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ABSTRACT Innovative technologies and naturalistic driving data sources provide a great potential to
develop reliable autonomous driving systems. Understanding the behaviors of surrounding vehicles is
essential for improving safety and mobility of autonomous vehicles. Onboard sensors like Radar, Lidar and
Camera are able to track surrounding vehicles motion and to get different features like position, velocity and
yaw. This paper proposes a hybrid approach to integrate maneuver classification using neural networks and
trajectory prediction using Long Short-termMemory (LSTM) networks to get the future positions of adjacent
vehicles. In this study we use the Next Generation Simulation (NGSIM) public dataset that provides a real
driving data. The proposed approach is validated experimentally using VEDECOM demonstrator data. The
results demonstrate that the proposed approach is able to predict driver intention to change lanes on average
2.2 seconds in advance. The Root Mean Square (RMS) errors of lateral and longitudinal positions are 0.30 m
and 3.1 m respectively. The results demonstrate a high performance compared to various existing methods.

INDEX TERMS Artificial intelligence, autonomous vehicle, intention prediction, LSTM, maneuver classi-
fication, neural networks, trajectory prediction.

I. INTRODUCTION
The technologies used in intelligent transport systems, espe-
cially in autonomous vehicles, are today at the heart of the
research and innovation activities of many research teams.
Perception, sensor data fusion, motion planning and control
are the main technical challenges to ensure secure and safe
autonomous driving. Motion planning in dynamic environ-
ments is a very active research domain found in many appli-
cations. In the context of autonomous driving, it refers to
the process of deciding on a sequence of actions to reach
a specified goal. Motion planning uses sensors data fusion
such as the location of obstacles, road signs and marking to
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bring the vehicle from start location to a goal location while
avoiding obstacles and respecting road structure.

An autonomous vehicle deployed in complex traffic needs
to have the ability to predict the future motion of surround-
ing vehicles (Fig. 1). Sensors reaction and data fusion time
constitute the processing delay in the autonomous system.
In critical cases, processing delay may not leave enough
time to avoid collision. However, motion planning needs
to know in advance how the traffic participants that share
the same environment will move. In order to anticipate the
motion of vehicles and increase the level of safety, many solu-
tions are proposed to predict the intention of target vehicles.
To address this issue, many studies have attempted to incor-
porate different models to identify vehicle future motion.
These models are classified into three main classes [1]–[4]:
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FIGURE 1. Representation of the driving scene: Maneuver classification
and trajectory prediction from an autonomous vehicle.

physics-based motion models, maneuver-based motion mod-
els, and interaction-aware motion models.

With the development of Artificial Intelligence (AI), intel-
ligent driving technology has made a great progress. Deep
Learning and AI are the main technologies behind many
breakthroughs in autonomous driving. Therefore, intention
prediction begin to migrate from classic models to AI based
models.

In the state of art, two principle approaches based on AI
are used to anticipate the motion of the vehicle: maneuver
classification and trajectory prediction.

A. MANEUVER CLASSIFICATION
Maneuver classification or situation recognition are two
terms used to address the problem of understanding the
driver’s behavior. In the intelligent vehicle community, many
works on this topic have been devoted in recent years. Regard-
less, a full understanding of traffic scenes remains challeng-
ing. Lane Change (LC) is a maneuver that allows drivers to
enter a lane that suits their requirements and comfort.

LC is a succession of critical actions that needs constant
attention and correct assessment, which makes it one of the
most common causes of accidents on highway [2]. The
turning lights cannot be used as an indicator of lane change
because 48.35% of drivers fail to comply with appropriate
turn signal usage when executing a lane changemaneuver [5].
If safety support system can anticipate actually lane change
before other vehicles cross the lane marking, accidents rates
can be significantly decreased. Lane change prediction prob-
lems are mainly treated as classification problems [3], [4],
[6]–[9]. This maneuver can be classified into three main
classes: Left Lane Change (LLC), Right Lane Change (RLC)
and Lane Keeping (LK). For the detection of lane change
performed by other drivers, perception sensors data should
be used as features. The properly selected features determine
the detection performance [8]–[11].

