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ABSTRACT A great number of computer vision publications have focused on distinguishing between
human action recognition and classification rather than the intensity of actions performed. Indexing the
intensity which determines the performance of human actions is a challenging task due to the uncertainty
and information deficiency that exists in the video inputs. To remedy this uncertainty, in this paper we coupled
fuzzy logic rules with the neural-based action recognition model to rate the intensity of a human action as
intense or mild. In our approach, we used a Spatio-Temporal LSTM to generate the weights of the fuzzy-
logic model, and then demonstrate through experiments that indexing of the action intensity is possible. We
analyzed the integrated model by applying it to videos of human actions with different action intensities
and were able to achieve an accuracy of 89.16% on our intensity indexing generated dataset. The integrated
model demonstrates the ability of a neuro-fuzzy inference module to effectively estimate the intensity index
of human actions.

INDEX TERMS Attention mechanism, artificial intelligence, behavior analysis, computer vision, convolu-
tional neural networks, fuzzy logic, human action recognition, intensity indexing, machine learning, neuro-
fuzzy systems, recurrent neural networks, supervised learning.

I. INTRODUCTION
Recently, action recognition based on supervised deep learn-
ing has attracted a lot of interest in the computer vision
research community due to its numerous applications in video
analytics, surveillance, security, sports analysis, and human-
computer-interaction based applications [1]. Researchers all
over the world are doing extensive studies on various tech-
niques to propose models with better performance [2]–[4].
Despite these efforts, this field still poses many challenges
which include intra-class variation, viewpoint orientation,
occlusion, various motion speed and different styles of back-
ground clutter. A drawback to the supervised deep learning
approach of action recognition is that less focus is given to
predict the intensity of the action [5]–[8]. Determining the
intensity of an action is crucial in environments like bullying
and violence detection in school, at work, at home, in public
areas, and in prison [9]–[12]. Intensity indexing can also be
used for detecting aggressive behavior in applied behavior
analysis (ABA) [13], a proven assessment and treatment
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model for Autism Spectrum Disorder (ASD) [14] and other
severe mental disorders [15]. In the context of ASD, intensity
index can aid caretakers in assessing danger in patients’
behavior and prevent serious health consequences such as
concussion from head banging [16].

Action intensity index is defined as a measure of kinetic
intensity used to determine whether a specific action is per-
formed with high or low intensity. Kinetic intensity is the
amount of kinetic power it takes to perform a certain action,
and can be applied to the concept of indexing intensity
of human actions [17], [18]. The kinetic power of a cer-
tain action is directly proportional to the velocity and the
mass of the moving object [17]. However, in the context
of human activities, which involve the movement of human
joints, the kinetic power depends on the velocity of the joints
engaged in the main activity [19], as well as the number and
extent in which they are engaged [18], [20]: more moving
joints utilizing more joint power results in greater kinetic
power and intensity.1

1Note: Action intensity indexing is different than velocity and includes
extreme activities with high kinetic power.
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The intensity of human actions cannot be generalized
into a single, crisp formula as it varies from person to
person. Intensity is rather a subjective term in which some
level of uncertainty is always present, often expressed using
imprecise language. Furthermore, measurement inaccuracies
are inevitable from a 2D video. Therefore, to measure the
intensity of an action from an input video, a mathemati-
cal model is required which accounts for such uncertain-
ties and inaccuracies by modelling and minimizing their
effects. [21].

While deep learning based models can help with learning
adaptation and scaling up to more general applications [22],
they cannot capture data or model uncertainty [23]. In addi-
tion, deep learning based models lack the human-like ability
to interpret imprecise information. Fuzzy inference systems,
on the other hand, provide an inference mechanism for uncer-
tainty and enable the qualitative interpretation of the actions.
In the context of intensity indexing, deep learning based
models also encounter serious problem when the dataset
is biased towards a specific way of performing an action.
These models are not able to learn dissimilarities in human
motions when actions are performed with various intensities.
However, adaptive fuzzy systems can generate membership
functions for different types of target action intensities [24].
To enable our system to deal with the uncertainty and varied
nature inherent in this application, we propose a hybrid sys-
tem combining the concept of fuzzy logic and deep recurrent
neural networks. Such integration has proven effective in a
wide variety of real-world problems [25]–[27].

Our proposedmethodology is an attentive neuro-fuzzy sys-
tem designed to recognize qualitative differences in human
actions and to self-adapt to different intensities. Inspired by
the model proposed by [28], our model utilizes recurrent
neural networks to detect actions from spatio-temporal pat-
terns of human poses, in tandem with an adaptive fuzzy
inference system to learn the various human motions used to
perform actions with different intensities and then estimate
the action’s intensity.

The integrated model can successfully learn the unique
way a specific action with a certain intensity is performed,
as well as estimate the intensity of the respective action.
Experimental results prove the effectiveness of the integrated
model in recognizing the actionmovements of different inten-
sities. To the best of our knowledge, our framework is the
first to index the intensity of action from an input video. Our
contributions in this paper are:
• We propose a novel hybrid model based on a fuzzy
inference system coupled with a spatio-temporal LSTM
action recognitionmodule to jointly determine the inten-
sity index of the recognized action.

