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ABSTRACT High-accuracy microseismic phase picking is fundamental to microseismic signal processing.
Phase picking methods based on deep learning show great potential dealing with low signal to noise ratio
(SNR) data but need enormous training data. However, it’s not easy to obtain a big size of field datasets and
label them manually to train the neural network. In this paper, a novel method is proposed by applying
feature extraction (Gammatone Feature) and neural networks to pick phases automatically. The feature
extraction scheme aims to train the neural network using a relatively small size of training datasets. To test the
performances of the proposed method, synthetic datasets were obtained by numerical simulation and used
to train the neural network. Both synthetic datasets and field datasets were used to test the neural network
for picking P- and S-phases of microseismic events. The results of phase picking illustrate that: (1) feature
extraction scheme in the training stage can help reduce the size of training datasets; (2) The neural network
can be trained well just by synthetic data and phase picking results are accurate and satisfying when the
method was tested by both synthetic and field datasets.

INDEX TERMS Feature extraction, Gammatone feature, neural networks, phase picking.

I. INTRODUCTION
Automatic phase picking of microseismic is important
for many geophysical prospecting methods, such as seis-
mic/acoustic emission (AE)/microseismic systems [1]. Many
researchers have studied this area and proposed methods
for automatic phase picking of microseismic signals. Some
methods are based on energy ratio between signal and noise,
these classical or improved approaches calculate Short Time
Average over Long Time Average (STA/LTA) to pick arrival
time [2], [3]. The energy ratio-based methods can’t perform
well when dealing with low SNR microseismic data so many
researches applied noise suppression schemes to enhance
the signals. Time-frequency transform is an effective way
to suppress noise such as Intrinsic Time-Scale Decomposi-
tion based time-frequency energy denoising, Hilbert–Huang
transform (HHT), apex-shifted parabolic Radon transform
(ASPRT), adaptive directional vector median filters, wavelet
transform and so on [4]–[10].

The associate editor coordinating the review of this manuscript and
approving it for publication was Utku Kose.

Automatic phase pickers are essential because microseis-
mic monitoring is a real-time process [11]. And also some
researches focus on improving performances of automatic
pickers by introducing neural networks [12]. The neural
networks have already been used to pick the arrival times
automatically for downholemicroseismic surveys [13]. CNN,
DNN and RNN network can achieve to pick P and S phases
with three-component seismograms [14]–[17]. Some previ-
ous work focused on inputting derived attributes from seismic
data into a hybrid artificial neural network for phase picking
[18], [19]. These works prove that neural networks have
advantages in phase picking. But Neural networks need large
size training datasets with labels and it’s time-consuming to
label the datasets manually.

Although deep learning neural networks can pick phases
of microseismic events automatically but good performances
of neural networks need a big amount of labeling datasets.
In this paper, we proposed a method to pick phases with
the Gammatone feature (GF) stream and the neural network.
A dictionary, also as a redundant system, constructed by
GF can represent microseismic datasets sparsely and these

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 58271

https://orcid.org/0000-0003-0495-1340
https://orcid.org/0000-0003-2724-8471


T. Jiang, J. Zheng: Automatic Phase Picking From Microseismic Recordings Using Feature Extraction and Neural Network

sparsely represented datasets can help reduce the size of
neural networks, which means that we can train the network
with less parameter, smaller size of training data and less
computing time. In the network training stage, relatively
small size synthetic datasets were used for updating weights
of each neural unit. In the testing stage, we tested the network
model with both synthetic and field datasets. The results
illustrated that the model can pick phases of microseismic
events from recordings with different SNR. The proposed
scheme has two advantages: first, the model can be trained by
using the relatively small size of synthetic datasets and then
applied field datasets to the network for microseismic phase
picking, a smaller size training data means less amount of
calculation and labeling work; second, with different labeling
strategies themodel can realize different phase picking effects
according to different demands. Two examples are shown in
the paper, the first one is to pick events caused by human
activities (footsteps); the second one is to recognize different
microseismic phases (P-phase and S-phase).