This problem is addressed in the literature from differ-
ent points of view, most of them are based on probabilistic
methods. Bayesian Networks Approach proposed to recog-
nize driving maneuvers on highways and the experiments are
performed on real world vision data [6]. The authors of [3]
used Hidden Markov Models (HMM) for situation modeling

and recognition. A maneuver is defined as a distribution over
sequences of states, the HMM try to identify each one of these
states. The approach was evaluated on real data for highway
driving in many situations, it was able to recognize and
track multiple situation instances. However, we note that the
most recent works use machine learning based approaches:
Support Vector Machine (SVM) [4], [7], [8] and Random
Forests [9]. This type of models relied on vehicle dynamic
data as input to detect driver’s intention of lane changing and
finally a multiclass probabilistic output would be given as
results.

Artificial Neural Networks (ANN) have also been
considered to identify the driver’s intention for lane
change [10]–[12]. ANN try to learn the pattern of human
reasoning, learning and cognitive capabilities of driving
using the factors influencing the driver’ lane-changing deci-
sions. In recent years, and based on their success in other
domains, more advanced methods utilizing Recurrent Neural
Networks (RNN) [14], deep learning [15]–[17], and rein-
forcement learning have arisen as well [18]. Convolutional
Neural Networks (CNN) are also used for LC detection
using image prediction [19], [20]. Learning based approaches
require high-quality motion datasets containing interactive
real-world driving scenarios for training and testing. A short
overview of used datasets will be given in the following
sections.

B. TRAJECTORY PREDICTION
Vehicle trajectory prediction represents a significant body
of research in autonomous vehicles field. Kinematic and
dynamic motion models are well studied for motion pre-
dictions [1]. The common approach consists of prediction
vehicle trajectories by propagating its state over time. It uses
assumptions of underlying physical system and by assuming
that one or more state variables like speed acceleration and
heading are constants for a period of time [1], [21], or by
using techniques such as Kalman Filter (KF) [22]. However,
these approaches are limited to simple patterns of vehicle
motion. Moreover, while this approach performs well for
short-term predictions, its performance degrades for longer
prediction horizons [1].

Many other techniques have already been explored to
overcome these limitations, such as maneuver-based mod-
els, to predict the vehicle trajectory at a higher level. This
model can be combined with prediction techniques to esti-
mate the next position of the vehicle. An LSTM model that
outputs the multi-modal distribution over future motion is
portrayed in [23]. This model generates future trajectories
of surrounding vehicles by learning a model that assigns
probabilities to six maneuver classes. A model based on
driving behavior estimation and classification using Hidden
MarkovModels is exhibited in [24]. The trajectory prediction
method generates different statistical trajectories based on the
classification results. Dynamic BayesianNetwork based filter
is proposed in [25] to simultaneously estimate the current
position, the type of the situation as well as the anticipated

VOLUME 8, 2020 56993



A. Benterki et al.: Artificial Intelligence for Vehicle Behavior Anticipation

FIGURE 2. System overview: Integration of Maneuver classification and trajectory prediction based
approach.

trajectory of traffic participants. Some methods integrate
motion models combining to ensure more accuracy in both
long-term, and short-term prediction. For example, physics-
and maneuver-based models were combined [26]. The prob-
ability of trajectory prediction of each model was interacted,
mixed, combined, and updated to predict the long-term vehi-
cle trajectory using an interactive multiple model trajectory
prediction.

In recent works, researchers focused on machine-learned
prediction models. One line of research follows the
recent success of recurrent neural networks, namely: Long
Short-Term Memory (LSTM) [27]. LSTM networks have
successfully been proven to perform well with long sequence
applications [28]. The memory cells enable the networks to
improve prediction feasibility by combining its memories
and the inputs. In the main time, the forget gate defines
the information from the old state that can remain in the
network. LSTM-based approaches are able to predict vehicle
position in horizons up to two seconds. In [29], authors
proposed an LSTM-based approach that predicts the loca-
tion of vehicles in an occupancy grid at intervals of 0.5 s,
1 s and 2 s in the future. In [30], an LSTM encoder-decoder
framework is applied to predict future trajectory sequence
of surrounding vehicles in real time. They proposed a Deep
Neural Networks (DNN) architecture based on LSTM to
obtain the lateral acceleration and longitudinal velocity 10 s
in the future. Prediction accuracy is in the order of 70 cm for
the lateral position and lower than 3m.s−1 for the longitudinal
velocity. This approach did not performwell in LC situations.
In addition, a prediction horizon of 10 s is not always accurate
because human behavior is not predictable for more than 5 s,
especially in a highway environment.

