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ABSTRACT We expect that 5G will support a large volume of data traffic to provide various services
with a low latency. This will inevitably require an increased amount of energy. Wireless power transfer
needs a higher receiver sensitivity than data decoding. Increased electromagnetic fields may introduce
harmful effects on living organisms. Fortunately, massive multiple-input and multiple-output (MIMO)
can provide significant gains in radiated energy and spectral efficiencies. Cognitive radio and 5G are
emerging technologies. In this paper, we show that cognitive spectrum sensing and power harvesting can be
accomplished simultaneously. Energy detection (ED) with energy harvesting has been widely investigated.
However, ED may not work at a low signal-to-noise ratio with a harsh signal fluctuation in millimeter-wave
in 5G. Therefore, we focus on cyclostationary spectrum sensing in this paper. We show that the maximum
likelihood cyclostationary detection that can be used for power harvesting is the power squared. The cyclic
power can be conveniently harvested and used for spectrum sensing.

INDEX TERMS Cognitive radios, cyclostationary spectrum sensing, massive MIMO, power harvesting.

I. INTRODUCTION
Dvices in the 5G Internet of Things (IoT) consume a large
amount of energy. Although there have been many efforts
to create power management policies, the sensor nodes’
lifetimes still remain a performance bottleneck and make
the wide-range deployment of IoT challenging [1], [2].
Regarding limited battery capacity, the wireless power trans-
fer (WPT) technique is suitable for charging the battery [3].
Another promising technique is to harvest power directly
from the radio frequency (RF) electromagnetic waves coming
from dedicated wireless energy sources that transmit a known
amount of energy at specific locations and times, together
with the usual information signals by simultaneous wireless
information and power transfer (SWIPT) [4], [5]. In general,
it is not possible to perform energy harvesting (EH) and
information decoding (ID) operations on the same received
signal in a SWIPT system, as the EH operation on the
RF signal destroys the information content of the signal.
Hence, ID and EH are performed by separate receivers,
time switching receivers, or power splitting receivers [6].
The schemes are practically appealing since state-of-the-
art wireless information and energy receivers are typically
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designed to operate separately with different power sensitivi-
ties (e.g., -50 dBm for information receivers and -10 dBm for
energy receivers) [7]. A 40 dB or higher EH receiver may
introduce harmful electromagnetic field (EMF) effects on
living organisms. Fortunately, multiple-input and multiple-
output (MIMO) WPT has many attractive advantages since
the received power increases with the size of the MIMO [8].

Recently, a 5G-based green broadband communication
system with SWIPT was proposed to combine wireless infor-
mation transfer (WIT) and WPT [9]. In addition, a simul-
taneous cooperative spectrum sensing and EH model was
proposed to improve the transmission performance of the
multichannel cognitive radio in [10]. The harvested energy
in the sensing slot is stored in a rechargeable battery and later
used to compensate for the sensing energy loss in the trans-
mission slot in order to guarantee the throughput of the sec-
ondary user. The resource allocation of the proposed model
is formulated as a class of optimization problem, which max-
imizes aggregate throughput, harvested energy, and energy
efficiency, respectively. On the other hand, a green-energy-
powered cognitive sensor network (CSN) with cooperative
sensing is investigated in [11]. Energy harvesting from solar,
wind, and radio frequency is a promising technique to achieve
green communications. The sensing threshold, the sensing
time, and the final decision threshold in the fusion center
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are optimized to maximize the cognitive sensor’s through-
put and improve the utilization efficiency of the harvested
energy.

However, 5G architecture will require intelligent spectrum
sensing using cognitive radio (CR) that aggregates spec-
trum bandwidth in small and large cells [12]. One of the
key challenges for cellular systems in the millimeter-wave
(mmWave) bands is the rapid channel dynamics [13]. Hence,
energy detection (ED) may not work at a low signal-to-
noise ratio (SNR) with a harsh signal fluctuation. Besides,
in advanced ED, a decision threshold for hypothesis testing
is often a function of the SNR [14]. Hence, cyclic-feature
detection (CD) is useful in CR [15]–[17], especially at a
low SNR. The cyclic spectral density (CSD) was recently
used for spectrum sensing in CR with the primary user (PU)
signal cyclic frequency (CF) available to the cognitive user
(CU) [18]–[20]. On the other hand, blind CD for spectrum
sensing was presented in [21]–[24] based on the theory of
the higher-order cyclostationarity [25], [26]. The CSD of
the digitally modulated signal, such as binary phase-shift
keying (BPSK), quadrature phase-shift keying (QPSK), offset
quadrature phase-shift keying (OQPSK) and minimum shift
keying (MSK), was obtained for CD [27].

Cognitive radio and 5G are two emerging technologies to
meet the heavy mobile data traffic of future wireless net-
works. The need for more capacity will demand more spec-
trum resulting in the integration of CR into 5G networks [28].
In upcoming 5G, spectrum efficiency will be achieved by
opportunistically reusing the cellular spectrum; and energy
efficiency will be achieved by RF energy harvesting of ambi-
ent cellular signals and RF power injection [29]. Moreover,
massive MIMO will provide significant gains in radiated
energy and spectral efficiencies by deploying very large
antenna arrays at the base station [30]. However, over 230 sci-
entists from more than 40 countries have expressed their
‘‘serious concerns’’ regarding the ubiquitous and increasing
exposure to electromagnetic fields (EMF) already generated
by electrical and wireless devices before the additional 5G
roll-out which will substantially increase exposure to RF
EMF. [31].

