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ABSTRACT To satisfy enterprise demands of analyzing and dealing with the large scale of data with lower
costs, an effective method is to integrate the servers and computers and use virtualization technology to
construct an enterprise network. Prior studies on network virtualization have mainly been executed in the
cloud; however, these studies may not be appropriate for enterprise networks for two reasons: i) the goal of
most of them is to generate more revenues for cloud providers, but focus less on saving costs; ii) the physical
machines are relatively concentrated in the cloud platform but dispersed over different geographic locations
in enterprise networks. In this paper, we solve the problem of energy-optimized virtual network embedding
with location constraints (EO-VNE). First, the node and link capabilities in enterprise networks are defined
in the form of complex number theory, unifying computers and virtual requests. Second, the normalized
method of computing and storage capabilities are proposed to identify the node capability. Third, an energy
model of the enterprise network is built, and using this model, EO-VNE is shown to be NP-complete.
Finally, an energy-optimized virtual network embedding with a location constraint algorithm (EOLC) is
proposed to minimize the energy consumption under the constraint of node position. The experiments show
that EOLC consumes less energy compared with the algorithm of energy-aware virtual network embedding
with dynamic demands (EAD). It also has better performance than the location constraint algorithm based
on bisection (GLC).

INDEX TERMS Energy optimization, location-constrained, virtual network embedding, enterprise network.

I. INTRODUCTION
Generally, enterprises require a large infrastructure to analyze
and process large-scale data. To obtain the infrastructure, they
can rent cloud platforms or build private data centers. How-
ever, they are willing to construct their private centers to pro-
tect the privacy of data, which may face high building costs.
To decrease this cost, a good approach is to utilize the existing
computing devices and enterprise network to compose the
substrate networks that can accommodate and run data tasks.
In this case, an inevitable problem is to efficiently share
the resources, named virtual network embedding (VNE) [1].
VNE allows heterogeneous networks to coexist in the same
substrate network, and the resources in VNE can be shared
by different types of tasks [2].

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

The VNE problem has been extensively studied in cloud
platforms [3]–[5]. These studies assume good conditions,
such as infinite network resources and sufficient task exe-
cution time. Additionally, most of these studies are aimed
at optimizing the benefits of cloud providers. However,
the above conditions do not apply to the enterprise net-
work for the following reasons. 1) Because computers in
the enterprise network are located in different offices and
they can only provide limited resources, a virtual machine
can only be mapped on one physical machine in a single
process of VNE. Additionally, a communication link between
two virtual nodes can only be embedded on a single phys-
ical path. 2) The arriving number of virtual requests (VRs)
varies at different time, so dynamic features must be con-
sidered during the procedure of VNE. 3) Because comput-
ers in the enterprise network provide various resources and
QoS, VRs may choose different computers to obtain suitable
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services. This implies that the location constraint of physi-
cal nodes should be considered. 4) The enterprise network
generates the tasks to be executed, so benefit optimization
is not the goal of VNE, but cost savings are its main goal.
Simultaneously, energy consumption is a major component
of cost savings. The problem in this paper is VNE energy
optimization with location-constrained for the enterprise
network (EO-VNE).

To solve the above problem, an energy optimization vir-
tual network embedding with a location constraint algo-
rithm (EOLC) is proposed for the enterprise network. The
main contributions of our paper are described as follows.

(1) The complex number theory is adopted to define the
node capability and link capability in the network, which,
to the best of our knowledge, has not been studied before.
Based on the complex number theory, the computing and
storage capabilities are integrated into the real part, reducing
the times of comparison whether a physical node can accom-
modate the virtual requests.

(2) A dynamic feature model is constructed to satisfy the
variety of virtual requests in the enterprise network, where a
Gaussian distribution is used to reflect the computing capa-
bility of computers.

(3) The normalized method of computing and storage
capabilities is proposed to determine whether physical nodes
accommodate virtual nodes. The linear energy model of the
CPU is improved to identify the actual utilization of computer
nodes in the enterprise network.

(4) A model is designed to prove that EO-VNE is
NP-complete. The EOLC algorithm is presented to optimize
the energy consumption of the enterprise network.

The rest of this paper is briefly described as follows. The
related work is summarized in Section II. EO-VNE model
and EOLC are introduced in Section III. The performance
evaluation of EOLC is shown in Section IV. The conclusion
is presented in Section V.