• Our work provides a case study on a generated
dataset of human actions with two intensity indexes:
intense and mild, to evaluate the performance of our
model in more fine-grained recognition of actions and
intensities.

FIGURE 1. The distribution of attention weights (over joints and time)
changes with the intensity index of performed action. The line plot
indicates attention over time frames and the bar plot indicates attention
over the joint movements. Even though both subjects are performing the
same action, the distributions of attention weights are different.

II. RELATED WORK
The related work for the model is based on the deep learn-
ing components which are used for data pre-processing (as
discussed in methodology section of this paper) and to
train the model on action recognition based on supervised
learning. Our model leverages deep learning components
as well as neuro-fuzzy systems to dynamically generate
fuzzy logic rules to detect the intensity of various human
actions. To detect actions using human key-point coordinates,
the model requires spatio-temporal information of the scene
so it can also be seen as a time series problem. To overcome
this, much research has been done in the recent past to come
up with models that can effectively predict actions from key-
point coordinates [29]. Traditional methods involved features
which were hand crafted to represent the inter frame relation-
ship of the key-point coordinates sequence [30]–[35]. Recent
studies have utilized deep learning techniques to detect and
predict relationships by using spatio-temporal information in
a collection of frames. Reference [36] designed a Fine-to-
Coarse Deep Convolutional Neural Network (CNN) along
with fully connected layers which extract the spatio-temporal
and spatial features of a key-point coordinates sequence.
Furthermore, the use of 3D-CNN with a 3D filter ker-
nel has also been proved to be able to learn the spatio-
temporal information [35]. To capture temporal information,
research has been done to predict action using Recurrent
Neural Networks (RNN) which are based on Long Short-
TermMemory (LSTM) or AttentionModels. There have been
few research examples where a RNN based model has been
used to predict the actions from a human key-point coordi-
nates [37]–[40]. Recent research also points to the use of a
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FIGURE 2. The camera frames act as an input to the data pre-processing stage where the human key-point coordinates are generated.
These coordinates act as an input to the Spatio-Temporal LSTM, which detects the actual action and generates the attention weights.
These weights are the input to the Kinetic Fuzzy Intensity Analysis, which generates the intensity score. This intensity score dynamically
updates the fuzzy logic rules and is also used to determines the Intensity Index of the performed action.

Convolutional-Recurrent Neural Network (CRNN) where the
CNN is used to extract the features from the input frames and
the output of the CNN is fed to LSTM to extract the temporal
dynamics. State-of-the-art results were achieved with the use
of a graphical neural network [41], [42]. Compared to the
graphical neural network and LSTM, CNN displays better
results for learning to represent images in terms of key-point
coordinates representation [43], [44], but their performance
drops when dealing with long spatio-temporal sequences.

While deep learning models can achieve better scalability
and can generalize better, they lack in capturing data uncer-
tainty, subjectivity and human-like reasoning [22]. Fuzzy
logic can capture the uncertainty, subjectivity and have
human-like reasoning [45]. The proposed idea is to use
fuzzy inference on top of a deep learning action recognition
module to index intensity of the action as either mild or
intense [5]–[8]. Indexing the intensity of a subjective task
and involves a certain amount of uncertainty from individual
to individual. It requires adaptive learning which cannot be
derived by just stacking various modules sequentially.

III. METHODOLOGY
This paper proposes a novel neuro-fuzzy system using recur-
rent neural networks and fuzzy inference systems which
adaptively perform fine-grained recognition of human action
intensity indexes. As shown in Figure 2, our methodology
consists of three processing sections: data preprocessing,
action recognition, and intensity indexing. First, the prepro-
cessing section transforms the input video of an action to a
tensor of the human key-point coordinates over time using
a pose detection algorithm. This tensor is next passed to an
LSTM network to recognize the human action based on the
spatio-temporal patterns existing in the tensor. The LSTM
model is equipped with two self-attention mechanisms [46],
one over the time frames and another over the coordinates.
The attention weights, along with the coordinate’s tensor,
are then fed to the kinetic fuzzy intensity analysis mod-
ule. The kinetic fuzzy intensity analysis module computes
an initial intensity score based on fuzzy entropy measures.

The fuzzy inference module converts the intensity score
and the attention weights into fuzzy sets using an adaptive
membership function. Using the truth values of these fuzzy
sets, our methodology defines the fuzzy rules through which
the final intensity index is determined. Finally, the spatio-
temporal LSTM’s loss function gets updated with a cus-
tomized penalty term to further adapt to distinct movements
of intense-mild actions.

A. DATA PRE-PROCESSING
Before the raw data can be input int the action recognition
module, human key-point coordinates must be generated
using the pose estimation technique. Using of human key-
point coordinates to train the action recognition module will
help to reduce the background clutter [37], [38]. Also, it will
reduce the computational complexity as compared to using
the entire image/video to train the module [39], [40]. We also
need to feed the human key-point coordinates to the neuro-
fuzzy section for qualitative action recognition. To extract the
human key-point coordinates we use the model described by
[47]–[49] which achieves, state-of-the-art results on multiple
public benchmarks for pose estimation and human key-point
detection.