To ameliorate the negative EMF effects of 5G and to
avoid WPT, we will show that cognitive spectrum sensing
and power harvesting can be made simultaneously. Energy
harvesting with ED has been widely studied. However, ED
requires knowledge of the noise variance which may not be
available in the millimeter-wave 5G wireless communication
system. It would be difficult to find an accurate SNR with
rapid channel dynamics. In this context, ED can no longer
be considered to be a reliable spectrum sensing technique;
and CD may be the only choice left to us. We will develop
the the maximum likelihood (ML) detection output of the
cyclostationary digital signal, and show that theML detection
output is indeed the signal power squared regardless of the
digital modulation scheme employed in the system. The main
contribution of our research is to show that the ML detection
output of cyclostationary spectrum sensing can be used for

power harvesting. We will demonstrate that the cyclic power
can be conveniently obtained for power harvesting, and used
for cyclostationary spectrum sensing. The proposed scheme
can be especially useful for 5G with massive MIMO.

In Section II, we explore the ML detection of cyclo-
stationary spectrum sensing. The power squared of ML
detection output is presented in Section III for BPSK,
QPSK, OQPSK,MSK, and quadrature amplitude modualtion
(QAM). Section IV proposes a simple method of simultane-
ous cyclostationary spectrum sensing and power harvesting,
and provides corresponding simulation results. Our conclu-
sions are presented in Section V.

II. MAXIMUM LIKELIHOOD DETECTION OF
CYCLOSTATIONARY SPECTRUM SENSING
Let us consider the instantaneous autocorrelation of a nonsta-
tionary signal x(t) [32]

Rx(t, τ ) = E
[
x(t)x(t − τ )∗

]
(1)

which is periodic with a period T0. The superscript ∗ denotes
the complex conjugate operation. Its cyclic autocorrela-
tion function (CAF) at a cyclic frequency α is defined
as [33], [34]

Rαx (τ ) ,
1
T0

∫ T0/2

−T0/2
Rx(t, τ )e−j2παtdt (2)

= lim
T→∞

1
T

∫ T/2

−T/2
x(t)x(t − τ )∗ e−j2παtdt (3)

as shown in Appendix A. With the Fourier coefficient func-
tion Rαx (τ ), the Fourier series expansion of the instantaneous
autocorrelation can be expressed as

Rx(t, τ ) =
∑
α

Rαx (τ )e
j2παt . (4)

The time-dependent cyclic periodogram is shown
as [35]–[37]

Sαx (t, f ) =
1
T
XT (t, f + α/2)XT (t, f − α/2)∗ (5)

where

XT (t, f ) =
∫ t+T/2

t−T/2
x(u)e−j2π fudu. (6)

On the other hand, the Fourier transform of the cyclic auto-
correlation [38]

Sαx (f ) ,
∫
∞

−∞

Rαx (τ )e
−j2π f τdτ (7)

= lim
T→∞

1
T
XT (f + α/2)XT (f − α/2)∗ (8)

is called the cyclic spectral density, where

XT (f ) = XT (0, f ). (9)

Since cyclic autocorrelation is the time average by nature,
fading effects will be relatively well taken care of in cyclosta-
tionary spectrum sensing. Therefore, fading parameters are
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often not explicitly included in the system model or hypothe-
ses of CD [24], [39]. Each CU needs to make a decision
between two hypotheses in order to detect spectrum holes:{

H0 : y(t) = n(t)
H1 : y(t) = x(t)+ n(t)

(10)

where the null hypothesis H0 and the alternative hypothesis
H1 indicate the absence and presence of the PU signal, respec-
tively. The signals y(t) and x(t) are the received signal and
the PU’s transmitted signal. Noise n(t) is a complex white
Gaussian noise process with zero mean and variance σ 2.
Hence, the sufficient statistic of theMLdetector in an additive
white Gaussian noise (AWGN) channel becomes [20, (3)]
[37, (15) and (17)]

YML =
∑
α

∫
∞

−∞

Sαx (f )
∗Sαy (t, f )df . (11)

We can see that Sαy (t, f ) = Sαn (t, f ) under the null hypothesis,
which vanishes asymptotically as T → ∞. Under the alter-
native hypothesis, the signal component of the ML detection
variable can be obtained as

Ys =
∑
α

∫
∞

−∞

Sαx (f )
∗Sαx (f )df =

∑
α

∫
∞

−∞

∣∣Sαx (f )∣∣2df (12)

where the indefinite integral

Z (α) ,
∫
∞

−∞

∣∣Sαx (f )∣∣2df (13)

is defined as the sum of the cyclic spectral density (SCSD),
and Ys can be expressed as

Ys ,
∫
∞

−∞

∫
∞

−∞

Sαx (f )
∗Sαx (f )df dα. (14)

Applying the identity of Sαx (f ) in (8), we see

Ys =
∫
∞

−∞

∫
∞

−∞

lim
T→∞

1
T
XT (f + α)∗XT (f )

× lim
T→∞

1
T
XT (f + α)XT (f )∗df dα. (15)

Using the power spectral density (PSD)

