashion. At the same time, the authors proposed
a new loss function to make the training converge fast and
generate more realistic results. The network is superior to the
previous method and can generate semantically-reasonable
and visually-realistic images.

6) OTHER METHODS
Yang et al. [48] proposed a multi-scale neural patch synthesis
method based on deep learning which uses image content
and texture constraints to optimize the task of image inpaint-
ing. The method can not only restore images with semanti-
cally plausible contents but also preserve the high-frequency
details. Yeh et al. [49] proposed a new approach for the
semantic image inpainting, which can achieve pixel-level
photorealism and generate satisfactory results. Li et al. [50]
proposed an effective face completion method based on a
deep generative model, and it can restore images with a large
area of missing pixels and achieve a realistic face completion
result.

Image inpainting methods based on GANs nowadays can
achieve more reasonable and semantically consistent results
than traditional methods. Currently, some methods use gated
convolutions to restore images with free-form masks, which
can restore images with multiple holes or fill in missing
areas with irregular shapes. However, the quality of the image
inpainting is sensitive to the position and size of the masks.

D. FACE IMAGE SYNTHESIS
In recent years, face image synthesis is a hot topic in photo
processing because of the heavy use of pictures on social
media. Due to the performance improvement of GANs,
facial image processing has made great progress. A series of
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methods have emerged to improve the quality of face image
generation.

1) ELEGANT
Xiao et al. [51] proposed a model for transferring multiple
face attributes called ELEGANT. The framework of ELE-
GANT is shown in Fig. 16.

FIGURE 16. The framework of ELEGANT [51].

The loss of the discriminator is:

LD = LD1 + LD2 (16)

The loss of the generator is:

LG = Lreconstruction + Ladv (17)

ELEGANT is an effective method for face attributes trans-
ferring. It receives two images of opposite attributes as inputs
and can produce high-quality images with finer details. Fur-
thermore, it exchanges a certain part of the encodings to
transfer the same type of attributes from one image to another.
This method canmanipulate several attributes simultaneously
by encoding different attributes into disentangled parts in the
latent space. Themodel is based on a U-Net [52] structure and
is trained with multi-scale discriminators which can help to
improve the quality of the generated images. Besides, it can
generate higher resolution images with the help of residual
learning to facilitate training.

2) STGAN
Liu et al. [53] proposed an arbitrary facial attribute editing
model called STGAN, which achieves high-quality editing
results. The structure of STGAN is shown in Fig. 17.

FIGURE 17. The structure of STGAN [53].

The objective function of discriminator D is formulated as:

min
D
LD = −LDadv + λL1LDatt (18)

FIGURE 18. The framework of SCGAN [56].

The objective function of generator G is formulated as:

min
G
LG = −LGadv + λ2LGatt + λ3Lrec (19)

This method solves the fine-grained control on the label of
the face attribute and realizes multi-attribute transformation.
The model takes a difference attribute vector as input to
change the related attributes instead of all target attributes in
specific editing tasks. STGAN is a high-precision attribute
editing model based on AttGAN [54] and StarGAN [55].
It helps to improve the generated image quality and to get
a clear editing result. Besides, it can not only improve the
ability of face attribute manipulation but also can be used
for season translation. The authors proposed selective transfer
units (STUs) to enhance attribute editing which can improve
the accuracy of attribute manipulation and improve percep-
tion quality. STGAN can improve the quality of generated
images and realize flexible translation of attributes by focus-
ing on the editing attributes to be changed.

3) SCGAN
Jiang et al. [56] proposed a novel image generation model
called Spatially Constrained Generative Adversarial Network
(SCGAN). The framework of SCGAN is shown in Fig. 18.

The objective function of SCGAN is represented as:

LS = Lrealseg (20)

LD = −Ladv + λclsLrealcls (21)

LG = Ladv + λclsL
fake
cla + λsegL

fake
seg (22)

This method can generate images with clear edge details
and can preserve spatial information. It makes the spatial
constraints feasible as additional controllable signals which
are decoupled from the latent vector. Moreover, the authors
designed a generator network that takes a semantic seg-
mentation, a latent vector and an attribute-level label as
inputs to enhance the spatial controllability step by step.
Meanwhile, the authors proposed a segmentor network to
impose spatial constraints on the generator which can accel-
erate and stabilize the model convergence. SCGAN is an
effective method that can control the spatial contents and
can generate high-quality images. It can not only solve the
foreground-background mismatch problem but it is also easy
and fast to train. Besides, SCGAN is very effective at control-
ling spatial contents which can specify attributes and help to
improve general visual quality and get quantitative results.
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4) EXAMPLE-GUIDED IMAGE SYNTHESIS
Wang et al. [57] proposed an example-guided image synthesis
solution by using a semantic label map and an exemplary
image, and its framework is summarized as shown in Fig. 19.

FIGURE 19. Overview of the framework [57].