II. RELATED WORK
VNE is a key issue in the field of network virtualiza-
tion and has received extensive attention from researchers.
For the review of previous studies, the problems of VNE
mainly focus on virtual machine assignment and ben-
efit optimization. We briefly review the representative
work.

Chowdhury et al. [6] proposed a deterministic VNE
embedding algorithm (DViNELB) that leveraged better coor-
dination between the node and link phases. Dehury and
Sahoo [7] addressed the dynamic resource demands in the
VNE process. The purpose was to use maximum physical
resources obtained from the local and global fitness value of
virtual machines. In [8], an embedding model was built to
address the resource allocation of the VNE problem, consid-
ering the computing, network and storage resources. In addi-
tion to virtual machine assignment, the energy consumption
related to benefit optimization has attracted more researchers
in recent years.

In [9], the base station virtual network protocol with
firefly (BSVF) was presented to decrease the network
energy consumption. BSVF was a meta-heuristic firefly
algorithm that only shared information with neighboring
nodes. The algorithm of energy-aware VNE with dynamic
demands (EAD) was addressed in [10]. EAD modeled
the dynamic demands as a Gaussian distribution and then
designed a heuristic algorithm to minimize the energy con-
sumption. In [11], energy-QoS balance in the cloud data cen-
ter was achieved through the introduction of virtual machine
integration technology. Zhang [12] presented a new node
ranking scheme and differentiated pricing strategy to evaluate
the node and link weights during the VNE process, which
achieved a better trade-off between the energy consumption
and network load balance. A hybrid algorithm was studied
in [13]. This algorithm combined the greedy randomized
adaptive search procedure and the reduced variable neigh-
borhood search method to obtain the better energy efficiency
in VNE. Davalos et al. [14] modeled the VNE problem as
a multiobjective mixed integer linear problem (MILP) to
maximize the benefits and minimize the costs. Fan et al. [15]
proposed a multi-sleep mode scheduling scheme for servers.
Different strategies were designed to determine which servers
or when should sleep to save energy consumption. However,
these investigations are designed for the cloud and may not
be valid in the enterprise network. In addition, they did not
consider the location constraint, which is very important for
many real VNE applications.

To study the problem of the VNE with location con-
straint (LC), a multi-commodity flow problem was intro-
duced, and MILP was designed to coordinate node and link
mapping in [6], but it did not provide a good solution.
In [16], a resource management approach was proposed to
choose the locations, types and cloud instances, which met
the performance requirements and reduced analysis costs.
The genetic-based approach appeared in [17], which selected
and leased virtual machines with lower costs and latency
for users based on the location of service. A mechanism
was proposed in [18] to detect the user’s location and select
the adequate cloud resources. A location constraint model
based on a bisection graph (GLC) was proposed in [19], and
this model was solved with the method of maximal clique
under the condition that the substrate network had sufficient
resources. In [20], the energy-aware and location-constrained
virtual network embedding algorithm was proposed to
decrease the energy consumption in the enterprise net-
work. This algorithm only considered CPU and band-
width requirements and could partially meet the enterprise
demands.

III. ENERGY OPTIMIZATION AND LOCATION
CONSTRAINT VNE
A. THE DEFINITIONS IN EO-VNE
The capabilities of computers in VNE can be divided into
node capability and link capability. Hence, the complex num-
ber theory is introduced to represent the two attributes.
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FIGURE 1. The condition of an acceptable virtual node.

Definition 1 (Network): A network is denoted as G, which
is composed of a substrate network Gs and a virtual net-
work Gv.
Definition 2 (Node): A complex number is defined to

describe the capabilities of physical or virtual nodes. The real
part value represents the node capability. The imaginary part
value represents the link capability.
Definition 3 (Type of Virtual Nodes): A requirement type

of virtual nodes is represented as a parameter whose value is
equal to arctg

(
b
/
c
)
, where b is the imaginary part and c is

the real part.
Definition 4 (Acceptable Virtual Node): When a phys-

ical node accommodates a virtual node, this virtual node
is defined as an acceptable virtual node if it satisfies the
condition that the slope K is greater than or equal to 0.
To normalize values of the real and the imaginary parts

simultaneously in Definition 2, an approach is presented and
demonstrated from two aspects. The value of the real part
is computed by the quotient, which is defined as the node
capability divided by the standard node capability. Addition-
ally, the value of the imaginary part is computed in the same
way, that is, its value is equal to link capability divided by
the standard link capability. Note that the complex number
of standard node is not a constant value. It should be set in
advance according to the performance of computers in the
enterprise network. However, it will not affect the perfor-
mance of EOLC, regardless of the value of the standard node.