The contribution of this paper could be summarized as
follows:
• Learn a hybrid model of vehicle trajectory prediction
that is based on ANN maneuver classification and
LSTM trajectory prediction.

• It was a bright idea to evaluate NGSIM trained model
with on-board sensors data. This could provide a valid

reference while selecting proper dataset for trajectory
prediction.

The remainder of this paper is divided into the following
sections. A system overview is introduced in Section II.
Section III describes the driving behavior representation and
the features selection. Section IV details the specific imple-
mentation of the proposed approaches and presents the exper-
imental results to prove the effectiveness of the proposed
approach. Finally, Section V concludes the paper with an
outlook and a discussion of future work directions.

II. SYSTEM OVERVIEW
This work aims at developing a framework for trajectory
prediction based on Artificial Neural Network (ANN) and
deep LSTMRecurrent Neural Networks from an autonomous
vehicle (Fig. 2). We propose a new hybrid model that com-
bines maneuver-based approach and trajectory prediction.
We focus on LC intention prediction for the case of highway
traffic. The target vehicle is considered as an independent
agent, so that the interaction with other vehicles is not taken
into account. Lane change event occurs when the vehicle tra-
jectory segment and the lane marking intersect. Through our
previous work [33], the results demonstrate that the driver’s
intention for lane change can be detected more accurately
by using ANN-based models. ANN uses driving sequences
as input to classify maneuvers. We define the classifica-
tion task as the recognition of three maneuver classes: left
lane change, right lane change and lane keeping. LSTM
trajectory prediction module takes the output of classifica-
tion with a sequence of past locations of the target vehicle
to giving the future locations of this vehicle at that time
instant.

The system is subdivided into two main parts: maneuver
classification and trajectory prediction, as shown in Fig. 2.
In the maneuver classification part, the current driving
maneuver of the target vehicle is estimated via Artificial
Neural Networks. For this purpose, an ANN is fed with
measured vehicle features, which are supposed to be available
from perception system that uses on-board vehicle sensors
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data. The prediction part takes classification results with the
history locations to predict the new position of the vehicle.
Therefore, if we knew the accurate maneuver performed by
the driver, the prediction model would generate the trajectory
that overlays with the performed maneuver.

A. ARTIFICIAL NEURAL NETWORK
Artificial Neural Network (ANN) is a system inspired by
the functioning of biological neurons configured to perform
specific tasks such as: pattern recognition, signal process-
ing, learning by example, memorization and generalization.
An ANN is organized in layers (Fig. 3), each of these lay-
ers comporting several neurons, each of these neurons, that
represents an autonomous processing unit, is connected to
the totality or certain neurons of the preceding layer. It is
a supervised learning algorithm that learns a function by
training on a dataset.

FIGURE 3. Artificial Neural Network.

Given a set of features and a target, an ANN is able to
learn a non-linear approximator for either classification or
regression. It is a complicated, non-linear, dynamic system
in which the neurons are connected in some topological
structure. The multilayer feed forward network (MLF) is the
most commonly used network. The ANN approach performs
well in many pattern-classification applications [34], [35].
The number of processing elements in the input layer
corresponds to the number of features obtained in the
maneuver dataset. The output nodes represent the maneuver
classes.

B. LONG SHORT-TERM MEMORY
Long Short-Term Memory networks (LSTM) are an exten-
sion for recurrent neural networks, which makes it easier to
remember past data in memory (Fig. 4). Therefore, it is well
suited for learning important experiences that have very long
delays between the two sequences. The units of an LSTM
are used as building units for the layers of an RNN, which
is then often called an LSTM network. LSTMs allow RNNs
to remember their inputs over a long period of time. This is

FIGURE 4. Long Short-term memory cell.