II. METHOD
The general block scheme of the proposed method is shown
in Fig.1.

There are two main steps to train the neural network for
phase picking. The first step is feature extraction by which
we can obtain the Gammatone feature (GF) of datasets. These
extracted features are regarded as the input data of the neural
network. The second step is to train the network using GF
obtained in the first step. The outputs of the neural network
are the classification results (microseismic phase or noise).

The dominant frequency of microseismic events is far
less than the sampling rate. Besides, signals of interests
(microseismic events) are distributed in the low-frequency
domain while noise is distributed over the full frequency
band. To extract features of signals of interests, the filter bank
should be of high resolution in the low-frequency domain and
low resolution in the high-frequency domain. The character-
istic of the filter bank mentioned above can help extract fea-
tures of interests in noisy microseismic data. Considering the
similarity of audio andmicroseismic recordings, we chose the
Gammatone features as a robustness feature of microseismic
recordings. GF is derived by cochleagrams of microseismic
recordings and obtained by an auditory filter bank consisting
of the Gammatone filters. Gammatone filter (GTF) is a linear
filter that is an impulse response of the product of a gamma
distribution and sinusoidal tone. It is a widely used model of
auditory filters in the auditory system [20].

The Gammatone impulse response is given by

g(f , t) = atα−1e−2πbtcos(2π ft + φ) (1)

where a is gain of the filter, t is time, α is the order of the
filter, b is decay factor, φ is phase and f is central frequency.

The detailed implementation of GF can be achieved as
reference [21]. The formula of center frequency information

FIGURE 1. The proposed scheme.

FIGURE 2. Filter bank impulse response, there are 16 colored curves
representing frequency responses of each filter in the filter bank.

can be described as:

f (n) = −QB0 + (fH + QB0)exp(−
n
N
ln(

fH + QB0
fL − QB0

)) (2)

According to reference [22], Q = 9.26449, B0 = 24.7,
fH and fL are the maximum and minimum frequency of the
filter bank. n means the n -th filter in the Gammatone filter
bank. N is the number of filters in the Gammatone filter
bank.

The impulse responses of 16 Gammatone filters are shown
in Fig.2. There are 16 colored curves representing frequency
responses of each filter in the filter bank. Here we want to
talk further about GF, and filter bank impulse curves in Fig.2
show that the majority of filters are in the low-frequency
domain and these filters are narrow-banded while the rest of
filters are broad-banded and in high-frequency domain. The
filter-bank constructed like this leads to higher resolutions
of GF in the low-frequency domain. The proposed method
benefits from doing this because (1) dominant frequencies
of microseismic datasets are not very high so the extracted
features of microseismic events should be represented by
filters with high resolution in the low-frequency domain; (2)
broad-band filter on higher frequencies means that the most
of energies of noise would project on the components of GF
in the higher frequency domain, this can help us extract target
information (low-frequency events) from GF.

To obtain GF of microseismic recordings, inputs (micro-
seismic recordings) are divided into data frames and the
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outputs of the Gammatone filters are:

Gm(i) = GF(i,m) = [|g|(i,m)]1/3

×(i = 0, 1, . . .N − 1;m = 0, 1, . . .M − 1) (3)

Gm(i) is aN×N matrix of Gammatone features (GF), |g|(i,m)
is the frequency spectrum obtained by of i-th filter with m-th
data frame. N is the number of filters and M is the number
of frames of recordings. For a certain data frame, a GF is a
column of matrix Gm(i).
As for |g|(i,m), we frame the recordings and note the data

frame as x(l) and pre-emphasis the frame data as

y(l) = x(l)− 0.97× x(l − 1) (l = 2, . . . ,L) (4)

Then a Hamming-window w(l) is applied to the y(l),
the windowed data is

s(l) = y(l)× w(l) (5)

The windowed frame data is transformed from time
domain to the frequency domain and noted as:

X (k) = FFT {s(l)} (k = 1, . . . ,K ) (6)

