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ABSTRACT In the analysis of coordinated network attacks on electric power cyber-physical system (CPS),
it is difficult to restore the complete attack path, and the intent of the attack cannot be identified automatically.
A method is therefore proposed for the extracting patterns of coordinated network attacks on electric power
CPS based on temporal-topological correlation. First, the attack events are aggregated according to the alarm
log of the cyber space, and a temporal-causal Bayesian network-based cyber attack recognition algorithm is
proposed to parse out the cyber attack sequences of the same attacker. Then, according to the characteristic
curves of different attack measurement data in physical space, a combination of physical attack event criteria
algorithm is designed to distinguish the types of physical attack events. Finally, physical attack events
and cyber attack sequences are matched via temporal-topological correlation, frequent patterns of attack
sequences are extracted, and hidden multi-step attack patterns are found from scattered grid measurement
data and information from alarm logs. The effectiveness and efficiency of the proposed method are verified
by the testbed at Mississippi State University.

INDEX TERMS Cyber-physical system, attack pattern, temporal-topological correlation, fuzzy feature
analysis, frequent pattern tree.

I. INTRODUCTION
The ‘‘Ukrainian Blackout’’ in 2015, a landmark event in
history in which a cyber attack was made on a power
grid, fully confirms that cyber attack could cripple essen-
tial public systems. The SANS ICS information security
organization has clearly stated that the cause of the inci-
dent was a coordinated network attack [1]. A coordinated
attack can also look as though multiple attackers are work-
ing together to execute a distributed scan on many internal
addresses or services. It is believed that probes of this nature
have been developed in an attempt to elude the scan detection
code present in many intrusion detection systems [2]. The
destructiveness of coordinated network attacks is increas-
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ing with the widespread application of a large number of
smart terminals and advanced measurement devices in smart
grids [3].

In traditional information security technology, the intru-
sion process of the physical system is not considered, and
it is difficult to effectively identify potential physical attack
behavior [4]. Additionally, due to the combination of both
cyber and physical attacks, the existing protection meth-
ods, such as intrusion detection system (IDS), firewalls,
and abnormal data detection, lack effective correlation capa-
bilities and cannot identify multi-step coordinated network
attacks [5]. Therefore, there is an urgent need to study how
to extract hidden multi-step attack patterns to reveal the
complete process of intrusion behavior via the integration of
physical grid operation information and cyber system alarm
information.
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Many scholars have carried out research on the pat-
tern recognition and mining of coordinated network attack
sequences. A mining algorithm for cascading failure model
based on sequential pattern mining has been proposed by
Gan et al. [6], in which the simulation analysis of a massive
amount of grid operation data is conducted to effectively
identify the system’s cascading failure modes. A sequential
pattern mining method that takes into account the degree of
interest of sequential patterns and the utility value of each
item in the sequence was proposed byMei and Tang et al. [7],
[8]. It presents an improvement over traditional sequential
pattern mining, and uses sequence frequency as an important
measure for patterns. A multi-stage coordinated attack anal-
ysis model based on the finite state machine and intelligent
planning technology, which can identify the steps and paths
of an attack, was established in the work by Tang et al. [9],
Wang et al. [10], Xu et al. [11][9]–[11]. The reference
[12], [13] showed how a previously published method based
on Monte Carlo simulation could be enhanced to take into
account time-dependent phenomena. The reference [14]–[16]
studied transmission vulnerability based on the fault chain
theory of security science, the cascading failure process and
its generic features was described according to a fault chain.
The reference [17] findings highlight the need to consider the
load and coupling preference when designing robust interde-
pendent networks.

However, the existing methods and models have some
limitations. (1) In the analysis of the attack process, only the
pattern analysis of the cyber network space or the physical
grid space is performed; this diminishes the integrity of the
cyber-physical attack process. (2) Supervised learning based
on finite state machines and intelligent planning focuses on
the attack state transition analysis of smaller-scale systems,
which requires too much prior knowledge and complex rules.
It is not practical for application in large-scale CPS systems.
(3) The existing mining models of attack patterns do not com-
prehensively consider the impacts of physical grid constraints
and cyber network attacks on electric power CPS systems,
and there remains a lack of effective methods for identifying
attack events.