The objective function is formulated as:

G∗ = argmin
G

max
DR,DSC

L(G,DR,DSC ) (23)

This method is based on conditional generative adversarial
networks aim to synthesize images from semantic label maps
and using an exemplary image to indicate facial expression
or full body poses. The authors proposed a novel style consis-
tency discriminator and an adaptive semantic consistency loss
to make sure that the synthesized image is consistent in style
with the exemplar. Furthermore, a training data sampling
strategy is also used to synthesize style-consistent results.
It is an effective method that can be used on the face or
street view synthesis tasks which can produce qualitative and
quantitative results. Moreover, it can generate realistic and
style-consistent images with the help of style consistency
discriminator.

5) SGGAN
Jiang et al. [58] proposed a novel multi-domain face image
translation method called Segmentation Guided Generative
Adversarial Networks (SGGAN). The framework of SGGAN
is shown in Fig. 20.

FIGURE 20. Illustration of SGGAN [58].

The objective function of the SGGAN network is summa-
rized as:

LS = Lrealseg (24)

LD = −Ladv + λ1Lrealcls (25)

LG = Ladv + λ1L
fake
cls + λ2L

fake
seg + λ3Lrec (26)

The method is based on a deep generative model that pays
attention to higher-level and instance-specific information
and can generate realistic images of high quality. It has spatial
controllability in the image translation process by utilizing
semantic segmentation to improve the performance of image
generation and provides spatial mapping. The authors pro-
posed a segmentor network to provide the generated images
with semantic information. Besides, it can improve the qual-
ity of image generation with the ability of spatial modifica-
tion. The method uses the segmentation information to guide
the generation of images which can make the details clear.
SGGAN can be used for face image translation by providing
strong regulations during the training process.

6) MaskGAN
Lee et al. [59] proposed a geometry-oriented face manipula-
tion framework calledMaskGAN. The pipeline ofMaskGAN
is shown in Fig. 21.

FIGURE 21. The pipeline of MaskGAN [59].

The objective loss function is:

LGA,GB = Ladv(G,D1,2)+ λfeatLfeat (G,D1,2)

+ λperceptLpercept (G) (27)

The method overcomes the shortcomings of operating on a
predefined set of face attributes. It makes the users manip-
ulate images with more freedom by using semantic masks
as an intermediate representation, which enables diverse and
interactive face manipulation. MaskGAN can achieve diverse
generation results by using dense mapping networks to learn
style mapping between the free-form user modified mask and
the target image. Furthermore, it makes the framework more
robust to manipulate by using editing behavior simulated
training which models users editing behavior on the source
mask. MaskGAN can be used to manipulate face image flex-
ibly and preserve the fidelity.

7) OTHER METHODS
Lin et al. [60] proposed an unpaired image-to-image trans-
lation method called Domain-supervised GAN (DosGAN),
and it uses domain information as explicit supervision
and achieves conditional translation with face images in
CelebA. Mokady et al. [61] proposed a novel mask-based
method which uses the masks to reconstruct the face images
and enables high quality and various content translations.
Yin et al. [62] proposed an instance-level facial attribute
transfer method which uses the geometry-aware flow as a
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representation for transferring the images with instance-level
facial attributes.

The Face image synthesis method uses encoder-decoder
and generative adversarial networks to solve the problem
of arbitrary attribute editing. High-quality images with fine
detail can be generated by this architecture which makes
high-precision face attribute editing come true. However,
there may have some mode collapse problems.

E. HUMAN IMAGE SYNTHESIS
Human image synthesis aims tomanipulate the visual appear-
ance of the character images by transferring the pose of a
character to the target pose, which can be calculated from
other characters.

1) TEXT GUIDED PERSON IMAGE SYNTHESIS
Zhou et al. [63] proposed an approach which can manipulate
the pose and attribute of generated person images accord-
ing to a specific text description. The structure is shown in
Fig. 22 and Fig. 23.

FIGURE 22. Text guided pose generator [63].

FIGURE 23. Pose and attribute transferred person image generator [63].

The objective function of text guided pose generator is
formulated as:

LStage−I = LG1 + λ1Lmse + λ2Lcls (28)

The objective function of the multi-task person image gen-
erator is defined as:

LStage−II = LG2 + λ1L1 + λ2LMS (29)

This method consists of text guided pose generation in the
first stage and visual appearance transferred image synthe-
sis in the second stage. The method can generate and edit
images according to text description by establishing a map-
ping between image space and language space which extracts
information from the text. The authors proposed a new image
processing method based on natural language descriptions

and a human pose inference network based on GAN. It uses
the Visual Question Answering (VQA) perceptual score to
assess the correctness of the change in attributes correspond-
ing to a particular body part. The method first learns to infer
a reasonable target human body posture according to the
description and then synthesizes the appearance transferred
character image based on the text and the target posture. It is
an effectivemethod that canmanipulate the visual appearance
by editing the generated person images based on natural
language descriptions.

2) PROGRESSIVE POSE ATTENTION TRANSFER
Zhu et al. [64] proposed a new pose transfer method based on
a generative adversarial network. Its architecture is shown in
Fig. 24.

FIGURE 24. Generator architecture of the proposed method in [64].