Sx(f ) = lim
T→∞

1
T
XT (f )∗XT (f ) = lim

T→∞

1
T

∣∣XT (f )∣∣2 (16)

we find [23]

Ys =
∫
∞

−∞

Sx(α)⊗ Sx(−α)∗dα (17)

where the symbol ⊗ indicates the convolution operation.
From (13) and (17), we observe that the SCSD

Z (α) = Sx(α)⊗ Sx(−α)∗ = RSx (α), (18)

where RSx (α) is the autocorrelation of Sx(α). In conclusion,
the SCSD is the autocorrelation of the PSD sampled at
α = n/T0. This result greatly simplifies the ML detection of

cyclostationary spectrum sensing. Applying the convolution
theorem of the Fourier transform to (18), we observe

Z (α)⇐⇒ T0
∞∑

n=−∞

∣∣Rx(τ − nT0)∣∣2 (19)

where the notation ⇐⇒ denotes the Fourier transform pair.
Now we introduce the cumulation of the cyclic spectral den-
sity (CCSD) G(α):

G(α) ,
∫ α

−∞

Z (β)dβ or (20)

Ys = G(∞) = T0
∞∑

n=−∞

∣∣Rx(nT0)∣∣2 (21)

= T0
∣∣Rx(T0)∣∣2 = T0P2p (22)

where we assume Rx(nT0) = 0 for n 6= 0 for digital
communications. The symbol Pp is the average power of
the PU signal, and we can find the power squared since the
period T0 is known at the CU site. Hence, we can see that
the ML detection output YML is the power squared under the
alternative hypothesis and vanishes asymptotically under the
null hypothesis as T →∞.

III. THE POWER SQUARED OF MAXIMUM LIKELIHOOD
DETECTION FOR DIGITAL MODULATION
The bit error rate (BER) performance of various digital mod-
ulation schemes is thoroughly investigated in the literature.
Although cyclostationary spectrum sensing of different digi-
tal modulation has been theoretically derived in terms of spec-
trum correlation in [38], its power harvesting characteristics
have not been investigated. In this section, we first mathe-
matically derive the ML detection output of each modulation
scheme for cyclostationary spectrum sensing.

A. BINARY PHASE-SHIFT KEYING
The BPSK signal can be defined as

xBPSK (t) =

{
bkP[t − kTb] cos(2π fct)
for kTb ≤ t ≤ (k + 1)Tb

(23)

where bk = ±1 is polar data being transmitted in the k th bit
interval Tb at the bit rate of Rb = 1/Tb. The symbol fc denotes
the carrier frequency, and the pulse is

P(t) =

{√
2Pp 0 ≤ t ≤ Tb

0 elsewhere
(24)

with the power of the primary user signal equal to Pp. The
PSD of the BPSK can be shown as [40], [41]

Sx(f )

=
PpTb
2

sinc2
(
πTb(f + fc)

)
+
PpTb
2

sinc2
(
πTb(f − fc)Tb

)
(25)

and its inverse Fourier transform is

Rx(t) = Pp4
( t
w

)
cos(2π fct) (26)
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FIGURE 1. SCSD and CCSD of BPSK.

where w = 2Tb, and 4(t/w) is the triangle of the unit height
and the width of w. Since42

(
t/2Tb

)
⇐⇒ �Tb (α), as shown

in APPENDIX B, replacing T with Tb, we find the SCSD

Tb
∑
n

|Rx(t − nTb)|2

⇐⇒ Z (α)

=
P2p
2
�Tb (α)+

P2p
4
�Tb (α − 2fc)+

P2p
4
�Tb (α + 2fc) (27)

and the corresponding ML detection output is

G(∞) =
∫
∞

−∞

Z (α)dα = T0
∣∣Rx(T0)∣∣2 = TbP2p. (28)

The analytical result of SCSD and CCSD of the BPSK
are shown in Fig. 1(a). The carrier frequency fc was chosen
to be five times the bit rate for a simple presentation. The
SCSD and CCSD were normalized to the peak value, and
the cyclic frequency α was normalized to the bit rate. Note
that the sizable cyclic power at the CF α = ±2fc. Fig. 1(b)
shows the simulated result of SCSD and CCSD of the BPSK.
The observation interval T was chosen as a 500 bit time.
We took samples 20 times in each period of the signal cycle to
accurately capture the cyclic property, i.e., the sampling rate
fs = 20fc. We chose the same carrier frequency fc, equal

to five times the bit rate, for the simulation. The SCSD and
CCSD were normalized to the peak value. The simulation
results of the SCSD and CCSD agree well with the corre-
sponding analytical results in Fig. 1(a) except the discrete
component at α = 0 and α = ±2fc due to discrete time
processing in the simulation. A similar size of the cyclic
power can be observed at the CF α = ±2fc in both analytical
and simulated SCSD. Consequently, the same size of jump
at the CF can also be observed in both the analytical and
simulated CCSD.