FIGURE 5. Input data smoothing using Savitzky-Golay filter in red filtred
signal, in black original signal.

because LSTMs hold their information in a memory, which
is very similar to a computer’s memory because the LSTM
can read, write and delete information from its memory [27].
The equations for the forward pass of an LSTM unit with a
forget gate are presented below:

it = σ (xtU i
+ ht−1W i

+ bi) (1)

ft = σ (xtU f
+ ht−1W f

+ bf ) (2)

ot = σ (xtUo
+ ht−1W o

+ bo) (3)

qt = tanh (xtUq
+ ht−1W q

+ bq) (4)

pt = ft ∗ pt−1 + it ∗ qt (5)

ht = ot ∗ tanh (pt ) (6)

xt ∈ Rd represents the input x at position t.
it ∈ Rh input gate’s activation vector.
ft ∈ Rh forget gate’s activation vector.
ot ∈ Rh output gate’s activation vector.
ht ∈ Rh is the hidden state at t.
U ∈ Rd×h andW ∈ Rh×h are parameters.
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FIGURE 6. Boxplot representation of Yaw (a), Yaw angle (b), Lateral velocity (c) and Lateral acceleration (d) for the three maneuvers.

III. FEATURES SELECTION AND DRIVING
BEHAVIOR REPRESENTATION
A. DATASET
All of the aforementioned research areas require interactive
vehicle driving data from real-world scenarios, which is the
most fundamental and indispensable asset.

Additionally in this work, the public dataset Next Gener-
ation Simulation (NGSIM) is used for training and testing.
NGSIM dataset is one of the most popular dataset used in
vehicle motion comprehension and prediction studies [32].
NGSIM is a program funded by the U.S Federal Highway
Administration. It contains detailed vehicle trajectory infor-
mation. Data is collected from 8 synchronized digital cam-
eras mounted on top of buildings adjacent to US-101 and
I-80 highways, including 600 meters of study area, with a
total of 45minutes of data are available in the full dataset cap-
tured at 10Hz.Moreover, NGSIM iswidely used for research,
development, and validation of behavioral algorithms [23],
[24], [31]. NGSIM contains the information related to each
vehicle. For every sample, we have vehicle unique identi-
fier, longitudinal and lateral positions, velocities and accel-
erations, as well as vehicle type, lane ID, and time/space
headways. In our study, we have used some available features.
In parallel, we have calculated other features like vehicle yaw
related to the road, lateral velocity and lateral acceleration.

B. LANE CHANGE REPRESENTATION
Our work is set to predict three types of maneuvers: Lane
Change to the Right (LCR), Lane Change to the Left (LCL)
and Lane Keeping (LK). Lane changes were extracted and
labeled automatically following several criteria. ‘‘Lane ID’’

FIGURE 7. Architecture of trajectory prediction network (Training).

feature is used to extract all available lane changes in NGSIM
dataset. The increasing of this feature can refer to a left
lane change. Contrariwise, the decreasing refers to right
lane change. Therefore, we can extract lane changes auto-
matically and we can also label the direction of changes
(right, left).

For each event we take 50 time-steps (5 s) before, and
50 time-steps (5 s) after lane crossing. So, if the instant of
intersection between trajectory and lanemaking is considered
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FIGURE 8. Trajectory prediction of a vehicle with two right lane changes: (a) and (b) represent predicted and real
longitudinal and lateral trajectory respectively. (c) represents classification results.

as a reference time t0, the interval [t0−5 s, t0+5 s] is
the lane change trajectory segment. Based on the chosen
criteria, 380 lane changes to the right, 420 lane changes
to the left and more than 1000 lane keeping are extracted
from NGSIM. In order to create a homogeneous dataset,
we take the same number of trajectories for each class.
So we take 300 trajectories of each maneuver for train-
ing and 80 trajectories for testing. Many variables must be
involved in the classification. In this study, a set of 4 features
are extracted from the NGSIM data. The extracted features
are:
• Yaw angle w.r.t the road: yaw is the vehicle orientation
heading angle related to the road. Changes in yaw can
be a very important sign to detect a lane change.

• Yaw rate: yaw rate is the first derivative of the yaw.
This feature used to flow the rate of changes in vehicle
orientation w.r.t the road.