The loss function is denoted as:

Lfull = argmin
G

max
D
αLGAN + LcombL1 (30)

This method can generate person images by using Pose
Attentional Transfer Blocks (PATBs) to transfer certain
regions in the generator. It can generate more realistic person
images that are consistent with the input images in terms
of appearance and shape. Furthermore, it uses the attention
mechanism to guide the deformable transfer process of the
appearance and pose progressively. It can not only improve
computational efficiency but also reduce the model com-
plexity. The method uses an appearance discriminator and a
shape discriminator to determine whether the appearance and
pose generated by the generator are true and produces more
natural results than the previous method. The network is more
interpretable by its attention masks which make the progres-
sive pose-attentional transfer process visible. Moreover, it is
capable of generating realistic images in both qualitative and
quantitative measurements.

3) SEMANTIC PARSING TRANSFORMATION
Song et al. [65] proposed an unsupervised person image
generation approach. Its framework is shown in Fig. 25.

The loss function of the semantic generative network is
denoted as follows:

L totalS = LadvS + λ
ceLceS (31)
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FIGURE 25. The framework for unsupervised person image
generation [65].

The loss function of the appearance generative network is
denoted as follows:

L totalA = LadvA + λ
poseLposeA + λcontA LcontA

+ λstyLstyA + L
face
A (32)

The approach is divided into two subtasks which reduce
the complexity of learning a direct mapping between human
bodies with different poses. The semantic parsing transforma-
tion task is based on a semantic generative network that can
transform between semantic parsing maps and simplify the
non-rigid deformation learning. The appearance generation
task is based on an appearance generative network that can
synthesize semantic-aware textures. It is an unsupervised
pose-guided person image generationmethod which can keep
the clothing attributes and better body shapes. Moreover,
it can be used to transfer clothing texture or control image
manipulation. However, the problem is that the model would
fail if there is an error in the conditional semantic map.

4) COORDINATE-BASED TEXTURE INPAINTING
Grigorev et al. [66] proposed a pose-guided human image
generation approach based on deep learning. Its framework
is shown in Fig. 26 and Fig. 27.

FIGURE 26. The coordinate-based texture inpainting [66].

The main idea of the method is to complete the texture of
the human body by using a new inpainting method which
estimates the appropriate source location for each part of
the body surface. It establishes the correspondence between

FIGURE 27. The final resynthesis [66].

source and target view by warping the correspondence field
between input image and texture into the target image coordi-
nate frame according to the desired pose. Themethod uses the
estimated correspondence field to guide the deformable skip
connections in a fully-convolutional architecture which helps
to synthesize the output image. It is a new method based on
coordinate-based texture inpainting which can produce more
texture details. Moreover, it works by estimating the texture
of the human body based on a single photograph that can be
used for garment transfer or pose-guided face resynthesis.

5) OTHER METHODS
Tang et al. [67] proposed a keypoint-guided image generation
method called Cycle In Cycle Generative Adversarial Net-
work, which can generate photo-realistic person pose images.
Ma et al. [68] proposed a person image generation method
called Pose Guided Person Generation Network, and it can
synthesize high-quality person images with arbitrary poses
based on a person image and a pose. Ma et al. [69] proposed
a person image generation approach, which can not only
learn a disentangled representation of the image factors but
also generate realistic person images based on a two-stage
reconstruction pipeline.

Human image synthesis methods are usually based on a
person image and an arbitrary pose to manipulate the visual
appearance of a person image. It is possible to reconstruct
detail-rich textures for pose-guided human image generation.
However, sometimes the texture and the generated images are
blurred.

IV. IMAGE-TO-IMAGE TRANSLATION
Recently, image-to-image translation has made great
progress. The goal of image translation is to learn the map-
ping from the source image domain to the target image
domain, which changes the style or some other properties of
the source domain to the target domain while keeps the image
content unchanged.

A. IMAGE-TO-IMAGE TRANSLATION
Image-to-image translation using generative adversarial net-
works has drawn great attention in both supervised learning
and unsupervised learning research. Noise-to-image GANs
generate realistic images from random noise samples while
image-to-image GANs generate diverse images from images.
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Many GAN-variants have been proposed, which achieved
good results in image-to-image translation tasks.

1) CycleGAN
Zhu et al. [70] presented an unpaired image-to-image trans-
lation approach called CycleGAN. The model of CycleGAN
is shown in Fig. 28.

FIGURE 28. The model of CycleGAN [70].

The objective is:

G∗,F∗ = argmin
G,F

max
DX ,DY

L(G,F,DX ,DY )

= LGAN (G,DY ,X ,Y )

+LGAN (F,DX ,Y ,X )

+ λLcyc(G,F) (33)

CycleGAN is an innovation of method in the field of
unsupervised image translation research. Based on Cycle-
GAN, various unsupervised image translation studies have
emerged. It proposed the cycle consistency loss which can
learn the mapping without a training set of aligned image
pairs. The method achieves good results on many translation
tasks involve color and texture changes, such as collection
style transfer, object transfiguration, season transfer. How-
ever, it fails when it requires geometric changes.