A detailed explanation of Definition 4 is shown in Figure 1.
OA denotes the capabilities of a virtual node, and OB denotes
the capabilities of a physical node. AC and AD are parallel to
the x-axis and the y-axis, respectively. If the physical node can
accommodate the virtual node, the location of point B should
be between C and D, i.e., the slope K of AB is greater than or
equal to 0.

B. EO-VNE NETWORK
The substrate network is modeled as an undirected weighted
graph Gs (Vs,Es), where Vs denotes a set of physical nodes
and Es denotes a set of physical links.
The physical node is denoted as vis, and the link is denoted

as l is. The link value is correlated to the starting node of this
link, and the value varies over time.

Similar to Gs, the virtual network is Gv (Vv,Ev,LCv). The
difference is that LCv is introduced to represent the location
constraint. The virtual node viv can choose preferred physi-
cal nodes as the candidate set, which is denoted as 9ρviv

={
vks ∈ Vs

∣∣∥∥vks − viv∥∥ ≤ ρ }, where ρ is a radius and
∥∥vks − viv∥∥

is the distance between two nodes.
CPU requests, storage requests, and bandwidth requests

are dynamic over time in the cloud platform. However, CPU
resources are a major requirement for tasks in the enter-
prise network, neither storage resources nor link resources.
Therefore, the variations of storage and bandwidth requests
are more stable than the variations in the cloud. In this
paper, the dynamic characteristics of storage and bandwidth
requirements are ignored. According to the CPU data in [21],
the CPU requirement obeys a Gaussian distribution with a
mean value µ and a standard deviation σ .

An example of EO-VNE is shown in Figure 2. Figure 2(a)
denotes the substrate network. Figure 2(b) denotes two virtual
requests. Figure 2(c) denotes one of the solutions. To compute
the available capabilities, the complex number of nodes is
denoted as R + Ii. In (a), the provided resource value of A is
RA+ IAi. In (b), the requested resource value of a is Ra+ Iai,
and the set of candidate nodes is {A}. Taking A as an example,
a is embedded to A in the beginning of VNE, so the available
resource value of A is computed as (RA − Ra) + (IA − Ia)i,
which is 30+40i. Then, b is embedded to C , so the available
resource value of C is computed as (RC − Rb) + (IC − Ib)i,
which is 30 + 35i. However, the communication request
between a and b is Ia, so the available resource value of
C is recomputed as (RC − Rb) + (IC − Ib − Ia)i, which
is 30 + 5i. When c is embedded to D, the communication
request between c and a is Ic; therefore, A is updated from
(RA − Ra)+ (IA − Ia)i to (RA − Ra)+ (IA − Ia − Ic)i, which
is 30+ 20i.

C. EO-VNE MODEL
Generally, the process of VNE is either node mapping pri-
ority or link mapping priority, but the embedding process
in EO-VNE is a special scenario. The link capability can
be integrated into node capability according to the complex
number theory. Therefore, node embedding should be given
more attention during the process of VNE.

The node capability is composed of computing and storage
capabilities. To meet the actual rules of complex number,
the values of both computing and storage capabilities should
be normalized to a value. A node in G is denoted as i, and the
computing and storage capabilities of i are defined as com(i)
and stor(i), respectively. A weighting factor α ∈ [0, 1] is set
to balance the computing and storage capabilities.
Node Capability Model: The node capability of i is marked

as ci, which can be calculated using (1).

ci = α ∗
com (i)∑

k∈V
com (k)

+ (1− α) ∗
stor (i)∑

k∈V
stor (k)

(1)

where k is the node in V .
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FIGURE 2. An example of EO-VNE.

Node Energy Model: To meet the actual situation of com-
puter nodes in the enterprise network, the node energy linear
model is improved using (2):

P=

{
Pb+(Pmax − Pmin) · CPU if the node is active
0 otherwise

(2)

where Pb is the baseline power, Pmax and Pmin are the full
workload power and the empty workload power, respectively,
and CPU is the current workload. Note that for the servers,
Pb is equal to Pmin. However, for the computer nodes, Pmin
is calculated using Pb + (Pmax − Pb) ·CPU ′, where CPU ′ is
the official software workload. The computer may be a daily
work node and an EO-VNE node at the same time. Hence,
daily work may utilize software tools, which causes changes
in the CPU and energy consumption. However, this part of
energy is not calculated in the EO-VNE model.