B. QUADRATURE PHASE-SHIFT KEYING
The QPSK signal can be defined as

xQPSK (t) =


b2k−1P[t − 2kTb] cos(2π fct)
−b2kP[t − 2kTb] sin(2π fct)
for 2kTb ≤ t ≤ 2(k + 1)Tb

(29)

where

P(t) =

{√
Pp 0 ≤ t ≤ 2Tb

0 elsewhere.
(30)

The autocorrelation is

R(t) = Pp4
( t
4Tb

)
and |R(t)|2 = P2p4

2
( t
4Tb

)
(31)

where we use R(t) to denote the baseband autocorrelation
while Rx(t) indicates the autocorrelation of the modulated
signal. The PSD of the QPSK is [41]

Sx(f )=PpTbsinc2(2πTb(f + fc))+ PpTbsinc2(2πTb(f −fc))

(32)

and the corresponding autocorrelation is defined in (26)
with w = 4Tb. Because of the Fourier transform pair
4

2
(

t
4Tb

)
⇐⇒ �2Tb (α), as shown in APPENDIX B, replac-

ing T with 2Tb, we find the SCSD of the QPSK

1
2Tb

∑
n

|Rx(t − 2nTb)|2

⇐⇒ Z (α)

=
P2p
2
�2Tb (α)+

P2p
4
�2Tb (α − 2fc)+

P2p
4
�2Tb (α + 2fc).

(33)

However, using the conjugate autocorrelation, the SCSD of
the QPSK is [27]

Z (α) =
P2p
2
�2Tb (α) (34)

where it has been assumed that the in-phase and quadrature
components are balanced.

The analytical result of SCSD and CCSD of the QPSK
are shown in Fig. 2(a). The SCSD of the QPSK is narrower
than that of the BPSK. Hence the transition of the CCSD of
the QPSK at the CF is sharper than that of the BPSK. The
result comes from the fact that the symbol duration of the
QPSK is twice larger than that of the BPSK to maintain the
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FIGURE 2. SCSD and CCSD of QPSK.

same bit rate, and thereby the signal bandwidth of the QPSK
is narrower. The ML detection output of the QPSK is half
the signal power squared. The simulation result of the QPSK
is shown in Fig. 2(b). The observation interval T is chosen
as a 500 symbol time (Ts). The simulated SCSD and CCSD
are similar to the corresponding analytical SCSD and CCSD
in Fig. 2.

C. OFFSET QUADRATURE PHASE-SHIFT KEYING
The OQPSK signal can be defined as

xOQPSK (t) (35)

=



b2k−1PI [t − 2kTb] cos(2π fct)
−b2k−2PQ[t − (2k − 2)Tb] sin(2π fct)
for (2k − 1)Tb ≤ t ≤ 2kTb

b2k−1PI [t − 2kTb] cos(2π fct)
−b2kPQ[t − 2kTb] sin(2π fct)
for 2kTb ≤ t ≤ (2k + 1)Tb

(36)

where

PI (t) =

{√
Pp −Tb ≤ t ≤ Tb

0 elsewhere
(37)

FIGURE 3. SCSD and CCSD of OQPSK.

and

PQ(t) =

{√
Pp 0 ≤ t ≤ 2Tb

0 elsewhere.
(38)

The PSD of the OQPSK is the same as the QPSK [42], and
the analytical SCSD of the OQPSK can be shown as

Z (α) =
P2p
2
�2Tb (α)+

P2p
4
�2Tb (α − 2fc)+

P2p
4
�2Tb (α + 2fc)

(39)

which is identical to (33). The graphical presentation of the
SCSD and CCSD of the OQPSK is provided in Fig. 3(a).
The simulated SCSD and CCSD of the OQPSK are shown
in Fig. 3(b). The result was already predicted in the analysis.

D. MINIMUM SHIFT KEYING
The signal of MSK can be shown as

xMSK (t) (40)

=



b2k−1PI [t − 2kTb] cos(2π fct)
−b2k−2PQ[t − (2k − 2)Tb] sin(2π fct)
for (2k − 1)Tb ≤ t ≤ 2kTb

b2k−1PI [t − 2kTb] cos(2π fct)
−b2kPQ[t − 2kTb] sin(2π fct)
for 2kTb ≤ t ≤ (2k + 1)Tb

(41)
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where

PI (t) =

{√
2Pp cos(π t/2Tb) −Tb ≤ t ≤ Tb

0 elsewhere
(42)

and

PQ(t) =

{√
2Pp sin(π t/2Tb) 0 ≤ t ≤ 2Tb

0 elsewhere.
(43)

The autocorrelation of the MSK is [42]

R(t) =
1
π

{
π4

( t
4Tb

)
cos

( π t
2Tb

)
+ sin

(π |t|
2Tb

)}
5
( t
4Tb

)
.

(44)

In APPENDIX C, it is shown that the Fourier transform pair
R(t) ⇐⇒ 9(f ) and |R(t)|2 ↔ 8(f ). Therefore the PSD of
the MSK is

Sx(f ) =
Pp
2
9(f + fc)+

Pp
2
9(f − fc) (45)

and its inverse Fourier transfom

Rx(t) = PpR(t) cos(2π fct). (46)

We also find

|Rx(t)|2 = P2pR
2(t) cos2(2π fct) (47)

and thereby the SCSD of the MSK can be shown as

2Tb
∑
n

|Rx(t − 2nTb)|2

⇐⇒ Z (α)

=
P2p
2
8(α)+

P2p
4
8(α + 2fc)+

P2p
4
8(α − 2fc). (48)

The corresponding ML detection output can be verified as
in (28).