2) UNIT
Liu et al. [71] proposed an unsupervised image-to-image
translation framework called UNsupervised Image-to-image.
Translation (UNIT) based on Coupled GANs [72]. The
framework of UNIT is shown in Fig. 29.

FIGURE 29. The framework of UNIT [71].

The objective function is defined as:

min
E1,E2,G1,G2

max
D1,D2

LVAE1 (E1,G1)+ LGAN1 (E2,G1,D1)

+LCC1 (E1,G1,E2,G2)

×LVAE2 (E2,G2)+ LGAN2 (E1,G2,D2)

+LCC2 (E2,G2,E1,G1) (34)

The method is based on generative adversarial networks
as well as variational autoencoders. It generates correspond-
ing images in two domains by adversarial training objective
interacts with a weight-sharing constraint to enforce a shared-
latent space. Besides, it relates the translated images with the
input images in the respective domains by using variational
autoencoders. UNIT is a method which can not only present
image translation results with high quality but also can be
used for various unsupervised image translation tasks, such
as street scene image translation, or face image translation.
However, there are two limitations to this framework. On the
one hand, as a result of the Gaussian latent space assumption,
the translation model is unimodal. On the other hand, the sad-
dle point searching problem may cause the training unstable.

3) MUNIT
Xun Huang et al. [73] proposed an unsupervised
image-to-image translation framework called Multimodal
Unsupervised Image-to-image Translation (MUNIT). The
architecture of MUNIT is shown in Fig. 30.

FIGURE 30. The method overview of DRIT [74].

The objective function is defined as:

min
E1,E2,G1,G2

max
D1,D2

L(E1,E2,G1,G2,D1,D2)

= Lx1GAN + L
x2
GAN + λx(L

x1
recon + L

x2
recon)

+ λc(Lc1recon + L
c2
recon)+ λs(L

s1
recon + L

s2
recon) (35)

MUNIT can generate diverse results from the source
domains which are multimodal conditional distribution.
It trains two auto-encoders, one encodes the content of the
image, and the other encodes the style, which enables the gen-
eration of multimodal images. Furthermore, it decomposes
the image representation into a content code that is domain-
invariant, and a style code to captures domain-specific
properties. The method recombines the content code with a
random style code sampled from the style space of the target
domain to translate the image to another domain. Moreover,
two domains that share the same content distribution with
different style distributions. It can control the style of transla-
tion results according to an example style image that achieves
high quality and diversity.

4) DRIT
Hsin-Ying Lee et al. [74] proposed an image-to-image trans-
lation approach termed DRIT. The method of DRIT is shown
in Fig. 31.
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FIGURE 31. The architecture of MUNIT [73].

The objective function of the network is:

min
G,Ec,Ea

max
D,Dc

λcontentadv Lcadv + λ
cc
1 L

cc
1 + λ

domain
adv Ldomainadv

+ λrecon1 Lrecon1 + λlatent1 L latent1 + λKLLKL (36)

DRIT is a method that is capable of generating realistic
and diverse results without aligned training pairs based on
disentangled representation. The generator for each domain
in DRIT consists of two encoders, one encodes the content
of the image and the other encodes the style of the image,
which makes a domain-invariant content space to capture
the shared information across domains as well as a domain-
specific attribute space. It can generate diverse results with
the encoded content features from an image and attribute
vectors from the attribute space. Furthermore, it facilitates
the factorization of the domain-invariant content space along
with domain-specific attribute space by using a content dis-
criminator and trains the model with paired images by using a
cross-cycle consistency loss according to disentangled repre-
sentations. Moreover, it can produce qualitative and quantita-
tive outputs on a wide range of tasks in the absence of paired
data. Meanwhile, the approach called DRIT ++ [75] seeks
regularization term to alleviate the mode collapse problem in
DRIT, especially in shape-variation translation.

5) TransGaGa
Wu et al. [76] proposed a geometry-aware disentangle-and-
translate framework which can be used for unsupervised
image-to-image translation called TransGaGa. The architec-
ture of TransGaGa is shown in Fig. 32.

The loss function of the method is:

Ltotal = LCVAE + Lprior + Lscon + L
s
cyc + L

g
cyc + L

pix
cyc + L

a
adv

+Lgadv + L
pix
adv (37)

This method can learn a mapping between two visual
domains as well as the translation across large geometry

FIGURE 32. The architecture of TransGaGa [76].

variations. It learns a translation which is built on appearance
and geometry space separately by disentangling the image
space into an appearance space and a geometry latent space
to decompose image-to-image translation into two separate
problems. Furthermore, it proposed a geometry prior loss and
a conditional VAE loss that can learn independent but com-
plementary representations. TransGaGa is capable of deal-
ing with complex objects image-to-image translation tasks
such as near-rigid or non-rigid objects translation. Besides,
it supports multimodal translation and achieves qualitative
and quantitative results.

6) RelGAN
Lin et al. [77] proposed a multi-domain image-to-image
translation method based on relative attributes called
RelGAN. The model of RelGAN is shown in Fig. 33.