The datamatrixXK×M is constructed by eachX (k). accord-
ing to references [23] and [24], a matrix of weights can be
generated combining Fast Fourier Transform (FFT) matrix
into gammatone matrix WN×K . And finally |g|(i,m) in (3)
is

|g|(i,m) = WN×K × XK×M (7)

The gammatone features are obtained using (3) and (7).
|g|(i,m) is a N ×M matrix which means that in a certain m-
th data frame, the length of extracted features of the data is
N . In this study, we don’t use the GF directly but post-process
GF by applying post-processing technique to measure the GF
flatness through a recursive scheme. The post-processing t
echnique is described as follow:

L(i,m) = GM (i,m+ ns)/AM (i,m+ ns)

GM (i,m+ ns) = Kg[GF2(i,m+ ns)]

+ (1− Kg)GM (i,m+ ns− 1)

AM (i,m+ ns) = Ka[GF2(i,m+ ns)]

+ (1− Ka)AM (i,m+ ns− 1) (8)

ns was regarded as the half length of the wavelets in record-
ings,Kg andKa are set to be 1/ns andKg/4 respectively. Now
we got the post-process the Gammatone features and treated
them as input data to the input layer of the neural network.

The extracted feature of microseismic recordings is ready
for training the network and the neural network should go
through two phases ( training phase and testing phase) for
automatic phase picking. In the training phase, the training
process is to model the neural Networks mathematically.
The weights among each layer are found iteratively. In the
testing phase, the testing process is to recognize the phases
of microseismic events. The neural networks have a fully
connected hierarchical structure where the first layer is the

FIGURE 3. The proposed network model.

input layer; the highest layer is the output layer as shown
in Fig. 3. The output layer of the network is a classification
result. In our case, we used multiple restricted Boltzmann
machines (RBMs) to stack the network to realize an unsu-
pervised training process and after that a fine-tuning process
with back-propagation algorithm (BP) is added to the network
to achieve a supervised training process [25]. To realize fine-
tuning process, a layer with labels is added to the output layer.
The label consists of the manually picked phases (labels) of
microseismic events. Parameters of the network model are
initialized by RBM, the classification of the output layer
is done by multiple classification logistic regression layers,
the label layer is used to evaluate the error between the predic-
tive output and the artificial picking phases. The optimization
is achieved by stochastic gradient descent (SGD) strategy.

What makes the neural network special in this paper is that
the microseismic datasets are not inputted into the network
directly but using GF as the input data for the first layer. The
aim of feature extraction scheme (GF) is to help reduce the
size of training datasets and labeling work.

In microseismic monitoring tasks, the events are expressed
as time series. There are different label strategies for dif-
ferent demands. In this study, we had two strategies for
different tasks. One is to label the recordings as ‘‘None-
zero’’ during the whole period of events and ‘‘Zero’’ for other
time duration, we can note ‘‘1’’ for microseismic events and
‘‘0’’ for noise. To pick microseismic events in continuous
recordings, we will rely on GF streams and train the network
with event/non-event labeled datasets. We will apply this
labeling strategy to one-component microseismic datasets to
pick events caused by footsteps.
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The other strategy is to label the first half period of the
microseismic event as ‘‘None-zero’’ to get more sharp pickers
for picking P and S phases. We can note ‘‘0’’ for noise, ‘‘1’’
for P-events and ‘‘2’’ for S-events. The classification layer
has 3 classifying results namely noise, P-phase and S-phase.
We label them as (1, 0, 0), (0, 1, 0), (0, 0, 1). If more phases
are needed to be picked, we can just add neural units in the
classification layer and label recordings with the same strate-
gies. Meanwhile, we post-processed GF features by applying
post-processing technique tomeasure the GF flatness through
a recursive scheme according to (7) and (8). Then GF is
used for training the neural network to pick different phases
automatically. In the testing stage, the proposed method was
applied to both synthetic datasets and field datasets, results of
phase picking will be discussed in the next section.