In the process of VNE, there are two types of physical
nodes, namely, the hosting node and the forwarding node.
The energy consumption of each type of node is different.
A node may also belong to two types at the same time, and
in this situation, the type of node is the hosting node. Hence,
the energy consumption in the period of T can be computed
as:

E1 (T ) =
∫ T

0
[Pb (H (t)+ F (t))

+ (Pmax − Pmin)
∑Vv(t)

i=1
CPUi (t)

]
dt (3)

In (3), H (t) is the hosting node number at time t and F(t)
is the forwarding node number, Vv (t) is the virtual node
number, and CPUi(t) is the CPU requirement of virtual node
i.
Link Energy Model: As shown in [10], the energy of the

unit link is usually set as a fixed value Pfix . Thus, the link
energy can be computed as:

E2 (T ) = Pfix

·

∫ T

0

∑Vv(t)

i=1

∑
vijv∈φ(viv)

∑
vs∈f

(
viv→vjv

) |vs| · b (t) dt (4)

The link of two virtual nodes is vijv =
{
vjv
∣∣∣vjv = φ (viv)}.

In this link, viv is the starting node and vjv is the ending node.
When viv sends data to v

j
v (viv→ vjv), all the forwarding virtual

nodes on this communication link can form a set φ
(
viv
)
.

f
(
viv→ vjv

)
denotes the set of physical nodes that are located

in the link between viv and vjv. |vs| denotes the hop-count
corresponding to viv→ vjv. b (t) denotes the link requirement
satisfying viv→ vjv at time t .

The goal of EO-VNE is to obtain a solution scheme that
makes the overall energy consumption less than or equal to a
positive number EQ.

E = E1 + E2 ≤ EQ (5)

The EO-VNE solution is an embedding scheme from a
virtual network to a physical network, and it needs to meet
the following constraints.

(1) Node mapping constraint. A virtual node can only
be embedded to one physical node in a VNE process. The
embedding function is g (·).

vs = g (vv) (6)

g
(
v1v
)
= g

(
v2v
)

if f v1v = v2v (7)

(2) Location constraint. The candidate set of a virtual node
is denoted as follows.

vs =
{
vks
∣∣∣vks ∈ 9ρviv& vks = g

(
viv
) }

(8)

(3) Node capability constraint. As shown in Definition 4,
if a virtual node can be embedded to a physical node, then K
is greater than or equal to 0. Note that the node that has the
minimized link value located on the path of viv and v

j
v should

be found. The link value of this node is used to compute K .

K =
min

(
bvss
)
− bv

ij
v
v

c
vks
s − c

viv
v

≥ 0, if vks = g
(
viv
)
&

vs ∈ f
(
viv→ vjv

)
(9)
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D. EO-VNE COMPLEXITY
The bisection problem is NP-complete [19]. Specifically,
given G (V ,E) and a nonnegative integer Z , whether there
exist two subsetsV1 andV2, satisfyingV = V1∪V2,V1∩V2 =
φ, |V1| =

⌈
|V |
/
2
⌉
, |V2| =

⌊
|V |
/
2
⌋
, and the number of links

between V1 and V2 is not more than Z .
Lemma 1: The EO-VNE problem is NP-complete.
Proof: First, the EO-VNE problem is a NP problem.

When an embedding scheme is found, the determination of
whether (6) - (9) are satisfied can be completed in polynomial
time.

Then, we prove that EO-VNE has a desired solution if and
only if there is a desired bisection graph. As shown in the
bisection graphG (V ,E), EO-VNE hasGv (Vv,Ev) satisfying
Vv = V andEv = E . The node comes directly from the virtual
network, which is denoted by V 1

v =
{
αiv
}
(i ∈ [1, |Vv|]),

where node αiv comes from Gv. The situation of link E1
v is

similar to V 1
v . The subgraph with V 1

v and E1
v is denoted as

α − island , and the other set is V 2
v =

{
βkv
}
, where k ∈

[1, |Vv|]. The nodes in this set are extra nodes. The links are
E2
v = φ. V

2
v and E2

v form a subgraph, which is β− island . β iv
and αiv are one-to-one correspondences.

In the substrate network, two complete subgraphs α′ −
island and β ′ − island can be constructed as follows.