FIGURE 33. The model of RelGAN [77].
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The loss function of the method is formulated as:

min
D
LD = −LReal + λ1LDMatch + λ2L

D
Interp (38)

min
G
LG = LReal + λ1LGMatch + λ2L

G
Interp + λ3LCycle

+ λ4LSelf + λ5LOrtho (39)

The method takes relative attributes as input to describe
the selected attributes that need to be changed. It is able to
produce images by changing specific properties of interest in
a continuous manner and keep the other attributes unchanged.
RelGAN helps to improve interpolation quality by training
on real-valued relative attributes instead of binary-valued
attributes with additional discriminators. It is can be used
for facial attribute transfer and interpolation. Furthermore,
it achieves quantitative and qualitative results in multi-
domain image-to-image translation tasks.

7) OTHER METHODS
Li et al. [78] proposed an Attribute Guided UIT (Unpaired
Image-to-Image Translation) approach termed AGUIT,
which can perform image translation tasks by adopting a
novel semi-supervised learning process and decomposing
the image representation into domain-invariant content code
and domain-specific style code. Chang et al. [79] pro-
posed an image-to-image translation approach called Sym-
parameterized Generative Network (SGN), and it focuses
on the loss area and infers translations of images in mixed
domains by learning the combined characteristics of each
domain. Tomei et al. [80] proposed a semantic-aware
approach that can reduce the gap between visual features
of artistic and realistic data by translating artworks to
photo-realistic visualizations. Mo et al. [81] proposed an
unsupervised image-to-image translation approach called
instance-aware GAN (InstaGAN), which can not only incor-
porate the instance information but also improve the multi-
instance transfiguration.

The style transfer method widely adopts an encoder-
decoder-discriminator (EDD) architecture and can produce
diverse outputs. However, it may generate images with arti-
facts sometimes. Besides, the training may be unstable and
there may have mode collapse problems.

V. IMAGE EDITING
A. IMAGE EDITING
The image editing is an interesting but challenging task in
computer vision. It mainly manipulates images through color
and geometric interactions to complete tasks such as image
deformation and blending. Recently, image editing based on
deep learning has received more and more attention, espe-
cially with the development of GANs. Image editing using
GANs has made great progress and becomes a highly recog-
nized subject in computer vision. A series of image editing
methods have appeared.

1) SC-FEGAN
Jo and Park [82] proposed a face editing system called
SC-FEGAN based on Generative Adversarial Network, and
it can synthesize images with high quality by using intu-
itive user inputs. The architecture of SC-FEGAN is shown
in Fig. 34.

FIGURE 34. The network architecture of SC-FEGAN [82].

The loss functions are shown below:

LG_SN = −IE[D(Icomp)] (40)

LG = Lper−pixel + αLpercept + βLG_SN
+ γ (Lstyle(Igen)+ Lstyle(Icomp))+ νLtv
+ εIE[D(Igt )2] (41)

LD = IE[1− D(Igt )]+ IE[1+ D(Icomp)]+ θLGP
(42)

SC-FEGAN is a face editing method that uses a free-form
mask, sketch and color as an input. The method can restore
the area of any shape and reconstruct detail-rich textures of
large regions. It generates images guided with sketches and
color by using an end-to-end trainable convolutional network
and free-form user input with color and shape. In addition,
the method is able to generate realistic results by training
an additional style loss. It can generate high quality and
realistic results with the proposed network architecture and
loss functions.

2) FE-GAN
Dong et al. [83] proposed an image editing approach called
Fashion Editing Generative Adversarial Network (FE-GAN)
by using a multi-scale attention normalization. The architec-
ture of FE-GAN is shown in Fig. 35.

The objective function of the free-form parsing network is
formulated as:

Lfree−form−parser = γ1Lparsing + γ2Lfeat + γ3Ladv (43)

The objective function of the parsing-aware inpainting
network is formulated as:

Linpainter = λ1Lmask + λ2Lforeground + λ3Lface + λ4LfaceTV
+ λ5Lperceptual + λ6Lstyle + λ7Ladv (44)
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FIGURE 35. The network architecture of FE-GAN [83].

FE-GAN uses sketches and color strokes to manipulate
and edit fashion images. It is able to leverage the semantic
structural information to edit fashion images by free-forms
sketches and sparse color strokes. The method controls the
human parsing generation with the sketch and color by using
a free-form parsing network. It renders detailed textures with
semantic guidance from the human parsing map by using a
parsing-aware inpainting network. Furthermore, it improves
the quality of the generated images by using a new attention
normalization layer in the decoder of the inpainting network.
The method can generate high-quality images with convinc-
ing details by using a foreground-based partial convolutional
encoder.

3) MASK-GUIDED PORTRAIT EDITING
Gu et al. [84] proposed a portrait editing framework based
on mask-guided conditional GANs, and it uses the face
masks to guide the image generation. Its framework is shown
in Fig. 36.

FIGURE 36. The framework for mask-guided portrait editing in [84].