III. EXPERIMENTAL ANALYSES
We designed two experiments for the different demands and
analyzed performances of the proposed method. The network
was firstly trained by synthetic datasets obtained by numer-
ical simulations and then white noise of different intensities
was added to the raw data. The performances of the proposed
method were measured by investigating the accuracy rate of
the testing stage.We used 1-C datasets for the first experiment
and 3-C datasets for the second one. The 1-C Field datasets
were obtained by 1-C vibration sensors, the microseismic
events resulted from footsteps. The 3-C Field datasets were
obtained by three-component geophones installed on the sur-
face and the microseismic events were caused by hydraulic
fracturing.

In this paper, we want to build an automatic phase picking
model by using synthetic datasets and apply the model to
field datasets to pick phases. We built two models including
different label strategies according to different monitoring
tasks. Firstly, we built the model only to pick microseismic
events but not to identify the type of phases (P- or S- phase).
Therefore, we labeled the datasets as ‘‘1’’ during the entire
event period and ‘‘0’’ for the noise. Secondly, we built the
model to identify the P- and S- phases of microseismic events.
Therefore, we used 3-component datasets and labeled them as
‘‘1’’ only for the first half period of P- event,‘‘2’’ for the first
half period of S- event and ‘‘0’’ for noise.

Furthermore, we also used the same dataset to train the
network without feature extraction. Comparing the results
obtained by networks with/without feature extraction, they
illustrated that GF can help reduce the demand for the size
of training data and the proposed method for phase picking is
accurate. The analyses are as followed.

A. ONE-COMPONENT DATASET MODEL TO PICK EVENTS
we used the synthetic datasets obtained by acoustic wave
function to simulate one component recordings. The datasets
are divided into two parts: about 70% of all are training
datasets and the rest are testing datasets. The average SNR
is 10dB. In the experiment, a four-layer neural network with
two hidden layers is designed. The activation function of

FIGURE 4. Manual labels of 1-Component datasets.

FIGURE 5. STA/LTA feature and classification output.

each layer is the sigmoid function. The training datasets were
transformed into a GF matrix by a 64-Gammatone filter bank
so the length of a GF is 64. Considering that the dominant
frequency of wavelet in recordings is always low compared
to the sampling frequency, we only maintained the results
of first thirty Gammatone filters so the length of GF turns
to 30. The number of neural units in each layer is 30, 20,
10 and 2 respectively. The length of the two hidden layers
is 20 and 10. The length of the output layer is 2 because there
are 2 classifications (event and noise).

We selected a trace of synthetic data to evaluate the perfor-
mance of the proposed method. The raw data with manual
labels are shown in Fig.4. There are three events in the
time series. White noise of different intensities was added
to the raw data and the noisy data is shown in Fig.5(b).
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FIGURE 6. Synthetic datasets and event picking outputs.

FIGURE 7. Normalized field data and event picking outputs.

The SNR for the three events is about 25dB, 10dB and -1dB.
Fig.5(a) shows the STA/LTA feature for the noisy signals. The
STA/LTA feature of the third event is not obvious so STA/LTA
method can’t handle with -1 dB data. It also reflects that the
STA/LTA feature of weak signals is not obvious. There is
another shortcoming of the STA/LTA method. If we chose a
lower threshold for the start point, noise might be recognized
as events. To avoid false alarm, the threshold can’t be very
small so the STA/LTA based outputs can’t recognize the weak
signal drawn in noise as shown in Fig.5(b). In comparison,
we obtained GF using the same datasets and the results of

FIGURE 8. 3-Component datasets with labels.

FIGURE 9. Output of the network without feature extraction for 3-C data.

the proposed method are shown in Fig.6(b). The results show
that the proposed method has higher accuracy and anti-noise
ability to pick microseismic events from noise. To evaluate
the event picking performances of the proposed method,
statistical analysis is applied to the test datasets. The result
shows the error of the classification is only 0.054, which
means the accuracy is 94.6%.

Then we apply the model to field datasets for picking
human footsteps. The experiment aims to verify the model
trained by synthetic datasets also can be applied to the real
recorded data. The results are shown in Fig.7. The period
of each event caused by human footstep is picked out even
intensities of some events are very small, the picking results
are accurate.