Based on the existing research, the main purpose of this
paper is to mine frequent attack patterns consisting of cyber
attack sequences and physical attack events, and then to
restore the attacker’s attack process on the entire electric
power CPS system. In summary, the contributions of this
paper are as follows.

1) The fuzzy C-means and temporal causal Bayesian
network are introduced to aggregate cyber system alarm
information and extract cyber attack sequences, which sig-
nificantly reduces the proportion of alarms. Multi-step attack
sequences are obtained via credibility calculation, which
improves the accuracy and the number of identified multi-
step attack sequences.

2) A new physical attack event recognition method that
combines physical criteria conditions with rule criteria con-
ditions is proposed, and considers the variation law of the

characteristic curves for power grid measurement data under
different attacks. Additionally, three new key indicators are
defined to improve the random forest (RF). Finally, the iden-
tification accuracy of physical attack events is improved.

3) For the first time, the temporal and topological rela-
tionship of cyber-physical components is introduced into fre-
quent patternmining, which combines cyber attack sequences
and physical attack events. The frequent subsequence in the
complete attack sequence can be extracted, which is the
coordinated network attack pattern. This method effectively
reduces the number of candidate sequences to be scanned, and
no prior knowledge is required to set rules manually, which
improves the efficiency of pattern mining.

The remainder of this paper is organized as follows.
In Section II, related definitions of coordinated network
attacks and the attack process problem formulation are given.
The extraction method of coordinated network attack patterns
is presented in Section III. The validation and performance
of the proposed method are analyzed in Section IV. Finally,
the paper is concluded in Section V.

II. RELATED DEFINITIONS AND PROBLEM FORMULATION
A. RELATED DEFINITIONS OF COORDINATED NETWORK
ATTACKS
Coordinated network attacks on electric power CPS include
two processes that occur in different spaces [18]. In the
cyber system space, attacks will generate a large number of
discrete alarm sequences; in the power system space, attack
events will cause continuous changes in measurement data.
Moreover, there is an attack conversion relationship between
cyber attacks and physical grid attacks, and there are certain
attack patterns of specific attack steps. Therefore, the relevant
concepts of the process of coordinated network attacks are
defined as follows.
Definition 1: Cyber attack sequence (CAS). CAS aim at

attacking the cyber components in electric power CPS sys-
tems, which include routers, switches, computing devices,
etc. The same attacker aims to obtain certain cyber system
permissions, and implements a complete multi-step attack to
trigger an alarm event sequence, which is defined as CAS.
CAS = [sCE11 > sCE22 > . . . > sCEmm ], where sCEik (1 ≤
k ≤ m) indicates an alarm event, which is represented by a
7-tuple [19], sCEik = ( cid, time, src-ip, dst-ip, src-port, dst-
port, sig_name), the superscript CEi indicates the number of
cyber components, and the subscript k is the type number
of the cyber attack event, and the related event sequence is
ordered in chronological order such that si.time ≤ sj.time,
(1 ≤ i ≤ j ≤ m).
Definition 2: Physical attack event (PAE). PAE aim at

attacking physical components, such as relay protection
devices, breaks, transmission lines, etc. Attacks that influence
or damage the operation status of the power grid by tamper-
ing with measurement data or physical device configuration
parameters are defined as PAE = [ePE11 |e

PE2
2 | . . . , |e

PEn
n ],

where the superscript PEi indicates the number of physical
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FIGURE 1. Coordinated network attack process.

components, and subscript k is the type of physical attack
event. ePEnk (1 < k < n) will cause abnormal changes in
grid measurement (e.g., the voltage and current phase angle,
amplitude, impedance, etc.).WhilePAE satisfies e1∩em =Ø,
(0 < l, m < n), only single physical attack event behavior is
considered in this paper, andmulti-step physical attack events
are not analyzed.
Definition 3: Attack Pattern (AP): A CAS and PAE that

belong to the same combined attack sequence [sCE11 >

sCE22 . . . > sCEmm > ePEnn ] represent the complete attack path
sequence. The attack process is closely related to the topo-
logical structure of the physical power grid and the informa-
tion network. Therefore, under a specific electric power CPS
topological structure, although the attack paths are different,
there is an implicit correlation between these paths. The most
frequently occurring subsequence in the attack path sequence
are defined as AP, which is expressed as [sCEjj > sCEj+1j+1 >

. . . > sCEj+1j+1 => ePEkk ], (1 ≤ j+ i ≤ m, 1≤ k ≤ n).