The loss function is:

LG = λlocalLlocal + λglobalLglobal + λGDLGD
+ λGPLGP (45)

The method is guided by face masks which can generate
diverse images with high-quality. It controls the synthesis and
editing of facial images by learning feature embeddings for
each face component separately. It also helps to improve the
performance of image translation and local face editing. This
method can edit face components in the generated images
with the help of changeable input facial masks and the source
image. Moreover, it leverages the input masks to synthesize
facial data which can be used for the face paring model. The
method can produce realistic outputs and realize face editing.

4) FaceShapeGene
Xu et al. [85] proposed a face image editing approach termed
FaceShapeGene, and it can compute a disentangled shape
representation for face images. The pipeline of FaceShape-
Gene is shown in Fig. 37.

FIGURE 37. The pipeline of FaceShapeGene [85].

The objective function is:

Ltotal = Lcycle,I + λCLLcyc,L + λGILGAN ,I
+ λGLLGAN ,L + λIDLID (46)

The FaceShapeGene realizes face editing tasks by encod-
ing the shape information of each semantic facial part
into a 1D latent vector separately. The authors proposed a
shape-remix network to recombine the part-wise latent vec-
tors from different individuals which produces remixed face
shape in the form of a label map. They also use a conditional
label-to-face transformer to perform part-wise face editing
while preserving the identity of the subject. Furthermore,
it trains the system in an unsupervised manner by using a
cyclic training strategy. Themethod can disentangle the shape
features of different semantic parts correctly and achieve
partial editing with realistic results.

5) OTHER METHODS
Shen et al. [86] proposed a semantic face editing
approach termed InterFaceGAN, which can synthesize
high-fidelity image by semantic face editing in latent space.
Portenier et al. [87] proposed a face image editing approach
called FaceShop, and it can produce high quality and seman-
tically consistent results.

In recent years, image editing using GANs has made great
progress and achieve good results. Mask-guided image edit-
ing method is widely used and it can synthesize realistic
with high quality. However, most of the methods proposed
at present can only be used for the task of face portrait
editing, and there will be artifacts and blurred results when
performing whole-body editing.
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VI. CARTOON GENERATION
A. CARTOON GENERATION
The cartoon is popular with young people because of its
interesting story. GANs have also attracted the interest of
researchers in the field of cartoon generation, and they pro-
posed a series of fresh and interesting cartoon generation
methods.

1) CartoonGAN
Chen et al. [88] proposed a photo cartoonization solution
called CartoonGAN, and it can transform a photo of a
real-world scene into a cartoon style image. The architecture
of CartoonGAN is shown in Fig. 38.

FIGURE 38. The architecture of the CartoonGAN [88].

The objective loss function is:

(G∗,D∗) = argmin
G

max
D

L(G,D)

= Ladv(G,D)+ ωLcon(G,D) (47)

CartoonGAN is a cartoon generation method based on a
generative adversarial network, which is easy to use by train-
ing with unpaired photos and cartoon images. The method
is capable of generating high-quality cartoon images with
clear edges and smooth color shading from real-world pho-
tos, following the style of specific artists. It copes with the
substantial style variation between photos and cartoons by
proposing a semantic content loss, which is formulated as a
sparse regularization of high-level feature maps in the VGG
network. CartoonGAN is able to preserve clear edges by
proposing an edge-promoting adversarial loss. In addition,
it is capable of improving the convergence of the network to
the target manifold by introducing an initialization phase. The
method can produce cartoon images with high-quality from
real-world photos.

2) PI-REC
You et al. [89] proposed an image reconstruction approach
called PI-REC,which can generate images from binary sparse
edge and flat color domain. The architecture of PI-REC is
shown in Fig. 39.

The loss function is calculated as below:

LG1 = αLper−pixel+βLGAN−G+γLfeature + δLstyle (48)

LD1 = LGAN−D (49)

FIGURE 39. The network architecture of PI-REC [89].

PI-REC is able to reconstruct images by inputting binary
sparse edge and flat color domain, which can not only control
the content and style of generated images freely and accu-
rately but also produce refined reconstruction results with
high-quality. The method consists of three phases: Imitation
Phase to initialize the networks, Generating Phase aims at
reconstructing preliminary images, and Refinement Phase
to fine-tune preliminary images and produce outputs with
details. Besides, it can be used for hand-drawn draft transla-
tion tasks by utilizing parameter confusion operation, which
obtains remarkable results. Furthermore, it is able to create
anime characters by feeding the well-trained model with
edge and color domain extracted from realistic photos, which
improves the controllability and interpretability and generates
abundant high-frequency details.

3) INTERNAL REPRESENTATION COLLAGING
Suzuki et al. [90] proposed an image synthesis strategy based
on CNN, and it can manipulate the feature-space represen-
tation of the image in a trained GAN model to change the
semantic information of an image over an arbitrary region.
The algorithm of applying the feature-space collaging is
shown in Fig. 40.

FIGURE 40. The algorithm of applying the feature-space collaging [90].