The analytical result of SCSD and CCSD of the MSK are
shown in Fig. 4(a). We observe that the SCSD of the MSK
was narrower than that of the QPSK (or OQPSK). Hence the
transition of the CCSD of the MSK at the CF was sharper.
This result comes from the fact that the decay rate of the
PSD of the MSK is 1/f 4, while that of the QPSK or OQPSK
is 1/f 2. Nevertheless the cyclostationary spectrum sensing
capability of the MSK can be considered equivalent to that of
the OQPSK since the ML detection output is still the square
of the received sinal power. The simulated result of SCSD
and CCSD of the MSK is shown in Fig. 4(b). The transition
of the SCSD and CCSD at the CF was acute. We can see
that the simulated result of the MSK agreed well with the
corresponding analytical result.

E. QUADRATURE AMPLITUDE MODULATION
The square QAM signal M -QAM can be expressed as

xQAM (t) (49)

=


d IkP[t − kTs] cos(2π fct)
−dQk P[t − kTs] sin(2π fct)
for kTs ≤ t ≤ (k + 1)Ts

(50)

FIGURE 4. SCSD and CCSD of MSK.

where the symbol time Ts = (log2M )Tb. The QAMpulseP(t)
is defined in as

P(t) =

{√
Pq 0 ≤ t ≤ Ts

0 elsewhere
(51)

where Pq is the average power of the QAM pulse. For
the M -QAM, the in-phase and quadrature data are d Ik ,
dQk ∈ {±1,±3,±5, . . . ,±(

√
M − 1)}. The average power of

the M -QAM can be written as [40]

Pp = 2×
2Pq
√
M

(
√
M−2)/2∑
k=0

(2k + 1)2 =
2(M − 1)

3
Pq (52)

or Pq =
3Pp

2(M − 1)
(53)

where a factor of 2 is introduced due to scaling from the
pulse amplitude modulation (PAM) to the QAM. Therefore,
the average autocorrelation of the M -QAM can be shown as

R(t) =
4
√
M

(
√
M−2)/2∑
k=0

(2k + 1)2
1
Ts

∫
∞

−∞

P(s)P(s− t)ds (54)

=
2(M − 1)

3
Pq4

( t
2Ts

)
= Pp4

( t
2Ts

)
(55)
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FIGURE 5. Analytical SCSD and CCSD of M-QAM.

and

|R(t)|2 = P2p4
2
( t
2Ts

)
. (56)

The Fourier transform pair is shown in APPENDIX B as

|R2(t)|2 ⇐⇒ P2p�Ts (f ). (57)

From (55), we can find the PSD of the M -QAM

Sx(f )=
PpTs
2

sinc2
(
πTs(f + fc)

)
+
PpTs
2

sinc2
(
πTs(f − fc)

)
(58)

and its inverse Fourier transform Rx(t) defined in (26) with
w = 2Ts. Hence, we find the SCSD

Ts
∑
n

|Rx(t − nTs)|2

⇐⇒ Z (α)

=
P2p
2
�Ts (α)+

P2p
4
�Ts (α + fc)+

P2p
4
�Ts (α − fc) (59)

and the corresponding ML detection output is the same
as (28) replacing Tb with Ts. In practice, the signal power
of the M -QAM increases by 2(M − 1)/3 as the signal con-
stellation sizeM increases to maintain the same bit error rate
performance. Consequently, the ML detector outcome of the

FIGURE 6. Simulated SCSD and CCSD of M-QAM.

M -QAM for spectrum sensing becomes larger by a factor of
[2(M − 1)/3]2 compared to the QPSK signal. As a result,
the cyclostationary spectrum sensing capability enhances for
a larger M .

However we show the normalized SCSD and CCSD for
easy comparison in Fig. 5 and 6, respectively, with M = 16,
64, and 256. In fact, the peak value of the SCSD was larger
for a larger M although it is not clear in the normalized plot.
Nevertheless it is still clear that the cyclic power at the CF
(α = ±2fc) of the signal was half the signal power at the
origin. The analytical SCSD and CCSD are shown in Fig. 5(a)
and 5(b), respectively. We can see that the width of the SCSD
became narrower asM increased due to the increased symbol
time and reduced signal bandwidth. The simulated SCSD and
CCSD of theM -QAMare shown in Fig. 6(a) and 6(b), respec-
tively, for M = 16, 64, and 256. The observation interval
was chosen as a 1000 symbol time. The carrier frequency
chosen was five times the bit rate, and the sampling rate
was 20log2(M ) times the carrier frequency. The simulation
results agreed well with the analytical results although some
discrete components of the SCSD were observed in the sim-
ulation due to discrete time processing in the simulation. The
corresponding CCSD in Fig. 6(b) is rather smooth since the
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discrete components were averaged out in the process of the
summation. The plots were normalized to the peak values.