• Lateral velocity and acceleration: lateral dynamic is
a very significant feature that gives a lot of informa-
tion before the lane change event happens. Therefore,
we have used local coordinates related to the road to
calculate lateral acceleration and velocity.

NGSIM data have some disturbances due to measurement
noise and estimation error, which may cause problems in
the training step. All input data are filtered using first order
Savitzky-Golay filter [37] to make them smoother (Fig. 5),
and to accelerate the convergence of the loss function dur-
ing training phase. It should be noted that the data were

normalized between (−2) and (+2) to be used as an input
for the model. After filtering and normalizing, the data are
organized into time-series of different sizes. To develop and
evaluate the model, the dataset was divided into training and
testing datasets.

To investigate the influence of different vehicle features
on lane change over time, we propose a graphical boxplot
representations of all extracted features (Fig. 6). Each boxplot
describes 180 values of one feature in one time-step. Fig. 6
illustrates the four chosen features (lateral velocity, lateral
acceleration, yaw angle and yaw rate). Each boxplot repre-
sentation displays:
• Three types of maneuver (LCL, LCR, LK).
• 300 subjects for each maneuver.
• 100 time-steps (10s) starting from the 50th time-step
before lane crossing and finishing at the 50th time step
after lane crossing.

From boxplot representations, we choose the most relevant
features that represent an important difference between the
three classes. Lane changes are detected using features obser-
vation. Before LC (between 5s and 4s before lane crossing t0),
yaw (boxplot (a)), yaw rate (boxplot (b)), lateral velocity
(boxplot (c)) and lateral acceleration (boxplot (d)) of the three
maneuvers have roughly the same shape. From the moment
-4s (4s before lane crossing), the difference between the three
representations becomes significant, which clearly shows that
lane changes start from 4s before the lane marking crossing.
This refute the assumption cite in [36], that lane change is
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FIGURE 9. Trajectory prediction of a vehicle with three left lane changes: (a) and (b) represent predicted and real
longitudinal and lateral trajectory respectively. (c) represents classification results.

labeled by a fixed period of 2s before the crossing of the lane
change.

IV. MATERIALS AND METHODS
A. EXPERIMENTAL SETUP
In this part, we present the architectures of the ANN and
LSTM models used in this paper. As previously mentioned,
ANN is used to classify maneuvers and LSTM is used to
predict the future position. The goal is to predict the longi-
tudinal and the lateral coordinates of the vehicle trajectory
using classification results and past locations sequence. In the
literature, plenty of learning methods have been proposed to
predict vehicle trajectory [27]–[30].

After defining the general structure of the models,
the architecture of the networks will be presented. The pro-
posed maneuver classification model is based on ANN. It is
consisted of an input layer with four features, two hidden
layers with a sigmoid activation function and an output layer
with SoftMax activation function. Regarding trajectory pre-
diction model, we choose a deep architecture to ensure better
prediction accuracy. The proposed network architecture con-
sists of an input layer with three features (classification result,
lateral and longitudinal position), four hidden layers based on
LSTMand an output layer that provides the predicted position
(Fig. 7).

Once the concrete network architecture is selected,
we eventually train the network using the selected features.
According to previous studies [31], [38] [39] and our

experiments, the network with 4 hidden layers is chosen to
achieve the best compromise between learning performance
and computational consumption. The networks are trained
using batches of size 500, with 4 LSTM layers of size 256 for
the first 3 layers and 128 for the last layer, the output layer is
a dense (fully connected) layer (Fig. 7). In this work, Keras
framework [40] is implemented with the Nvidia optimized
recurrent neural networks cuDNN [41] that deliver up to
6 times speedup compared to traditional DNN. The used
loss functions are Categorical Cross-entropy for classification
and Mean Squared Error for prediction. The used optimizer
is ADAM with a decaying learning rate starting at 0.001.
Furthermore, each model is trained 50 epochs. All the related
models are trained on a single GPU Nvidia GeForce GTX
Titan X 12 Go.