The method can be used to edit artificial images or real
images by using spatial conditional batch normalization
(sCBN), which is a type of conditional batch normalization
with user-specifiable spatial weight maps. It can modify
the intermediate features directly and by using feature-
blending in any GAN with conditional normalization layers.
Besides, it is able to be used to edit anime face which can syn-
thesize realistic results. However, the problem is that it may
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perform poorly in the transformation of a specific individual,
and some information is bound to be lost in the process of
projecting the target images to the restricted space of images.

4) U-GAT-IT
Kim et al. [91] proposed an image-to-image translation
approach termed U-GAT-IT, and it can generate realistic
anime images by using adaptive layer-instance normalization.
The architecture of U-GAT-IT is shown in Fig. 41.

FIGURE 41. The architecture of U-GAT-IT [91].

The objective function is:

min
Gs→t ,Gt→s,ηs,ηt

max
Ds,Dt ,ηDs,ηDt

λ1Lgan + λ2Lcycle + λ3Lidentity

+ λ4Lcam (50)

The U-GAT-IT is an unsupervised image-to-image trans-
lation approach, which can translate images with holistic
or large shape changes by handling the geometric changes
between domains. It incorporates a learnable normalization
function and an attention module to distinguish between the
source and target domains. The attention module is based
on the attention map and obtained by the auxiliary classifier
to guide the model to focus on more important regions.
Furthermore, the attention-guided model is able to control
the amount of change in shape and texture flexibly with the
proposed Adaptive Layer-Instance Normalization (AdaLIN).
Moreover, it is a method that can produce anime face with
more visually pleasing results based on the attention module
and AdaLIN.

5) LANDMARK ASSISTED CycleGAN
Wu et al. [92] proposed a cartoon face generation approach
based on CycleGAN, and it trains with unpaired data between
real faces and cartoon ones, the architecture is shown
in Fig. 42.

The landmark consistency loss is:

Lc(G(X ,L)→Y ) =
∥∥RY (G(X ,L)→Y (x, `))− `

∥∥
2 (51)

The method is able to generate a cartoon face with high
quality which captures the essential facial features of a person
by proposing a landmark consistency loss and training a local
discriminator in CycleGAN. It can produce cartoon faces
with high-quality based on the conditional generator and
discriminator, which enforces structural consistency in land-
marks. Besides, it is a method guided by facial landmarks that
can constrain the facial structure between two domains and

FIGURE 42. The architecture of the cartoon-face landmark-assisted
CycleGAN [92].

can generate impressive high-quality cartoon faces according
to the input human faces.

6) OTHER METHODS
Taigman et al. [93] proposed an image generation approach
called Domain Transfer Network (DTN), which can transfer
from face photos to emoji. Jin et al. [94] proposed a method,
which can generate facial images of anime characters with
a promising result. Li [95] proposed an image translation
method called TwinGAN, and it achieves unsupervised image
translation from a human to anime characters. Ma et al. [96]
proposed an instance-level image translation approach called
DA-GAN, which can synthesize animation face from a
human face. Hamada et al. [97] proposed an anime generation
method called Progressive Structure-conditional Generative
Adversarial Networks (PSGAN), and it is able to generate
character images with full-body and high-resolution based
on structural information. Gokaslan et al. [98] proposed
an image-to-image translation approach termed the GAN-
imorph, which can translate human faces to anime faces.
Cao et al. [99] proposed a photo-to-caricature translation
approach, and it is able to transfer from face photos to carica-
tures. Xiang and Li [100] proposed a Generative Adversarial
Disentanglement Network, which can generate high-fidelity
anime portraits.

Cartoon generation based on GANs mostly uses the
normalization method. It can produce high-quality cartoon
images from real-world photos. However, it sometimes gen-
erates images with artifacts. Besides, it may not perform well
in the image translation of a particular individual.

VII. DISCUSSION
So far, we have discussed some of the applications of GANs
in the field of image synthesis. Table 1 gives a summary and
comparison between different methods based on GANs in
terms of pros and cons.

A. OPEN QUESTIONS
GANs can not only learn a highly nonlinear mapping from
latent space to data space but also can utilize a large amount
of unlabeled image data for deep representation learning.
Compared with other frameworks, GANs tend to produce
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TABLE 1. (Continued.) A brief summary of different GANs. TABLE 1. (Continued.) A brief summary of different GANs.