IV. CYCLOSTATIONARY DETECTION PERFORMANCE AND
POWER HARVESTING
A. DETECTION PERFORMANCE
Consider the received signal y(t) in (10) with the null hypoth-
esisH0 and the alternative hypothesisH1. It can be shown that
y(t) contains second order periodicity with frequency α if and
only if the CAF [36, (7)]

Rαy (τ ) , lim
T→∞

1
T

∫ T/2

−T/2
y
(
t +

1
2
τ

)
y
(
t −

1
2
τ

)
e−j2παtdt

(60)

exists and is not identically zero as a function of τ . Note that
the author did not take the complex conjugate of y(t−τ/2) in
his original paper, and we followed the same procedure. The
cyclic power at the CF α can be obtained as [43]

Rαy (0) = lim
T→∞

1
T

∫ T/2

−T/2
y2(t)e−j2παtdt

= lim
M→∞

1
(M + 1)T0

M/2∑
m=−M/2

(61)

∫ mT0+T0/2

mT0−T0/2
y2(t)e−j2παtdt

= lim
M→∞

1
(M + 1)T0

M/2∑
m=−M/2∫ T0/2

−T0/2
y2(t + mT0)e−j2πα(t+mT0)dt (62)

with T = (M + 1)T0. Since Rαy (τ )⇐⇒ Sαy (f ) is the Fourier
transform pair, we obtain the cyclic power from (7)

Rαy (0) =
∫
∞

−∞

Sαy (f )df . (63)

In a discrete time signal, we can compute the cyclic power as

Rαy (0) =
1

(M + 1)(N + 1)

×

M/2∑
m=−M/2

N/2∑
n=−N/2

y2(mT0 + nTs)e−j2πα(nTs) (64)

where T0 = (N + 1)Ts with the sampling interval Ts. We
assume that the cyclic frequency α = l/T0 for a positive inte-
ger l. The cyclic power Rαy (0) is used for power harvesting.
Collected values of Rαy (0) for a time period is convolved to
remove residual noise further, and the convolution result is
used for spectrum sensing. Note that the unit of the convolu-
tion output is |Rαy (0)|

2.
On the other hand, the energy detection can be performed

by

Ry(0) =
M/2∑

m=−M/2

N/2∑
n=−N/2

y2(mT0 + nTs). (65)

FIGURE 7. CD and ED spectrum sensing output; BPSK; AWGN channel.

FIGURE 8. Probability of detection and false alarm; BSPK; AWGN channel.

We chose an additive Gaussian noise N (0, 1), which is
a zero mean and unit variance standard Gaussian random
variable, in all our simulations. The signal energy-to-noise
ratio Es/No is for each sample. As shown in Fig. 7, we col-
lected 100 detection outputs of the cyclic power Rαy (0) for
CD and the generic power Ry(0) for ED. Under the null
hypothesisH0, CD has zeromean, and ED has the mean equal
to the unit value with the unit noise variance. The simulation
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FIGURE 9. Probability of detection and false alarm; Rayleigh fading
channel.

results are presented on the left side of Fig. 7. The detection
output of CD was convolved to smooth out noise which is
represented at the upper right side of the same figure. We can
see that the null hypothesis H0 and the alternative hypothesis
H1 outputs were completely separated from each other, and
the difference is obvious. However, H1 and H0 convolution
results completely overlapped for ED, as can be seen at the
lower right side of the figure. Hence, we employed spectrum
sensing without convolution for ED and with convolution
for CD. For an improvement, we used the center half of the
convolution output for CD. The simulation parameters are
Es/No = −20 dB, fs = 8fc, fs = 64Rb, α = 2fc, N = 100,
and M = 100.
The BPSK spectrum sensing is shown in Fig. 8 in an

AWGN channel in terms of the probability of detection (PD)
and false alarm (PF ). It is apparent that the performance
improved at a high SNR. In any case, CD exhibited a better
performance than ED. The performance gap between CD and
ED became larger at a low SNR, although the performance
of ED also improved as the SNR increased. The simulation
parameters are Es/No = −25 dB and −20 dB, fs = 8fc,
fs = 64Rb, α = 2fc, N = 100, and M = 100.
We can see a similar performance in QPSK, OQPSK, and

MSK in Fig. 9; but QPSK was not as good as OQPSK or
MSK. Regarding the QPSK with the balanced in-phase and
quadrature components, the cyclic power vanished; and only
the generic power could be retrieved [27]. However, our CD,
in its nature is more like to obtain the cyclic power separately
from in-phase and quadrature. Hence, CD still showed a
better performance than ED for QPSK. We maintained the
same bit rate and the same SNR for each sample for all
three modulation schemes for a fair comparison. Note that
the performance of ED displayed the same performance for
all cases, which is obviously inferior to CD. The simulation
parameters are Es/No = −25 dB, fs = 4fs, fs = 32Rb,
α = 2fc, N = 100, and M = 10.

FIGURE 10. Probability of detection and false alarm; Rayleigh fading
channel.

FIGURE 11. Cyclostationary spectrum sensing; BPSK; AWGN and Rayleigh.

The probability of detection and false alarm of M -QAM
is shown in Fig. 10. The same average power was employed
for all signal constellations for a fair spectrum sensing com-
parison although this may not have been a good decision
in terms of the BER performance. We observed a similar
performance for all signal constellations, such as 16-QAM,
64-QAM, and 256-QAM. The signal constellation size of
M -QAM did not affect the spectrum sensing capability,
whether CD or ED, as long as they have the same average
power. However, the performance of CD was significantly
improved over the performance of ED. The simulation param-
eters are Es/No = −25 dB, fs = 8fc, fs = 32Rb, α = 2fc,
N = 100, and M = 10.

B. POWER HARVESTING
Figure 11 displays the power harvest for BPSK with respect
to the SNR for each sample. Carriers were scaled by

√
2 to
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FIGURE 12. Cyclostationary spectrum sensing; Rayleigh fading channel.