B. DISCUSSION AND RESULTS
This part is devoted to analyze and compare the prediction
and classification results. Two cases analysis are presented
to visualize and compare prediction and ground-truth mea-
surement. This work explores the long-term (up to 1 s) pre-
diction of future vehicle trajectories. The metric RMS error
is used to evaluate the performance of models. According
to the prediction, the Euclidean distance between the actual
position of the vehicle and the corresponding future position
is reported. The reports are classified into three categories
depending on the corresponding length of the input sequence.
The results achieved by maneuver detection and trajectory
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TABLE 1. Models evaluation: Classification accuracy and RMSE of lateral and longitudinal position.

FIGURE 10. VEDECOM demonstrator: installed sensors and intern
hardware platform.

prediction algorithms are reported in Table 1. This table
displays longitudinal and lateral position prediction errors as
well as classification accuracy over different time horizons
(1 s,3 s and 5 s). The obtained results are summarized below.

1) MANEUVER CLASSIFICATION RESULTS
The goal here is to check if the correct maneuver is detected
before the vehicle reaches the intended lane. Using neural
network-based modeling, we train with time-dependent real
traffic data to classify and predict the lane change. The
ground truth is thus determined by analyzing vehicle Lane ID
changing. As shown in Table 1, the accuracy of classification
is 86.2%. It can be seen that long sequences give the best

FIGURE 11. Satory test tracks and test vehicle trajectory.

classification. For 6 s sequences, there are 97.49% correctly
predicted maneuvers. The goal of classification is not only
to understand the driving situation, but also to provide a
supplement input for the prediction model. The validation
results demonstrate the effectiveness of ANN.

2) TRAJECTORY PREDICTION RESULTS
In this experiment, 80 vehicle trajectories are used for each
maneuver case to compute the mean error of the predicted
position. Given the driving behavior classification results of
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FIGURE 12. Trajectory prediction of VEDECOM demonstrator test: (a) and (b) represent predicted and real
longitudinal and lateral trajectory respectively. (c) represents classification results.

a lane changing, the vehicle trajectory can be predicted accu-
rately. One important aspect of predictors is their behaviors
as a function of the prediction horizon. The interpretation
of Table 1 indicates that the prediction uncertainty of the
model increases largely with the increase of the prediction
horizon, especially in the long-term prediction. The error
for lateral and longitudinal positions is very low for short
time predictions but, exponentially increases as the time
horizon gets bigger. We see that the prediction accuracy for
all prediction horizons increases with input sequence length.
Input sequence of 6 s show a high accuracy for 5 s predic-
tion horizon. Prediction errors are around 0.092 m for the
lateral position and 0.112 m for the longitudinal position.
Thus, timely historical locations acquisition is important in
obtaining accurate prediction of future positions. LSTM is a
complexmodel comparedwith other types of neural networks
models (equations [1-6]) [28]. This complexity is a positive
point that makes the model more efficient to learn complex
dynamics of vehicle’s motion and to predict its locations in
the future during lane changes. Contrary to [31], the pre-
dicted lateral trajectory does not present an observed delayed
response. Adding the maneuver information to the prediction
model solve the delay limitation and enhance the prediction
accuracy.

C. TWO CASES ANALYSIS
In order to evaluate our approach, we randomly selected
two vehicle trajectories, including lane-changing and
lane-keeping maneuvers from the NGSIM dataset. The first
contains two lane changes to the right, and the second is a

succession of three left lane changes. As shown in Fig. 8
and Fig. 9, the real and the predicted positions are displayed,
as well as the classification results. In this case, two parts
exist, namely: the lane-changing and lane-keeping parts. The
average velocity is 7.35 m/s for first vehicle and 8.03 m/s for
the second vehicle. The used sequences are of 6s length and
the predicting horizon is of 5 s.

The result of vehicle trajectory prediction based on
LSTM and maneuver classification in the right lane-change
scenario are shown in Fig. 8. Left lane change scenario is
presented in Fig. 9. In both figures, we note that the classi-
fication model detected the lane changes very early before
lane crossing, which give more accuracy to the predicted
position. The results indicate that proposed model performs
well in long-term prediction. The proposed approach can
integrate the advantages of the two models (maneuver clas-
sification and trajectory prediction). In other words, classifi-
cation model ensures situation recognition, and the prediction
model generates the accurate trajectory that overlays with the
detected situation. Moreover, the two figures (Fig. 8, Fig. 9)
clearly show that a good prediction results may be obtained
through the proceeding of many lane changes.