B. LSTM WITH SPATIO-TEMPORAL ATTENTION
To capture the sequential patterns of key point coordinates,
we utilize LSTM, an RNN [50]–[52]. For supervised deep
learning, there are various LSTM models developed for
action detection [40], [43], [53]–[55]. Inspired by Liu’s
(2016) Spatio-Temporal LSTM model, we apply a similar
model that is equipped with a spatio-temporal mechanism
to recognize the performed action and learn the exclusive
motion patterns of the action. In other words, our inspired
LSTM model utilizes two attention mechanisms [56]: atten-
tion over the time frames, and attention over various key-
point coordinates. Such spatio-temporal attention helps the
model to understand an action despite variation among indi-
viduals preforming the same action with a certain intensity
index, such as walking fast or punching hard. One attention
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FIGURE 3. The attention over human key-points defines the parts of the human bodies involved in the action can be observed from and the attention
over time frames defines the frames in which the action is being performed. The attention weights also show the significance of the respective
frames in recognition of the action.

mechanism is implemented on top of the recurrent architec-
ture of the LSTM cells, and the other one is implemented
across the units of input and hidden states, so that the model
can selectively focus on the time frames as well as human
key-point coordinates (see Figure 3). These two attention
mechanisms demonstrate the engagement of the human key-
point coordinates in each time frame in the detected action.
In addition to learning the possible behavioral variation of
performing an action, the weights of these two attention
mechanisms are used to measure the kinetic intensity score
and determine the fuzzy inference of the intensity index.

C. KINETIC INTENSITY SCORE USING FUZZY
ENTROPY
Once the attention LSTM model is trained to recognize the
performed action, we utilize the parameters of the attention
vectors along with fuzzy entropy measures to compute an
initial intensity score for an instance of the action. This initial
kinetic intensity score is utilized to generates dynamically
fuzzy rules to specify the index of the intensity as intense
or mild. As shown in Figure 3, the Spatio-Temporal LSTM
model is equipped with a self-attention mechanism [46], [57]
that detects the time frames in which the detected action
is happening, extracting a linear combination of the hid-
den states to the output and generate the temporal attention
weights. These weights denote the amount of influence of
each time frame in the final inference. In other words, they
determine whether, and to what confidence level, an action is
observed in each time frame. We can utilize the distribution
of these weights to measure the intensity of the action. For
instance, the faster an action happens, the observation of
the performed action in time, is less and resultant distribu-
tion of temporal attention weights is proportionally denser.

Therefore, the entropy of these attention weights has an
inverse relationship with the intensity and speed of an action.

The intensity of action depends on the kinetic energy of
the limbs that are engaged in performing the action which
are translated into key-point coordinates. Shan et al., [19]
formulate this kinetic energy by the movement of the key-
point coordinates over the video frames. Thus, we consider
this kinetic energy by by adding it to the attention distri-
bution as fuzzy membership weights and computing their
fuzzy entropy. The weights are the change of the coordinates’
locations from the last frame multiplied by their correspond-
ing attention weights, following [19]. Using fuzzy entropy
methods from [45], [58], we calculate the fuzzy entropy of
the attention vector which is indirectly related to intensity,
as follows:

Hfuzzy(at , µt ) = −
T∑
t=1

at · µt · log(at ) (1)

µt =
1

(at · |1xt |)
=

1
(at · |xt − xt−1|)

(2)

H⇒ Hfuzzy(at ,1xt ) = −
T∑
t=1

log(at )
|xt − xt−1|

(3)

where, xt is the input at the time frame t ,µt is themembership
weight for Hfuzzy(at , µt ) at time t , and at is the attention
weight over time frame t .

Furthermore, the intensity of an action also depends on the
number of the engaged joints [18]. As a concrete example,
an intense punch, in comparison to a mild one, includes
the movement of a greater number of joints across more
dimensions such as hip rotation and non-dominant hand
movement. Zhang et al. [20] use the same concept to quan-
tify the intensity of human facial actions by the number
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FIGURE 4. The procedure for our fuzzy inference system. The crisp input values are mapped into fuzzy sets through fuzzification processes, i.e.
fuzzifiers. Next, through intermediate rules and a linear combination on fuzzy inputs, an intermediate inference is computed. The linear combination
uses adaptively trained weights, i.e. adaptive filter. The final inference is performed on the intermediate output set and the fuzzified intensity score
flowing through the final inference rules.

of engaged coordinates and how much they are engaged.
As such, we also extract multi-dimensional attention over the
human key-points coordinates. Just as we calculated the fuzzy
entropy of the directional attention, we also calculate the
fuzzy entropy of the dimensional attention which is directly
related to intensity. The fuzzy weights are the product of
temporal attention and dimensional attention over every time
frame.