FIGURE 13. Cyclostationary spectrum sensing; QAM; Rayleigh fading
channel.

avoid power down by a half. We can see that the signal power
of 20 dBW was collected at Es/No = 20 dB. At a low SNR,
we needed a longer observation time for an accurate power
harvesting. For a larger observation interval of N = 1000
and M = 100, there was hardly any difference between the
AWGN channel and fading channel since the average power
was the same with and without fading in our simulation.

For a short sensing time of N = 100 andM = 10, the power
harvest in the fading channel was less accurate and deviated
from the average signal power, especially at a low SNR.
Hence, we can see that a longer harvest time is necessary
in fading channels at a low SNR to accurately harvest the
cyclic power present in the received signal. In fact, a longer
observation interval smooths out the power fluctuation due to
fading in the wireless channel. The simulation parameters are
fs = 8fc, fc = 8Rb, and α = 2fc.
The same effect can be observed in Fig. 12 for QPSK,

OQPSK, and MSK. The average SNR per sample and data
rate were maintained the same for all modulation schemes
for a fair comparison. At a low SNR, the power harvest
requires a larger harvest time, especially for a fading chan-
nel. However, we can see a similar harvest performance of
QPSK, OQPSK, and MSK. With a long enough sensing
time, the power harvest was still good at an SNR as low as
−20 dB. The fading parameters are fs = 8fc, fs = 128Rb,
and α = 2fc.

In Fig. 13, the power harvest of the QAM signal is dis-
played for different signal constellations. The solid line and
dotted line indicate a larger sensing time (N = 1000,
M = 100) and a smaller sensing time (N = 100,
M = 10), respectively. We can still observe an improvement
for an SNR below −20 dB with a longer sensing time. For
16-QAM, the harvested power was 40 dBW at an average
signal power of 40 dBW or an SNR of 40 dB. (Remem-
ber that the noise variance is the unit value in our simula-
tion.) As the signal constellation size increased, the peak-
to-average power ratio (PAPR) increased. We can notice
the power harvest beyond 40 dBW at an SNR of 40 dB.
The simulation parameters are N = 1000 and M = 100
for solid line, N = 100 and M = 10 for dotted line,
fs = 4fc, fc = 4Rb, and α = 2fc. Therefore, with the
same average power, BPSK, QPSK, OQPSK, and MSK pro-
vided the same power harvesting performance. Regarding the
QAM with the same average signal power, a larger signal
constellation provided a better performance. It is observed
that a larger PAPR can exercise a positive influence on power
harvesting with cyclostationary spectrum sensing in cognitive
radios.

V. CONCLUSION
We developed the ML detection output of cyclostationary
detection and showed that the result is equal to the power
squared. The sum and cumulation of the CSD were derived
for various digital modulation schemes, such as BPSK,
QPSK, OQPSK, MSK, and QAM. The ML output was the
same as the power squared for all digital modulation schemes.
Therefore, it is possible to perform cyclostationary detection
with simultaneous power harvest in CR. We provided a sim-
ple method of simultaneous cyclostationary spectrum sensing
and power harvesting. Corresponding simulation results were
illustrated. The method can be useful in 5G cognitive radios
with massive MIMO in millimeter-wave frequencies to ame-
liorate the harmful effect of 5G EMF.
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APPENDIXES
APPENDIX A
A PERIODIC AUTOCORRELATION FUNCTION
A periodic autocorrelation function Rx(t, τ ) with a period T0
can be expressed as

Rx(t, τ ) =
∑
n

Rαx (τ )e
j2π (n/To)t =

∑
α

Rαx (τ )e
j2παt (66)

where α = n/T0, and the coefficients of Fourier series

Rαx (τ ) =
1
T0

∫ T0/2

−T0/2
Rx(t, τ )e−j2παtdt. (67)

Since Rx(t, τ ) is periodic with T0, it can expressed as [34,
p. 35, 41] [27, p. 365] [33]

Rx(t, τ ) = lim
N→∞

1
2N + 1

×

N∑
n=−N

x(t + nT0)x(t + nT0 − τ )∗ (68)

and with T = (2N + 1)T0 [27, P. 362]

Rαx (τ ) = lim
T→∞

1
T

∫ T0/2

−T0/2

×

N∑
n=−N

x(t + nT0)x(t + nT0 − τ )∗e−j2παtdt. (69)

With a change of a variable l = t + nT0

Rαx (τ ) = lim
T→∞

1
T

N∑
n=−N

∫ T0/2+nT0

−T0/2+nT0

× x(l)x(l − τ )∗e−j2πα(l−nT0)dl (70)

= lim
T→∞

1
T

∫ (2N+1)T0/2

−(2N+1))T0/2
x(l)x(l − τ )∗e−j2παldl (71)

or

Rαx (τ ) = lim
T→∞

1
T

∫ T/2

−T/2
x(l)x(l − τ )∗e−j2παldl. (72)

APPENDIX B
FOURIER TRANSFORM PAIR 42(t/2T ) ⇐⇒ �T (f )
The autocorrelation of the binary polar signal can be written
as follows:

R(t) = 4
( t
2T

)
⇐⇒ S(f ) (73)

where S(f ) is the corresponding PSD. The symbol T can
be Tb, 2Tb, or Ts depending on the modulation scheme; but
obviously T is not the observation interval in the main text.
The equation (73) can be rewritten as

R(t) =

−
t
T
+ 1 0 ≤ t ≤ T

t
T
+ 1 −T ≤ t < 0

(74)

or

R2(t) = 42
( t
2T

)
=


t2

T 2 −
2t
T
+ 1 0 ≤ t ≤ T

t2

T 2 +
2t
T
+ 1 −T ≤ t < 0.