V 1
s =

⋃{
αis

}
,

E1
s =

{(
αis, α

j
s

)
∈ V 1

s × V
1
s , i 6= j, i, j ∈

[
1,
∣∣∣V 1

s

∣∣∣]} (10)

V 2
s =

⋃{
βks

}
,

E2
s =

{(
βks , β

h
s

)
∈ V 2

s × V
2
s , k 6= h, k, h ∈

[
1,
∣∣∣V 2

s

∣∣∣]} (11)

The bridge needs to be built to connect α′ − island and
β ′ − island . Only two nodes chosen from α′ − island and
β ′ − island are denoted as in-bridge oins and out-bridge oouts ,
respectively. These two nodes are the initiation and termi-
nation of the bridge. The nodes in the α′ − island are all
connected to oins . The nodes in the β−island are all connected
to oouts . Two types of paths can be built in the bridge: the
direct connection and the 1-hops connection. The detailed
descriptions are as follows.

V ′s =
⋃{

vis
}⋃{

oins , o
out
s

}
i ∈ [1,1+ 1] (12)

where vis is the node in the 1-hops line topology.

E1′
s =

{(
αis, o

in
s

) ∣∣∣αis ∈ V 1
s

}⋃{(
β is, o

out
s

) ∣∣∣β is ∈ V 2
s

}
(13)

where E1′
s is the set of links in the 1-hops line topology.

E2′
s =

{(
oins , o

out
s

)}
(14)

where E2′
s is the first type of path.

E3′
s =

{(
oins , v

i
s

)}⋃(⋃{(
vis, v

k
s

) ∣∣∣∣∣∣vis→ vks
∣∣∣ = 1})⋃{(

vks , o
out
s

)}
(15)

where E3′
s is the second type of path.

∣∣vis→ vks
∣∣ is the number

of forwarding nodes located in the communication path.
On this basis, the location constraints are described as

9
ρ

αiv
=
{
αis, β

i
s
}
, 9ρ

β iv
= V 1

s if i ≤
⌈
|V |
/
2
⌉

and 9ρ
β iv
=

V 2
s if i >

⌊
|V |
/
2
⌋
. When the physical nodes have a unit

energy of both node capability and link capability, EQ can be
computed using the following formula.

EQ = 2
(
|V | +

⌊
|V |
/
2
⌋2
+
⌈
|V |
/
2
⌉2)
+ |E| + |V |2 (16)

All the steps mentioned above can be done in polynomial
time.

Then, the nodemapping function that embeds virtual nodes
to physical nodes is constructed as follows.

2
(
β iv

)
=


αis αiv ∈ V1&i ≤

⌈
|V |
/
2
⌉
&

αiv

⋂
αiv = φ&α

i
v

⋃
αiv = V1

β is αiv ∈ V2& i >
⌊
|V |
/
2
⌋
&

β iv

⋂
β iv = φ&β

i
v

⋃
β iv = V2

(17)

When the node mapping function is determined, the link
mapping function is obvious. Based on the above steps,
EO-VNE can be converted to a bisection graph. Therefore,
EO-VNE is NP-complete.

E. THE SOLUTION OF EO-VNE
From Lemma 1, the solution of EO-VNE cannot be found
in polynomial time, so the energy-optimized virtual network
embedding with the location constraint algorithm (EOLC) is
proposed to find the near-optimal solution.

In the enterprise network, two different virtual nodes
cannot be mapped to one physical node in a VNE pro-
cess, which satisfies the requirement of a bisection graph.
At the same time, physical nodes that provide better QoS
are usually selected by more than one virtual node, such that
V1
⋂
V2 6= φ. Therefore, the predealing process is designed

to satisfy V1
⋂
V2 = φ. Three methods are presented. (1) The

virtual node with the smallest candidate set is found; then
the candidate nodes are randomly chosen and removed from
the candidate set of remaining virtual nodes. (2) The number
of each candidate node is computed, and the smallest one
is determined. The virtual node with this candidate node is
then randomly chosen. This candidate node is removed from
the candidate set of remaining virtual nodes. (3) As in (2),
the candidate node with the largest number is chosen.

After the predealing process, a matching graph (MG) is
constructed to unify the bisection graph, node capability and
link capability. Two construction rules are obeyed. (1) A node
in MG is a candidate physical link. For example, two virtual
nodes a and b have their candidates {c} and {d, e}. If a wants
to communicate to b, two nodes are created in the matching
graph. The first node is d when d is the neighbor of c in
the substrate network, i.e., (c, d). The other node is f when
e is not the neighbor of c but f is the neighbor of both c
and e, i.e., (c, f ), (f , e). (2) When two links have a common
physical node, the link in MG is drawn. In other words,
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the two links can accommodate two non-adjacent candidate
links, or they are candidate paths of two adjacent links. The
detailed predealing process and MG construction are shown
in Algorithm 1.