H ′fuzzy(a
′

(j,t), at ) = −
T∑
t=1

at ·
J∑
j=1

a′(j,t) · log(a
′

(j,t)) (4)

where at , attention weight over time frame t , is the fuzzy
weight. a′(j,t) is the attention weights over the key-point coor-
dinate (i.e. human joints) at time frame t .
Finally, considering both kinetic energies which has been

similarly used in the literature for action intensity [18]–[20],
we formulate intensity as the proportion of the fuzzy entropy
in Equation 4 over the the fuzzy entropy in Equation 3.
In other words, we measure the kinetic intensity through
the fuzzy entropy of the attention weights over the coordi-
nate’s locations divided by the fuzzy entropy of the attention
weights over the time frames. As follows:

I =
H ′fuzzy(a

′

(j,t), at )

Hfuzzy(at , |1xt |)
(5)

where, I is the intensity score, a′(j,t) is the attention weight
over the key-point joint j at time frame t .

D. FUZZY INFERENCE FOR INTENSITY INDEXING
As mentioned in section I, intensity is not a very precise
term and there is no general formula to measure a crisp value
of it. Therefore, after computing the kinetic intensity score,
our methodology uses an adaptive fuzzy inference system to

detect the intensity index based on both the kinetic intensity
score I computed from the previous section, and distribution
of the joints’ attention weights q =

〈
qj
〉
as motion patterns.

These two values are fed to our fuzzy inference system as
crisp input values. This procedure is illustrated in Figure 4.

1) FUZZIFICATION OF INTENSITY SCORE AND JOINTS’
DISTRIBUTION
In this regard, using dynamically learned membership func-
tions, these crisp input values are mapped to fuzzy sets:
I = {Imld , I int

} and Pj = {Pjint,Pjmld },2 which denote
the partitioning of the intensity score and attention weight
corresponding to joint j, respectively, into mild and intense
regions. Our fuzzy inference system looks at these fuzzy
sets as rough estimations of the intensity index. However,
the final intensity index output is computed based on these
rough estimations and fuzzy logic.

Our model dynamically learns fuzzy membership func-
tions for these fuzzy sets, i.e. µI and µPj , based on the pre-
viously computed kinetic intensity score and the distribution
of the corresponding attention weights. Using the average
intensity index and the common triangular shape, the fuzzy
membership µI is formulated as below:

µmld/int
I (I ) = max(0, 0.5+

∓(I − Ī )
σ

) (6)

where, µmld/int
I (I ) refers to the truth values of Imld and/or

I int respectively. Ī is the averaged intensity score, which
dynamically gets updated. σ defines the spread of the fuzzy
set, larger values denote more uncertainty is assumed to exist
in the data [21].

2Generally, the input values can partitioned into K categories/regions,
i.e. I = {I0,I1, . . .IK-1} and Pj = {Pj0,Pj1, . . . ,PjK−1}. But in this
project, for the sake of simplicity we use K = 2.
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The membership function µPj is adaptively computed
using the membership function of Equation 6 and categorized
distribution of joints’ attention weights along with normal-
ized cross-entropy distance. This process is elaborated upon
in the followings: Firstly, the model stores the intensity scores
of every action as well as the relative attention weights of
the spatio-temporal LSTM network. Next, by comparing the
truth values of Imld and I int we categorize the stored attention
weights into the following categories:

Cmld
=

{
aij =

µmldI (Ii)

Ti

Ti∑
t=1

a′i(j, t)

∣∣∣∣µint
I (Ii) ≤ µmldI (Ii)

}
(7)

C int
=

{
aij =

µintI (Ii)

Ti

Ti∑
t=1

a′i(j, t)

∣∣∣∣µintI (Ii) > µmldI (Ii)
}

(8)

where, i ∈ {1, 2, 3, . . . ,N } is the sample index, and j ∈
{1, 2, 3, . . . , J} is the index of human key-point/joint,N is the
number of samples and J is the number of joint coordinates,
Ti is the number of time frames in the ith sample, aij is the
corresponding joint attention weight averaged over the time
frames.

Every weight is multiplied by the corresponding µI to
highlight those with higher certainty. Then, by taking the
average over various samples of every action, we derive
customized distribution of joints’ weights for each category
of intense-mild. We calculate the softmax of these weights to
convert them into probabilistic distributions:

pmld/int
=

{
pmld/int
j = softmax

(
1
N

N∑
i=1

aij

)∣∣∣∣∀aij ∈ Cmld/int
}
(9)

Similarly, we derive a probabilistic distribution of joints’
weights for every new input sample, as follows:

q =
{
qj = softmax

(
1

TN+1

TN+1∑
t=1

a′(j,t)

)∣∣∣∣∀j ∈ {1, 2, 3, . . . , J}}
(10)

Finally, the µPj (q) is computed based on a normalized
cross-entropy distance between qj and (pintj , pmldj ) and trian-
gular shape, according to the following equation:

µmld/int
Pj

(qj) = max(0, 0.5+
∓(1H −1H̄ )

σ ′
) (11)

where, (1H = H (Pintj , qj)−H (Pmldj , qj)) in whichH (Pintj , qj)
and H (Pmldj , qj) are the cross-entropy between the softmax
activation of the attention weight distributions of intense-
mild categories, in Equation 9, and those of the current input
sample computed in Equation 10.1H̄ is the average of these
differences for all stored samples, and σ ′ defines the spread
of the fuzzy set similar to σ in Equation 6.
Algorithm 1: summarizes the step-by-step fuzzification

procedure. The procedure consists of two average values
of intensity score and difference cross-entropy which gets