B. ANALYSIS OF COORDINATED NETWORK ATTACK
PROCESS
The complete coordinated network attack process includes
two phases, namely a cyber attack and physical attack,
as illustrated in Fig. 1. During the cyber attack phase, cyber
components are primarily attacked through network intrusion
means to obtain certain control rights, such as via vulner-
ability scanning, brute-force attack, and network monitor-
ing [20]–[22]. Based on this, during the physical attack phase,
via the injection of false data or other means of tampering
with the scheduling control instructions or attacking the phys-
ical system components, such attack behavior will cause the
power system to fail or the line load to be reduced, thereby
disrupting the normal operation of the power grid [23]–[25].

Coordinated network attacks begin with the cyber attack,
move through the security boundary of the cyber system and
the physical system, and finally acts on the physical power
grid [26]. It generally consists of multiple interrelated attack

steps, the former step of which is often the condition for the
latter step to occur [27].

Based on the above analysis of the main characteristics of
coordinated network attacks, there are two kinds of relation-
ships in the different attack stages.

1) TEMPORAL RELATIONSHIP
If the premise of an attack on the physical grid is to obtain
certain permissions, then the cyber attack that obtains this
permission must happen first. In other words, to achieve a
specific attack target, a cyber attack must be successfully
carried out before the subsequent physical power grid attack,
so the process determines the time range of the physical
attack.

Suppose an attacker’s attack path contains parts CASi and
PAEj, which separately occur in the periods [ti, ti+n] and
[tj, tj+n]. If CASi is a prerequisite for PAEj, then CASi must
happen before PAEj, that is, [ti, ti+n] < [tj, tj+n].

2) TOPOLOGICAL RELATIONSHIP
There is a topological relationship in the attack location. In a
smart grid, cyber components (CE) and physical components
( PE) are connected according to a certain topological struc-
ture. Therefore, the locations of attacked CE determine the
area that may be physically attacked. It is assumed that the
physical system is an n-node power system, and the cyber sys-
tem is an m-node communication and control network. The
two networks represent the connection relationship through a
ternary mapping table O< CEs, PEs, R >, that is CEs repre-
sents a collection of CE in a cyber-network, PEs represents a
collection of PE in a physical-network, and R represents the
connection relationship between cyber-physical components.
If PEi is connected toCE (CE1,CE2,. . . ,CEn), then there is a
correlation between the cyber attack event sequence [sCE11 >

sCE22 > . . . sCEnn ] and the physical attack event ePEii .
Assumptions:
1) Because the dispatch data network uses a standard com-

munication protocol, there is a possibility of being hacked.
2) After gaining the dispatcher’s authority through attack

methods such as permission elevation, the attacker can issue
malicious load shedding instructions, leading to various types
of grid accidents.

3) Cyber and physical attacks occur within a certain inter-
val. When the interval exceeds a certain time limit, the attack
components completed earlier may lose their influence on
subsequent attacks due to human recovery or security early
warning.

III. EXTRACTION METHOD OF COORDINATED NETWORK
ATTACK PATTERNS
A. OVERALL FRAMEWORK
The proposed framework for the extraction of coordinated
network attack patterns is shown in Fig. 2. It consists of three
main stages: theCAS recognition in the cyber system, thePAE
recognition in the physical grid, and the AP extraction based
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FIGURE 2. Framework of the attack pattern extraction method.

on the temporal-topological correlation. The specific steps
are as follows.

1) During the analysis phase of the attack process on the
cyber system space, alarm events in the cyber system, such
as the IDS, syslog, firewall log, and router log, is comprehen-
sively used. According to the characteristics of cyber attack,
the fuzzy c-means method is used to cluster the alarm events,
therefore similar alarm events are aggregated together. Then,
a temporal causal Bayesian network is used to perform a
fuzzy causal analysis on the sequence set to construct a CAS
set. Via credibility calculation, the CAS that belongs to the
same attacker with the highest probability is recognized.