Similar to [22], the solution of EOLC is equivalent to
finding the maximum set of MG. This set should sat-
isfy covering the links of VRs and meet the constraints
in (6) - (9). Hence, heuristic Algorithm 2 is presented to
obtain the near-optimal maximum set.

IV. SIMULATION
A. SIMULATION SETUP
Because the GT-ITM tool [23] can be widely used in gen-
erating the network topology, we adopt it to generate and
simulate the enterprise network environment. The generated
topology can simulate the real network and finally produce
realistic simulation results. The experiments run on the sub-
strate network with 50 computers and 4 servers. Similar to
the work [10], [19], the network grid is set as 100 × 100.
The computers are randomly mapped into the grids, but the
servers are in the same grid. This setting is suited for an actual
enterprise network, where the computers in various offices
are usually located in different rooms, but the servers are
in the same room. The number of virtual network require-
ments is randomly selected from 1 to 10. The probability
of any two virtual node connections is 0.5. viv selects some
physical nodes located in a circle, and finally, these selected
physical nodes form a candidate set, where the number of
nodes it contains is any value from 1 to 10. The center of
the circle is viv, and the radius r is between 15 and 30. The
virtual requirement arrival rates follow the Poisson process
in which the average arrival rate is 5 per 10 minutes and the
holding time is the exponential distribution of 500 minutes.
Parameter α is 0.8. The CPU requirements of virtual nodes
obey a Gaussian distribution with N (µ, σ ), µ ∈ [0, 20] and
σ ∈ [0, 10]. The value of parameter Pb is 165 W and
Pmax − Pmin is 15 W/CPU unit [10].

B. PERFORMANCE VALUATION
The MILP algorithm [6] is adopted as a benchmark for eval-
uating the solution of EOLC. This algorithm was adjusted to
fit the scenario in this paper, including two modifications.
The first one is to extend node capability to a combination
of computing and storage capabilities. The second one is to
add the judgement of the node location. A detail description
of comparison algorithms is shown in Tab.1. Then, the opti-
mal solution E∗ and the solution of EOLC E are obtained.
A parameter ω is introduced to denote the distance between
E∗ and E . This parameter is calculated by ω = (E − E∗)

/
E .

The other parameter named blocking probability is set to
denote the probability of unserveable VRs. It is calculated
using$ = lim

t→T

|0blocked (t)|
|0blocked (t)|+|0accepted (t)|

, t and T are the current

time and the deadline time, respectively. The servers are
usually powered within 24 hours, so T →+∞. 0blocked (t) is
the set of blocked VRs and 0accepted (t) is the accepted VRs.

Algorithm 1 The Predealing Process and Matching Graph
Construction
Input: The complex numbers of both physical and virtual

nodes and the candidate sets of virtual nodes.
Output: MG.
1: Calculate the sum of computing and storage capa-

bilities of virtual nodes with
∑

vv∈Vv com (vv) and∑
vv∈Vv stor (vv), respectively.

2: Calculate the sum of computing capability and storage
capability of physical nodes with

∑
vs∈Vs com (vs) and∑

vs∈Vs stor (vs), respectively.
3: Calculate the value of adjusting factor as: ζ =

α

∑
vv∈Vv com(vv)∑
vs∈Vs com(vs)

+ (1− α)
∑

vv∈Vv stor(vv)∑
vs∈Vs stor(vs)

.
4: for (each vv ∈ Vv) do
5: Calculate the virtual node capability cvv with (1), then

adjust the value of cvv as cvv = cvv ∗ ζ .
6: for (each vs ∈ 9

ρ
vv ) do

7: Calculate the physical node capability with (1).
8: if (K < 0) then
9: Remove vs from 9

ρ
vv .

10: end if
11: end for
12: end for
13: Utilize the predealing process method to form a new

candidate set vs ∈ 9
ρ
vv corresponding to each vv.

14: for (each connection between viv and v
j
v) do

15: for (each vis ∈ 9
ρ

viv
) do

16: for (each vjs ∈ 9
ρ

vjv
) do

17: if (vis is directly connected to vjs) then
18: Add a new node inMG andmark it as ‘‘vis -v

j
s’’.