Algorithm 1 The Summary of the First Stage of Our Fuzzy
Inference SystemWhich Is Fuzzification of Intensity Score I
and Joints’ Distribution q = 〈qj〉. This Process Is Performed
for Every Input Video and Updates Its Values to Dynamically
Adapt to Different Action Intensity Indexes

Ī : average intensity score
1H̄ : average difference between the cross-entropy of mild
and intense distributions
C int : collection of joint attention weights for intense
Cmld : collection of joint attention weights for mild
pint : probabilistic joint distribution for intense
pmld : probabilistic joint distribution for mild
for every input i: (ait , a′

i
(j,t), x i) do

procedure FUZZIFIER(ait , a′
i
(j,t), x i)

I i is calculated (Eq. 5), and Ī is updated (Eq. 6)
truth value µmld/int

I (I i) is calculated (Eq. 6)
*UPDATE-JOINT-DIST (a′i(j,t), µmld/int

I (I i)) F

Explained at the bottom
qi = 〈qij〉 is calculated (Eq. 10)
for every joint j do

1H is calculated between qj and Pjmld/int

1H̄ is updated
µmld/int
Pj

(qj) is calculated (Eq. 11)
end for

return µmld/int
Pj

(qij) ∀j, µmld/int
I (I i)

end procedure
end for

procedure *UPDATE-JOINT-DIST(a′(j,t), µ
mld/int
I (I ))

if µint
I (I ) ≤ µint

I (I ) then
append Cmld (Eq. 7)
update pmld (Eq. 9)

else
append C int (Eq. 8)
update pint (Eq. 9)

end if
end procedure

updated with every input video. It also includes two col-
lections which stores the joint attention weights of for mild
and intense categories which are classified by comparing the
truth values of intensity scores, and by taking an average
and softmax two probabilistic distributions are extracted
for corresponding categories. These collections and their
corresponding probabilistic distributions are dynamically
appended and updated with every new input. The procedure
gets the time frames and joints’ attention weights as well as
the key-point coordinates as input, computes the intensity
score I based on Equation 5, update its average value, maps
it to fuzzy set I using triangular fuzzy membership function
Equation 6, and updates collections and their corresponding
distributions. Next, it computes the q Equation 10 and the
cross-entropy between mild and intense distributions, update
the cross-entropy average value, and maps the q into fuzzy
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set P using fuzzy membership function Equation 11. Finally,
the procedure returns the truth values of Imld, I int, Pmld,
and P int.

2) FUZZY RULES AND INFERENCE FOR FINAL INDEXING
As mentioned in Section III-D1, the final intensity index
output is inferred based on fuzzy logic principles on the input
sets (I and Pjfor allj). In specific, the input sets are passed
through IF-THEN fuzzy logic rules, and then, by combining
these rules the final output fuzzy sets are inferred which
denote the intensity index of the performed action.

Initially, an intermediate output set is extracted by a linear
combination of the following intermediate fuzzy rules, which
we have for every set Pj:

Rmld/int
j : IF qj is Pmld/int

j THEN q is Pmld/int, weight = αj
(12)

where Rmld/int
j is a set of two rules for every joint coordinates

j, Pmld/int refers to Pmld and/or P int members of the inter-
mediate output fuzzy set P (i.e., P = {Pmld ,P int

}) which
denotes the aggregated categorization of joints’ distribution
into mild and/or intense. Each rule Rmld/int

j refers to the
corresponding joint’s individual decision on the aggregated
categorization whose role is weighted by αj. Next, we com-
bine the inferences of these rules using the linear combination
of their output fuzzy membership functions [59], to compute
the overall membership function of the intermediate output
set. This process is an adaptive filter as αjs are adaptively
learned during the training session on the intensity indexing
dataset [21]. Since the attention weights demonstrate the
exclusive patterns of the action motions, the fuzzy rules will
dynamically adapt to every category and index of actions.
The fuzzy membership function of Pmld/int is formulated as
follows:

µmld/int
P (q) =

∑
j

αjµ
mld/int
Pj◦Rj

(qj) =
∑
j

αjµ
mld/int
Pj

(qj) (13)

where,µmld/int
P (q) is the intermediate fuzzymembership func-

tion, and µmld/int
Pj◦Rj

(qj) if the fuzzy membership function for
every rule which measures the truth of the relation between
Pmld/int and every joint’s fuzzified distribution set Pmld/int

j .
The final output inference of the intensity index is pre-

dicted using the intermediate output set and the fuzzified set
of intensity score (i.e.µI ), passed through the following final
fuzzy inference rules:

Rmld
: IF I is Imld AND q is Pmld THEN y is Ymld (14)

Rint
: IF I is I int AND q is P int THEN y is Y int (15)

where y is the final inference value which belongs to the
final index set of Y = {Ymld ,Y int }. The AND pro-
cess is performed on fuzzy sets Imld/int and Pmld/int using
‘‘AND-type’’ inference introduced by [28] which compro-
mise linear combination of t-norm and s-norm of truth values
µmld/int
I (I ), µmld/int