D. EXPERIMENTAL RESULTS
This part presents some results of evaluating trajectory pre-
diction approach using lane changes real data. In our exper-
iment, we used VEDECOM demonstrator as a test vehicle.
This demonstrator is an automated vehicle based on Renault
ZOE platform equipped with a long-range radar (Continental
ARS 408), Lidar (VelodyneVLP-16), GPSRTK and a camera
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from Mobileye (Fig. 10). We collected the test data from
driving on Satory test tracks in Versailles, France (Fig. 11).
During driving, the test vehicle collects the sensor measure-
ments for lane changes scenarios with an average of 22m/s
speed. We focused on the behaviors of a single driver with
the hope of expanding the test to more drivers in the future.

To evaluate the trained model and proceed with prediction
steps, the trajectory of the test scenario shown in Fig. 11 was
set up. With this scenario, two right lane changes and one left
lane changes were recorded to evaluate the prediction system
described in the last section. To predict the future position
reading of the test vehicle, few steps were followed. Initially,
the approach detects the maneuver using lateral velocity, lat-
eral acceleration, yaw and yaw rate. Then, it uses the detected
maneuver and the past positions sequence to get the predicted
trajectory. The evaluation was carried out in two steps. Firstly,
we evaluate classification model to test the performance of
maneuver detection. Secondly, we evaluate prediction model
for 5 s horizon, then we compare the predicted and the
real trajectories. The test results of position prediction and
maneuvers classification are shown in Fig. 12. As presented
in this figure, maneuver classification model is able to detect
the lane changes accurately (recall = 1) on average 2.2 s
before they occur. Additionally, it remarkably differentiates
between left lane changes and right lane changes. Regarding
the trajectory, the prediction results are very similar to the
ground truth. The RMS errors of lateral and longitudinal
positions are 0.30 m and 3.1 m respectively. The validation
results demonstrate the effectiveness of the proposed hybrid
model. The training using NGSIM data also proves that our
model can predict the future positions of a vehicle under
different driving scenarios.

V. CONCLUSION AND PERSPECTIVES
In this paper a new hybrid approach (Artificial Neural Net-
work based maneuver classification and Long-Short term
Memory Network based trajectory prediction) is proposed.
The study demonstrated the ability of the proposed approach
to effectively predict the vehicle position with an interesting
accuracy. The role of classification model is to understand
the driving scenario and provide this information to the pre-
diction model that generates the future trajectory according
to the performed maneuver. The model has been proven to
achieve a low prediction error level on a large dataset of real
freeway vehicle trajectories.

Using the large amount of the trajectory data extracted
from NGSIM dataset, we trained the ANN to classify
the three maneuvers (LCR, LCL and LK), and LSTM
to learn complex dynamics of the vehicle’s motion and
predict its location in the future. Firstly, the classifica-
tion model is trained with a maneuvers dataset that con-
tains 6s length features sequences. Secondly, trajectory
prediction model is trained with the detected maneuver
with past positions sequences. The global model is able
to predict vehicle trajectory using past vehicle dynamic
sequences.

The approach is validated with a real data collected from
VEDECOM demonstrator. We show that on a data with a
high variability, our system is able to accurately anticipate
the intended maneuver 2.2 seconds in advance, and predict
the future trajectory with 0.30 m and 3.1 m of lateral and
longitudinal position errors respectively. The results show
that the proposed method provides an accurate prediction
on the vehicles trajectory. This proves that our method can
be a promising solution to predict the behavior of traffic
participants in real road. Thus, it enhances the safety level
for realizing fully autonomous driving. This work fits into
the logic of many innovations that will significantly reduce
the ecological impact of the transport sector and decrease the
number of road accidents.

In future work, the driver behavior would be the additional
information to ensure more accurate prediction. In order to
strengthen the expressiveness of our findings, we will have to
increase the size of our data set. In addition, this work can be
extended to the prediction of vehicles trajectory in the urban
driving scenes. Moreover, other vehicles or road users in the
traffic will be considered, and their interacting influences
could be taken into account to predict vehicle trajectories.
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