19: else
20: Find a path between vis and v

j
s with the shortest

path algorithm, and mark with ‘‘vis -. . . - v
j
s’’.

21: end if
22: end for
23: end for
24: end for
25: Mark the nodes to represent the same candidate path of

vis and v
j
s in one group.

26: for (each vmMG ∈MG) do
27: for (each vnMG ∈MG& m 6= n& vmMG and vnMG are not

in the same group) do
28: if (two adjacent candidate paths accommodate the

same common node ‘‘vis’’ | two adjacent candidate
paths accommodate two virtual links) then

29: Create a link to connect vmMG and vnMG.
30: end if
31: end for
32: end for
33: Output MG.

Figure 3 is the comparison of ω with DVINELB, GLC
and EOLC. Each data point is 5 VRs. The disparity is small
when the algorithm introduces load balancing because load
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TABLE 1. Comparison Algorithms.

Algorithm 2 The Near-Optimal Maximum set Algorithm
Input: Gs, Gv, MG
Output: The maximum setM
1: M = φ.
2: if (viv is the neighbor of v

j
v & vis = g

(
viv
)

& vjs = g
(
vjv
)

& (‘‘vis -. . . -v
j
s’’ || vis‘‘ - v

j
s’’) is the mark of a node 3 in

MG) then
3: Compute the bandwidth requirement b

vi,vj
v .

4: end if
5: Create a setDS based on b

vi,vj
v sorted in descending order.

6: for (each b
vi,vj
v ∈ DS) do

7: if (min
(
b
vks
s

)
≥ b

vi,vj
v , vks ∈

{
vis, · · · , v

j
s

}
& cvis < cviv

& c
vj
s < c

vj
v ) then

8: M ′← 3.
9: else
10: Return ‘‘Finding the maximum set failed!’’.
11: end if
12: Select the node inM ′ that has the minimum tops, then

add this node toM .
13: Update the real and imaginary parts of the physical

nodes.
14: end for
15: ReturnM ;

balancing causes the algorithm to choose higher resource
consumption tomake the remaining resourcesmore adequate.
EOLC and GLC can provide similar optimization disparity,
but EOLC requires less execution time than GLC because the
introduction of complex number theory makes EOLC focuses
on node mapping, i.e., the link embedding only occurs when
a new node is embedded.

FIGURE 3. The disparity of optimization solution ω.

Figure 4 demonstrates the evaluation of Algorithm 1. Each
data point is 5 VRs. As the number of VRs and the radius
r increase, the probability of overlapping candidate sets with
different VRs will increase, which causes ω to become larger.
Although when the number of VRs is 10 and r is 30, ω is still
less than 15%, which is relatively smaller compared to the
results of other heuristic algorithms. Figure 5 shows the num-
ber of solutions found using different heuristic algorithms.
Each data point is 5 VRs. In the simulations, the maximum
number of solutions is 30. An interesting observation is that
the number of solutions found using EOLC is relatively
smaller than the number found using DVINELB because in
DVINELB, the multipath mapping is allowed, while EOLC is
based on mapping on nodes and it only allows the single-path
mapping.

The comparison results of $ are shown in Figure 6. The
blocking probability values of EOLC are between those of
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FIGURE 4. The disparity of optimization solution with r .

FIGURE 5. The number of solutions found using three algorithms.

FIGURE 6. The obtained $ using three algorithms.

DVINELB and GLC because GLC has adequate resources.
These resources guarantee obtaining the optimal solution
for a long time. However, EOLC is used for the enterprise

FIGURE 7. Blocking probability values of different radii.

FIGURE 8. The normalized computing time of different radii.

network, and the remaining resources are not enough to
obtain the best optimal solution in all time. Therefore, EOLC
with a parameter$ performs worse than GLC.
Figure 7 shows the performance of EOLC. In Algorithm 1,

the candidate sets will overlap among different VRs, which
makes EOLC perform worse. Hence, the blocking probabil-
ity values with different r are evaluated. From this figure,
the EOLC algorithm can achieve lower blocking probabil-
ity values than other algorithms. Note that the number of
candidate sets increases when r increases, causing the solu-
tion space to increase, which is the reason that the EOLC
algorithm performs better. However, the performance is not
always good, especially when the node mapping encounters
the bottleneck.