P (q), according to the following Equation:

µmld/int
Y = λ t-norm + (1− λ) s-norm (16)

Algorithm 2 The Summary of the Fuzzy Inference Stage
Which Gets the Membership Function of the Fuzzified Sets
From Algorithm 1 and Returns the Final Inference for Inten-
sity Index. This Procedure Is Performed for Every Input and
Return the Final Inference Output Fuzzy Set Whose Mem-
bership Function Have the Maximum Truth Value

Rmld/int
j : intermediate fuzzy inference rules for every joint

j (Eq. 12)
αj: represents the role of every joint in the final inference
(Eq. 11)
Rmld/int: final fuzzy inference rules (Eq. 14 and Eq. 15)
Ymld/int: final output sets for mild and intense indexes
for every input i do

(µmld/int
I (I i), µmld/int

P (qi))=FUZZIFIER
(
ait , a′

i
(j,t), x i

)
procedureFUZZY-INFERENCE((µmld/int

I (I i), µmld/int
P

(qi)))
for every joint j do F combination of intermediate
inferences
µmld
P (q) + = αj µmld

Pj
(qj) (Eq. 13) F Rmld

j

µint
P (q) + = αj µint

Pj
(qj) (Eq. 13) F Rintj

end for
µmldY ← AND-type(Imld,Pmld) F Rmld

µintY ← AND-type(I int,P int) F Rint

return arg max
Y∈{Ymld,Y in}

µY (y)

end procedure
end for

where λ parameter can be found in the process of learning
subject to the constraint 0 < λ < 1 along with 〈αj〉.

Finally, the intensity index is predicted by comparing
Ymld ’s and Y int ’s truth values, i.e. µmld

Y and µint
Y .

Algorithm 2: summarizes the process of our fuzzy infer-
ence system which outputs the final inference for intensity
index based on input fuzzified sets Imld/int, Pmld/int from
subsubsection III-D1; along with intermediate and final fuzzy
logic rules: Rmld/int

j and Rmld/int respectively; and combining
their output fuzzy sets. The output sets of intermediate rules
〈Rmld/int

j 〉 are combined using a linear combination method
and 〈αj〉weights which show the degree of belief to each rule.
The output set of the final inference rules Rmld/int are com-
puted using AND-type of Imld/int and Pmld/int [28]. Finally,
the intensity index is inferred by comparing the truth values
of the final output fuzzy sets Ymld and Y int corresponding to
mild and intense indexes.

E. LOSS FUNCTION UPDATE
The ST-LSTM is initially trained on action recognition data of
samples with similar intensity. However, actions performed
with different intensities include different motion patterns.
Consequently, the pre-trained ST-LSTM may pay attention
the wrong joint coordinates once applied to the generated
dataset which has samples of different intensities. Therefore,
we add a penalty term to the loss function to enforce the
model to pay attention to the intended joint coordinates by
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penalizing the wrong attention weights. In this regard, we use
the cross-entropy as a distance between the input joints’
distribution of Equation 10, and those of mild and intense
categories computed from Equation 9. As such, the action
recognition module of our methodology also adapts to the
unique way a certain action-intensity is performed, e.g.
‘intense punching’ vs. ‘mild punching.’ This, addition of a
penalty term, in turn, leads to the further adaptation of the
kinetic fuzzy intensity score and of the output fuzzy rules.
Equation 17 is the loss function of the LSTM model with
the aforementioned penalty term added, enables the model
to distinguish mild and intense actions, is given as:

L(y, ŷ; p, q) = −
∑
l

yl log(ŷl)− λ
∑
j

pj log(qj) (17)

where, the first log-based term denotes cross-entropy which
is used as a distance function between the real label and the
computed softmax of the final output, i.e. y and ŷ respectively.
l is the index of the recognizable actions considered in the
model. The penalty term is added through the Lagrange mul-
tiplier λ [60]–[63], which increases with the number of input
samples related to every action. The second log-based term
is the cross-entropy penalty. q denotes the input’s distribution
of attention weights over the joint coordinates, Equation 10,
and p denotes those of the mild and intense categories, Equa-
tion 9. j is the index of human key-points/joints coordinates.
The loss function in Equation 17 enables the model to distin-
guish mild and intense actions. It improves action recognition
accuracy when the action dataset includes mild and intense
intensity indexes.

IV. EXPERIMENTS
In this section, we elaborate upon: (i) our experimental setup,
(ii) results of these experiments, (iii) the experimental discus-
sions, in which we discuss the performance and limitations of
our experiments.