B. THREE-COMPONENT SYNTHETIC DATASET MODEL TO
PICKING P- AND S-PHASES
Synthetic datasets were used to build and train a network with
3-component datasets. The synthetic datasets contain 600 3-C
recordings and there are 6000 samples in each trace. To train
the model, white noise of different intensities was added into
the raw data. The average SNR is -5dB to 5dB. The datasets
were divided into two parts: 60% of all are training datasets
and the rest are the testing datasets.
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FIGURE 10. Phase picking results of each component (x,y and z). Blue
solid lines are predicted onsets of S events and it’s obvious that the
network failed to detect P events. The accuracy of phase picking is quite
poor and lots of wrong picks are in the traces.

FIGURE 11. Output of the proposed network for a 3-C data.

We labeled recordings as ‘‘1’’ only for the first half cycle
of P- event and ‘‘2’’ for the first half cycle of S- event shown
in Fig.8. Labels for noise, P-phase and S-phase are actually
(1, 0, 0), (0, 1, 0) and (0, 0, 1) for program realization.

The network was trained with/without GF to verify the
effect of feature extraction. In order to prove that the extracted
features can help reduce the size of the training datasets, first
we fed three-component datasets into the network directly.
The seismograms of each trace were divided into data frames,
each frame has 200 sample points and the step for frameshift
is 50-sample-point length. There are 4 layers in the network
and lengths of the input layer, two hidden layers and a clas-
sification layer are 600 (200 for each frame, 3 components),
20, 10 and 3. The lengths of two hidden layers are 20 and
10. The length of the output layer is 3 because there are
3 classifications (noise, P-phase and S-phase).The activation
function of each layer is the sigmoid function. Phase picking
results (shown in Fig.9 and Fig.10) illustrated that the neural
network can’t pick the microseismic phases accurately. A lot
of wrong predictions appear in traces and there is no need to
discuss the accuracy of phase identification because not even
a single P-event was predicted by the neural network.

FIGURE 12. Output of the proposed network for all traces.

TABLE 1. Accuracy of phase picking of the proposed method.

Next, with the same training and testing datasets, a four-
layer neural network with feature extraction is also designed.
The training datasets were divided into data frames in the
same way as mentioned above. Then the data frames were
transformed into the GF matrix by a 64-Gammatone filter
bank so the length of a GF is 64. We remained the outputs
of the first 16 filters so the length of GF turns to 48 (16 for
each component, 3 components). The numbers of neural units
in each layer are 48, 20, 10 and 3. The testing datasets were
transformed into the GF matrix and inputted into the trained
neural network. The phase picking results (shown in Fig.11)
of a single trace illustrate that the proposed method can
recognize the phase of microseismic events even when the
datasets are contaminated by noise.

The accuracy of phase picking is shown in Table 1. The
results showed that the proposed method can pick phases
accurately even when the raw data is added with -5 dB noise.
Accurate phase picking verifies that themethod is also robust.
To pick the onsets of the phases, we can apply a simple
post processor to obtain the arrival times of P- and S-phases.
In Fig.11 there are ‘time windows’ for phase picking results,
we regard the first starting point of time window as the onsets
of the microseismic event phases.

We tested the phase-pickers with synthetic data as testing
datasets. Red solid lines are picking results for P phases
and blue solid lines are for S phases. The results are shown
in Fig.12. As we can see that the P- and S- phases can be
picked, but some ‘false alarm’ phase picking also obtained.
Some constraints can be considered when dealing with out-
puts of classifiers.
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FIGURE 13. 3-C field data, the red solid lines are onsets of P events and
blue solid lines are onsets of S events.