Figure 8 shows the time complexity of EOLC. The com-
puting time of EOLC is set as a benchmark, and this bench-
mark is used to convert the time of other algorithms into
the normalized computing time. The simulation environ-
ment is composed of a server with 3.3GHz Intel Xeon
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FIGURE 9. The average energy consumption of VRs with small-sized scale.

FIGURE 10. The average energy consumption of VRs with medium-sized
scale.

E3-1225 v5 CPU and 16G RAM. The results demonstrate
that the EOLC algorithm requires considerably less comput-
ing time, especially when r is small because the DVINELB
algorithm must solve the linear programming problem twice,
which may require considerable computing time. Benefiting
from Algorithm 1, EOLC can find the solution space with
fewer iterations than GLC. It is also found that the computing
time is less affected by the network size. The parameter r
is the key factor which can affect the complexity of EOLC.
When r is large, the candidate set of a virtual request is large.
However, after predealing process, there may not be many
vertexes in constructed matching graph, so the computing
time of finding solutions will not be affected. Noting that,
when the size of matching graph is large, it may get the
solutions easily, so as to decrease the computing time.

C. ENERGY CONSUMPTION VALUATION
Figure 9 and Figure 10 evaluate energy consumption using
EOLC and EAD. In Figure 9, when VRs with small-sized

FIGURE 11. The average energy consumption of VRs with large-sized
scale.

FIGURE 12. Comparison of energy saving probability using BSVF and
EOLC.

scale arrive, EOLC has less energy consumption than the
EAD algorithm. In addition, the remaining resources are
abundant in the enterprise network when the size of the
VR scale is small. Therefore the physical nodes can be rela-
tively concentrated, and the number of forwarding nodes can
be reduced. However, as shown in Figure 10, when VRs with
medium-sized scale arrive (the VRs arrival rate is adjusted
to 10 per 10 minutes), the curves of EAD and EOLC become
closer because as the number of VRs increases, the remaining
resources of current physical nodes decreases. This makes it
more difficult to calculate the best solution of EOLC. There-
fore, more physical nodes are needed to join the substrate
network, resulting in extra energy consumption. Especially
when the size of the VR scale is large, the energy consump-
tion can exceed that of the EAD. As shown in Figure 11,
the energy consumption of EAD is less than that of EOLC
when the scale size of VRs is large (the VR arrival rate
is adjusted to 15 per 10 minutes) because EAD considers
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the subsequent bandwidth requirements and performs link
mapping in advance, thereby improving the use efficiency
of the substrate link resources. However, the link embed-
ding process accompanies the node embedding process,
so it is difficult to consider the bandwidth requirements in
advance.

An additional evaluation of energy saving probability com-
pared to the BSVF algorithm is performed to show the per-
formance of EOLC, as shown in Figure 12. Each data point is
10 VRs. Because the nodes in EOLC are always powered on
in the enterprise network, however, when the nodes in BSVF
are useless, they can be shut down or put in sleep mode.
Therefore, the algorithms EOLC and BSVF only consider
the VR mapping process and executing process. Addition-
ally, the EOLC algorithm has a much higher energy saving
probability in view of reducing the time of VNE and avoiding
frequent shifting between nodes.

V. CONCLUSION
Intergrading the available resources in the enterprise net-
work is an effective approach to improve the data process-
ing capability of the enterprise. In this approach, the virtual
technology can be utilized and the energy consumption
must be considered. So, in this paper, the energy-optimized
VNE problem with a location constraint is proposed and
solved. First, the complex number theory is introduced to
unify the computing, storage and link capabilities into node
capability. The EO-VNE network is built and the capabili-
ties of nodes are computed with the complex number the-
ory. Then, the energy optimization problem is modeled as
EO-VNE. In this model, the energy consumption of nodes
and links is calculated with the location constraint. Third,
a method for converting EO-VNE into a bisection graph
is proposed, and EO-VNE is shown to be NP-complete.
Fourth, to obtain the optimal solution of EO-VNE, a heuristic
algorithm EOLC is designed. Finally, the performance of
EOLC is evaluated in detail with the disparity of optimization
solution, the number of solutions, the blocking probabil-
ity, the computing time, and the energy consumption. The
evaluation results indicate that the performance of EOLC is
better and the energy consumption is lower than EAD and
BSVF.

In the future, the heuristic algorithm will be improved to fit
long-time virtual network embedding of enterprise networks.
And the restriction on bandwidth will be considered suitable
for multi-region enterprise networks.
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