A. EXPERIMENTAL SETUP
1) GENERATED DATASET FOR INTENSITY INDEXING
In order to evaluate the intensity indexing scheme and the
whole integrated model, we generated an additional dataset
of human actions with two intensity indexes: (i) intense, and
(ii) mild. In part, our objective was to minimize the data
requirements for our model, therefore, we employed a fuzzy
system for action intensity indexing, which requires only a
small amount of data. The choice of a fuzzy system allows
for the use of the pre-existing SBU dataset which is small
compared to UCF101 [64] and NTU RGB+D [65] datasets.
The SBU dataset contains 8 classes, 3 of which (exchanging
object, hugging and shaking hands) cannot be differentiated
as mild or intense due to the limitations of the model. There-
fore, we extract the other 5 classes: approaching, punching,
kicking, hugging, and pushing. For each of these classes,
we generated 100 intense and 100 mild videos. Therefore,
the generated dataset includes 1000 samples. The classifica-
tion of action intensity is subjective in nature, because for

TABLE 1. Comparison of state-of-the-art action recognition models
trained on SBU dataset. The results highlight the importance of the
spatio-temporal attention mechanism which improves the accuracy of the
ST-LSTM.

each person the perception of action intensity varies, and
depends on their physical attributes (e.g. sex, age, height,
BMI etc.) With that in mind, in our generated dataset anno-
tation, we have requested students with similar physical
attributes to perform the action with a certain intensity, and
the classification was associated to the subject’s own percep-
tion toward their performed actions. Generatingmore clusters
(mild, medium, intense) for intensity indexing requires more
data. As mentioned, we had to generate our own dataset with
mild and intense indexes to evaluate the intensity indexing
scheme. Therefore, to keep it simple, we decided to stick with
just two clusters for the intensity indexing. For future work,
more clusters can be added.

2) SPATIO-TEMPORAL LSTM
Firstly, we utilize the SBUKinetic dataset [66], which is used
for 3D classification of human key-point coordinates into an
action class, to train the spatio-temporal LSTM.3 Each video
in the SBU dataset is restricted to 2 people and each person
has 15 joints targeted as key-point coordinates in each frame.
Similar to Yun et al. [66], we apply a 5-fold cross validation
scheme to evaluate the action recognition module. As shown
in Table 1, our ST-LSTM model with attention mechanism
enhances the accuracy of the model of [37] and achieves the
state-of-the-art performance on SBU Kinetic dataset.

B. EXPERIMENTAL RESULTS
1) ACTION RECOGNITION
We use the trained Spatio-Temporal LSTM module and fine
tune it with the additional dataset which consists of actions
performed with various intensity. Since the mild and intense
actions are performed differently, in terms of motional pat-
terns, the accuracy of the ST-LSTM module drops signif-
icantly, up to 19%. Therefore, we dynamically update the
LSTM model with the results of the fuzzy inference system,
according to Equation 17, and re-evaluate it on the generated
dataset to see how the action recognition module’s accuracy

3Because we used only 5 classes for the additional dataset generation,
we stick to the same 5 classes for training the action recognition module.
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TABLE 2. The re-evaluation results of our action recognition model on
the generated dataset. The loss function has been updated according to
Equation 17 which help the model performance not to decrease
significantly.

would be influenced by the integration of the LSTM and
intensity indexing modules. Table 2 depicts the re-evaluation
results on our additional generated dataset showing the aver-
age 2.75% decrease in the overall accuracy.

2) INTENSITY INDEXING
We use the additional generated dataset to evaluate the perfor-
mance of our intensity indexing methodology. Table 3 shows
the action intensity indexing performance of our model on
the generated dataset.We have considered the fuzzy inference
rules in Equation 15 and Equation 14 separately, to measure
the F1 score and reported the averaged results. Due to the
strictness of the fuzzy inference rules, the precision of the
intensity indexing is comparably higher than other metrics.
By using both fuzzy rules jointly, we would reach higher pre-
cision; however, therewould be samples that are not classified
as intense or mild.
Actions like hugging and approaching are tough to distin-

guish between intense andmild. The fuzzymodule of the pro-
posed system takes input from the attentionweights generated
by the spatio-temporal LSTM. These attention weights are of
two type: one over the time frame, and another over the key-
point coordinates in every frame. Key-point coordinates for
approaching and hugging do not differ by much for intense
and mild classes, resulting in similar attention weights for
both intensity indexes, which makes the model drop in accu-
racy as seen in Table 3

TABLE 3. Experimental results of the intensity indexing performed on the
generated dataset. There is a subtle difference between the mild and
intense variation for hugging and approaching class which causes the
accuracy to drop.

We further compare our methodology with multi-task
learning baselines implemented on top of our ST-LSTM to
comprehend the role of the fuzzy kinetic analysis. The eval-
uation results of Table 4 demonstrates the significance of
the kinetic fuzzy intensity analysis and indexing modules
of our methodology. Similar to the evaluation scheme in

action recognition module, we use 5-fold cross validation
to evaluate the intensity indexing algorithm for each action
class. For evaluation of a model with limited data samples,
k-fold cross validation process is used. In our 5-fold cross
validation we use 4 folds for training and the remaining 1-fold
for testing. As for the baselines, we use the attention weights
as the input features to the SVM and DNN. There are two
kind of attention mechanism applied on the time frames:
one over every frame in the video and another over the key-
point coordinates in every frame. These attentionmechanisms
generate the attention weights which are the input features to
the SVM and DNN. The use of SVM, regression or fuzzy
modules is to classify the action intensity as intense or mild
whereas the ST-LSTM recognizes the action and together the
output is the action plus its nature in term of intensity. The
use of regression and SVMwas to compare their performance
with fuzzy for the task of intensity indexing from the attention
weights generated by the ST-LSTM.