(75)

We can rewrite (75) as

R2(t) = R2a(t)+ R
2
b(t) where (76)

R2a(t) =
t2

T 2 , for |t| ≤ T (77)

R2b(t) = 24
( t
2T

)
− 1, for |t| ≤ T . (78)

The Fourier transform of R2a(t) can be expressed as

R2a(t)↔ S2a (f )

= 2T sinc(2π fT )+
4T cos(2π fT )

(2π fT )2
−

4T sin(2π fT )
(2π fT )3

(79)

and the Fourier transform of R2b(t) as

R2b(t)↔ S2b (f ) = 2T sinc2
(
π fT

)
− 2T sinc

(
2π fT

)
. (80)

Let us define �T (f ) as the Fourier transform of R2(t). Then
we can see that

R2(t)↔ �T (f ) = S(f )⊗ S(f ) = S2a (f )+ S
2
b (f ). (81)

Therefore

4
2
( t
2T

)
⇐⇒ �T (f )

= 2T sinc2
(
π fT

)
+

4T cos(2π fT )
(2π fT )2

−
4T sin(2π fT )

(2π fT )3
. (82)

In addition, we can note that �T (f ) is bounded since

�T (0) =
∫
∞

−∞

4
2
( t
2T

)
dt (83)

= 2
∫ T

0

[ t2
T 2 −

2t
T
+ 1

]
dt =

2
3
T (84)

and we also find that∫
∞

−∞

�T (f )df = R2a(0)+ R
2
b(0) = 0+ 1 = 1 (85)

or
∫
∞

−∞

�T (f )df = R2(0) = 1. (86)

APPENDIX C
THE SCSD OF MSK
Let use consider the baseband autocorrelation of MSK
in (44). The corresponding PSD is

R(t)↔ 9(f ) = Tbsinc2
(
2πTb(f − 1/4Tb)

)
+Tbsinc2

(
2πTb(f + 1/4Tb)

)

+

sin2
(
2πTb(f + 1/4Tb)

)
π2(f + 1/4Tb)

−

sin2
(
2πTb(f − 1/4Tb)

)
π2(f − 1/4Tb)

. (87)
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On the other hand, the square of the autocorrelation can be
written as

|R(t)|2 =
1
π2

{
π2
4

2
( t
4Tb

)
cos2

( π t
2Tb

)
+ sin2

(π |t|
2Tb

)
+ 2π4

( t
4Tb

)
cos

( π t
2Tb

)
sin
(π |t|
2Tb

)}
5
( t
4Tb

)
(88)

or

|R(t)|2 =
1

2π2

{
π2
4

2
( t
4Tb

)[
1+ cos

(2π t
2Tb

)]
+

[
1− cos

(2π t
2Tb

)]}
5
( t
4Tb

)
+

2
π
4

( t
4Tb

)
cos

( π t
2Tb

)
sin
(π |t|
2Tb

)
. (89)

The expression can be divided into two terms
|R(t)|2 = |R(t)|2a + |R(t)|

2
b (90)

where we define

|R(t)|2a ,
1

2π2

{
π2
4

2
( t
4Tb

)[
1+ cos

(2π t
2Tb

)]
+

[
1− cos

(2π t
2Tb

)]}
rect

( t
4Tb

)
(91)

and

|R(t)|2b ,
2
π
4

( t
4Tb

)
cos

( π t
2Tb

)
sin
(π |t|
2Tb

)
. (92)

The corresponding Fourier transforms are
|R(t)|2a ⇐⇒ 8a(f )

=
1
2
�2Tb (α)+

1
4
�2Tb (α − 1/2Tb)

+
1
4
�2Tb (α + 1/2Tb)

+
2Tb
π2 sinc(4π fTb)−

Tb
π2 sinc(4π (f − 1/2Tb)Tb)

−
Tb
π2 sinc(4π (f + 1/2Tb)Tb) (93)

and
|R(t)|2b ↔ 8b(f )

= −
1

2π2
[
f − 1

2Tb

] cos (4πTb[f − 1
2Tb

])
+

1

8π3Tb
[
f − 1

2Tb

]2 sin (4πTb[f − 1
2Tb

])

+
1

2π2
[
f + 1

2Tb

] cos (4πTb[f + 1
2Tb

])
−

1

8π3Tb
[
f + 1

2Tb

]2 sin (4πTb[f + 1
2Tb

])

−
1

π2
[
f − 1

2Tb

] [sin2 (2πTb[f − 1
2Tb

])]

+
1

π2
[
f + 1

2Tb

] [sin2 (2πTb[f + 1
2Tb

])]
. (94)

Finally

|R(t)|2 ⇐⇒ 8(f ) = 8a(f )+8b(f ). (95)

From (88) we observe∫
∞

−∞

8(f )df = |R(0)|2 = 1 (96)

or from (91) and (92)∫
∞

−∞

8(f )df =
∫
∞

−∞

8a(f )df +
∫
∞

−∞

8b(f )df

= |R(0)|2a + |R(0)|
2
b = 1+ 0 = 1. (97)
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