better results with realistic and clear images, which have
attracted extensive attention. Due to the great potential
and wide applicability of GANs, the researchers are con-
stantly attracted to the research of GANs. However, there
are still some problems that have not been completely
solved in training and evaluating GANs, such as mode
collapse, unstable training problem, and vanishing gradi-
ent problem. In addition, GANs are also faced with the
problem of non-convergence and sensitivity to hyperparam-
eters. At present, these problems remain to be solved, which
need continuous research and efforts from the researchers,
and many improved GAN-variants have emerged, includ-
ing Least Square GAN (LSGAN) [101], Wasserstein GAN
(WGAN) [102], WGAN-GP [103], and Spectral Normal-
ized GANs (SNGAN) [104]. These models not only greatly
improved the quality and the stability of GANs, but also
make it easy to converge and aim to solve the problem of
unstable training. However, the problem of collapse during
training and the mode collapse have not been completely
solved due to the high dimensional characteristics of image
data. By using maximum likelihood pre-training, with the
help of adversarial fine-tuning is now an effective solution
to deal with mode collapse. Other techniques that can be
used to stabilize and improve GANs training performance
like large batch sizes, dense rewards and discriminator reg-
ularization [105]. Recently, Liu et al. [106] proposed an
approach called WGAN-QC, which can stabilize and speed
up the training process based on the quadratic transport cost.
Petroski Such et al. [107] proposed an approach called Gen-
erative Teaching Networks (GTNs), and it can stabilize and
prevent mode collapse of GAN training.

On the other hand, how to evaluate the quality of generated
images still lacks effective means. Generative Adversarial
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Networks are the most popular image generation methods
today, but the way to evaluate and compare images produced
by GANs is still an extremely challenging task. Many earlier
studies on image synthesis based on GANs only used subjec-
tive visual assessments. Although it is very hard to quantify
the quality of generated images, some studies of evaluating
the GANs have begun to appear. For example, the Inception
score (IS) [108] and Fréchet Inception Distance (FID) [109]
are the most widely adopted evaluation metrics for quantita-
tively evaluating generated images. Besides, Bau et al. [110]
proposed an approach to visualize and understand GANs at
the scene-level. Zhou et al. [111] proposed a method called
HUMAN EYE PERCEPTUAL EVALUATION (HYPE) to
establish a gold standard human benchmark for generative
realism. Grnarova et al. [112] propose an evaluation measure
tomonitor the training progress, which is able to detect failure
modes, like unstable mode collapse and divergence. Other
evaluation methods are studied as [113], [ 114].

With the successive development of methods for training
and evaluation of GANs and the great progress that has been
done on the GANs, the generative adversarial networks will
be more and more widely used in various applications.

B. FUTURE OPPORTUNITIES
With the impetus of GANs, the research in the field of
computer vision has been greatly developed in recent years,
and various applications have emerged. Most of these appli-
cations involve image processing. Although there have been
some studies involving video processing, such as video
generation [115], video colorization [116], [117], video
inpainting [118], motion transfer [119], and facial animation
synthesis [120]–[123], the research on video using GANs is
limited. In addition, although GANs have been applied to the
generation and synthesis of 3D models, such as 3D coloriza-
tion [124], 3D face reconstruction [125], [126], 3D character
animation [127], and 3D textured object generation [128], the
results are far from perfect. At present, GANs are still based
on large amounts of training data. It is an inevitable trend to
reduce the use of data in the future. Although there is already
some weakly supervised learning research [129], [130], these
are still very limited, and the results are far from optimal.

Besides, GANs have great potential in data augmentation,
due to its ability to synthesize high-quality images, especially
in areas with data paucity, such as medical image analy-
sis [131]. Frid-Adar et al. [132] presented a GAN-based
method to generate synthetic medical images for data aug-
mentation, which can improve the performance of medical
problems with limited data. Han et al. [133] proposed a
two-step GAN-based data augmentation method to minimize
the number of annotated images required for the medical
imaging tasks. Sandfort et al. [134] used a GAN-based
method for data augmentation to improve the performance
of tasks in medical imaging. Han et al. [135] proposed a
data augmentation approach called Conditional Progressive
Growing of GANs (CPGGANs) to minimize expert physi-
cians’ annotation in medical applications. Schlegl et al. [136]

presented an approach called fast AnoGAN (f-AnoGAN),
which can identify anomalous images on a variety of biomed-
ical data. Han et al. [137] proposed a data augmentation
method called 3D Multi-Conditional GAN (MCGAN), and
it can help to overcome medical data paucity.

Other directions that are equally noteworthy, such as in the
modular [138] and game areas [139], have rarely been stud-
ied. Recently, Lin et al. [140] proposed a novel method called
Conditional Coordinate GAN (COCO-GAN), which uses the
spatial coordinates as the condition to generate images by
parts, and it achieves a high generation quality. Particularly,
this approach can generate images larger than any training
sample and can be used for large field-of-view generation.
We conclude that there are opportunities for future research
and application on GANs, especially in these areas.

VIII. CONCLUSION
In this paper, we reviewed some basics of GANs and
described some applications in the field of image synthe-
sis based on GANs. The pros and cons of these GANs
applications are also provided. Besides, we summarized the
methods used in GANs applications which improved the
performance of generated images. Although the research on
GANs is becoming more and more mature, GANs are still
faced with some challenges, such as unstable training and
hard to evaluate, for which we introduced some methods for
training and evaluating of GANs. We think there are some
likely future research directions, such as video generation,
facial animation synthesis, and 3D face reconstruction. The
performance of GANs will continue to improve as various
GAN-variants are proposed and GANs applications still need
exploring. We expect more interesting applications based on
GANs to appear in the future.
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