C. EXPERIMENTAL DISCUSSIONS
1) JOINTS’ DISTRIBUTIONS IN INTENSE VS. MILD INDEXES
As mentioned in subsubsection III-D1, our model dynami-
cally learns the motion of every index of each action category
through the weighted distribution of joints corresponding to
the attention weights of the LSTM module. Figure 5 shows
these distributions for actions of punching and kicking with
mild and intense indexes. We fit a generalized bell function
[69] to these distributions by assigning 1.0 to them if the
intensity score is above the average Ī and the cross entropy
of intense distribution is less than the mild distribution, 0.5 if
the intensity score is less than the average but the cross
entropy with the intense distribution is still less, and 0 oth-
erwise. The Figure 5 shows, on the aggregated level, the dis-
tinct distribution of these weights for intense-mild actions.
In Figure 5, we fit the generalized bell membership func-
tion to joints’ attention weights extracted from the generated
dataset. It illustrates the difference between mild and intense
actions in terms of joints’ movement and the weight by which
the action recognition module is attending to them. As shown
in the figure, the distribution of these attention weights for the
intense actions tend to have higher variance whereas in the
mild actions they are rather dense around the average value.
In addition, while the intense actions tend to have a greater
number of joints with significant corresponding attention
weights, as for the mild actions the attention weight of only
one joint have significant value and the rest have trivial values
below 0.2. This stand to the reason that our model generates
fuzzymembership values of intensity indexes for every joint’s
motional patterns and utilizes it for final indexing inference.

2) RESTRICTIONS
In this subsection, we discuss the restrictions of our fuzzy
recurrent attention model in detail, i.e. false positives, false
negatives and explainable cases of misclassification. The
action recognition module has a separate pre-processing unit
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FIGURE 5. We fit the generalized bell membership function to these distributions by assigning a membership score of 1 if the detected index is intense,
and 0.5 if the distribution is closer to the intense category but the final intensity index is not detectable, i.e. intensity score is below the threshold. The
attention weights are multiplied by the temporal attention of the time frames.

TABLE 4. Baseline Model Comparison. Experimental Results on the
generated dataset show the fuzzy outperforms multi-task learning
baselines implemented using Regression, SVM, DNN on top of ST-LSTM.

whose function is not to achieve a contextual understanding
from the scene but merely to extract the human key-point
coordinates. Therefore, the model gets a limited understand-
ing from the scene which does not include details such as
camera angle, subjects’ directions, etc. Figure 6 demonstrates
such weaknesses of the action recognition module by pro-
viding concrete examples of the samples which have been
misclassified due to the limited contextual understanding of
the scene.

In Figure 6a, the action performed is hugging but themodel
failed to predict the performed action. Since our model is
trained using the human key-point location and predicts using
the same, the model failed to predict the action as hugging.
If both the subjects were facing one another, the prediction
could have been correct. In Figure 6b, the two humans are
shaking hands but since the camera angle is not sideways the
key-point location do not indicate the action of shaking hands
and because of the wrong camera angle, the model fails to
recognize the action performed. As for the intensity indexing
unit, the temporal distribution of attention weights over the

FIGURE 6. Example on false negative, incorrect prediction and false
positive due to poor camera angle on test videos by the Spatio-Temporal
LSTM model.

time frames does not distinguish between the key points of
the subjects performing the action, while the speed of action,
in Equation 3, refers to actions which are performed by every
individual subject. As such, the model might malfunction
in cases where two subjects are performing the action that
previously had been performed by a single subject. As a
concrete example, in Figure 6c, the two humans are walking
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slowly toward each other, but as the key point of both of
the humans are approaching fast, the temporal attention over
the time frames indicates it to be an intense action, whereas,
in reality the action performed was of mild.

V. CONCLUSION
In this paper, we incorporate fuzzy logic based inference into
neural-based action recognition systems to tackle the task of
intensity indexing from video inputs. We propose a hybrid
model of fuzzy logic in conjunction with a spatio-temporal
LSTMnetwork equippedwith an attentionmechanism, kinet-
ics and fuzzy logic concepts as well as a fuzzy inference
system. Our research shows that the implemented fuzzy logic
component is able to handle the uncertainty inherent to inter-
preting action intensity from a video. The model was able
to achieve a testing accuracy of 89.16% on our generated
dataset for the task of intensity indexing.We were also able to
determine the dynamic fuzzy logic rules to detect the intensity
index for different action classes.

In the future, to help detection of aggressive and bullying
behavior, we suggest using an enhanced version of our fuzzy
recurrent attention model to perform action recognition with
more classes of actions, with one or multiple objects which
are intra-related. Enhanced version refers to the future work
where we intend to add more sophistication to the model by
adding more action classes and intensity indexes compared to
the two indexes used in the current version: intense and mild.
Coupled with these modifications, we also aim to improve
the adaptive learning of the model, thus making it a more
enhanced version of this base model.
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