Comparing the phase picking results of two models
(with/without feature extraction), with the same size of train-
ing datasets, hidden layers, and classification layer in the
neural network, themodel with the extracted features can pick
P and S phases well but the model without extracted feature
failed. The two neural networks also have two hidden layers
and one output layer. The lengths of hidden layers are 20 and
10 while the length of the output layer is 3. If we use the
training datasets directly, the length of the input layer is 600
(200 for each data frame, 3 components). The number of neu-
ral units in the first hidden layer is far less than the number in
the input layer and there is toomuch information compression
which resulted in great loss of desired information. So it’s not
surprising that the network can’t perform well. The process
of data compression should not be drastic. The model without
feature extraction might perform better with more a complex
structure and more neural units in the neural network but the
complex structure of the model needs extra training datasets
and results in more computation time.

The model with the extracted features can pick phases
accurately. The structures of hidden layers and output later
are the same size as the network without feature extraction.
The length of the input layer is 48 and there is no big gap of
numbers of neural units between the input layer and hidden
layers. Most of the features from desired signals can be
obtained and the network with feature extraction can perform
well. The compared results suggest that the model with the
extracted feature can be trained well with less size of datasets.
So we can verify that the strategy with feature extraction can
reduce the demand for large training datasets and labeling
work furthermore the proposed method is of high accuracy
to pick P and S phases of microseismic events.

C. THREE-COMPONENT FIELD DATA TEST
As mentioned above, the neural network was trained by syn-
thetic datasets. Now we apply the model to field data sets,
the datasets are from 60 3-C geophones (shown in Fig.13).

FIGURE 14. Phase picking results of each component (x,y and z) on the
four traces of datasets shown in Fig.13. The red solid lines are onsets of P
events and blue solid lines are onsets of S events.

The microseismic events were caused by hydraulic fracturing
and the surface monitoring area is in Anda City, Heilongjiang
Province of China. The datasets are contaminated by noise
and the SNR of some traces are not very high. We use
these field datasets (Fig.13) to test the performance of the
proposed method. The neural network was trained by the
same 3-component synthetic datasets mentioned above and
we also add an output processer for picking phases. Red solid
lines are noted for P-phases and blue solid lines are for S-
phases. Results shown in Fig.13 illustrate that the proposed
method can almost pick different phases (P or S) accurately
although a few false phase picking indeed happens. In Fig.13,
the proposed method picked almost all the P phases in the
seismogram which means that the proposed method picks
P events well in testing datasets. There are about 10 false
pickings for S events but the results for picking S-events are
still satisfying in the rest traces.We inferred that obvious coda
(e.g. trace No.2 and 5) or relatively bad quality of datasets
(eg. trace No.29) lead to false picking of S events. Details
of phase picking results in 4 traces (trace No. 1, 3, 15 and
16) are shown in Fig.14. The proposed method picked all the
phases at their onsets even the SNR of the signals are low (e.g.
Fig.14 (E, F, H and I)). It’s tough to pick phases manually by
our naked eyes but the proposed method can pick and identify
the phases. Although some false phase picking appears when
dealingwith S events, the proposedmethod to a certain degree
can pick and identify phases automatically and accurately.

IV. CONCLUSION
We proposed a novel method using feature extraction and
neural network to realize automatic phase picking. After
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training the network with the synthetic datasets, both syn-
thetic datasets and field datasets were used to test the network
for phase picking. Experimental analyses verified that the net-
work with feature extraction can be trained by relatively small
size synthetic datasets so the calculation demand for training
the model is decreased. Through designing different label
strategies, the method realizes different phase picking effects
according to different demands. Two cases were shown in
this paper. For one component datasets the proposed method
can pick out the whole period of microseismic events and
the results can be applied to footstep detection; for three-
component datasets the method can pick P- and S-phases
of microseismic events and these phase picking results can
be applied to fracture monitoring tasks. The experimental
analyses showed that the proposed method is accurate and
satisfying. However, we also noted that there were still a few
false-alarmwhen themethod dealt with three component field
datasets. Some constraints can be added after the classifiers to
decrease the ‘false alarm’. In the following research, we will
try to build a more complex model (more layers and neural
units) with more efficient training strategies (constrains to the
extracted features) to improve the accuracy of phase picking.
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