2) During the analysis phase of the attack process on the
physical system space, the measurement data collected by the
power management unit (PMU) is obtained. Physical feature
criteria conditions are established based on the operating
characteristic curves under different attacks of the physical
power grid, and the normal state and abnormal state of the
physical system are preliminarily judged. Then, three key
indicators (δI and δU represent the phase difference change
rate of voltage or current, δI and δU represent the amplitude
fluctuation rate of voltage or current, τ represents the muta-
tion coefficient of the negative/zero sequence) are defined
to represent the law of attack behavior. The specific attack
type decision rule criterion for the abnormal state dataset is
established based on the improved RF algorithm, and the PAE
is recognized by relying on the above rules.

3) During the extraction phase of the coordinated
attack pattern, CASi∪PAEj are connected based on the

temporal-topological correlation. A dynamic sliding window
winterval is then designed according to the temporal relation-
ship to obtain the full attack path of the attacker. A coordi-
nated network attack sequential pattern mining algorithm is
proposed based on frequent pattern tree. According to the
attack pattern threshold α and β, all coordinated network
attack APs are extracted.

B. CAS RECOGNITION BASED ON FUZZY FEATURE
ANALYSIS
1) CYBER ATTACK EVENT AGGREGATION
When an attacker launches an attack on a power information
network, a large number of warning traces will be left in the
cyber components, including the IDS, router, and firewall.
Considering that the alarm events s1, s2, . . . , sk of multi-step
cyber attack activities have a certain internal relationship in
time and space, it can restore the steps and purpose of the
attacker. However, these alarm logs are scattered throughout
different cyber components, most of them are low-level iso-
lated events that lack relevance and have high false positive
and false negative rates; therefore, traditional attack methods
cannot be used to directly divide attack sequences.

For this reason, the idea of fuzzy cluster analysis is
adopted, and a fuzzy C-means clustering algorithm that takes
into account the characteristics of cyber attacks based on the
characteristics of the attacked cyber components is proposed.

Let uik represent the attack activity xi belong to the mem-
bership degree of alarm event sk ; 0 6 uik 6 1, and
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FIGURE 3. Model of temporal causal Bayesian network cyber attack
sequence.

n∑
i=1

uik = 1. The objective function is then defined as fol-

lows [28].

J (U ,V ) =
n∑

k=1

c∑
i=1

umikd
2
ik (1)

where U = (uik )i×n is the membership degree matrix, m is
the number of clusters, dik = ‖xk − vi‖, and J (U ,V ) is
the sum of the weighted squared distance from the attack
activity to the cluster center in each alarm event. Additionally,
the weight of attack activity xk belongs to the m-th power
of the membership degree of the type i-th attack event. The
clustering criterion of the algorithm is to calculate U and
V to make J(U, V ) have the minimum value, and indicates
that related attacks xk have similar attack characteristics and
belong to the same type of attack.

2) RECOGNITION OF CYBER ATTACK SEQUENCE
Based on the aggregate calculation of network attack alarm
events, two factors must be considered to identify the CAS
belonging to the same attacker. First, due to noise interference
and the failure of the attacked component itself, false alarms
and the phenomenon of underreporting are difficult to avoid.
Second, the causal relationship between the attack sequence
and the alarm event usually has a certain timeliness and
time uncertainty. The CAS should be formed within a certain
period of time after different alarm events, but it is difficult
to accurately determine a clear time interval.

This paper proposes a method based on the temporal causal
Bayesian network to identify CASs of the same cyber attack
sequence. As presented in Fig. 3, theCAS recognition method
is a two-layer directed acyclic graph, the root node of which
represents the alarm event, and the leaf node of which rep-
resents the cyber attack sequence. It can be described by a
quadruple G = {S,CAS’,E,K}, where S represents an alarm
event node set, CAS’ represents a fuzzy subset of cyber attack
sequences, E is the edge set that the cause event node points
to the result event node, Eij ∈ E indicates that alarm events Si
and attack result events CASj have a causal relationship, and
K represents the set of states that have causality. Any Kij ∈ K
can be the state of the side switch.

The specific steps of the method are as follows.
Step1: When multiple alarm events s1, s2 ,. . . ,sk can

form the same CAS, i.e., when the attack sequence contains

FIGURE 4. Characteristic curve of voltage phase angle.

multiple root nodes, each root node event can independently
trigger the cyber attack.

Step2: After performing fuzzy operations on all the
temporal-causal relationships of the CAS, a fuzzy subset of
the cyber attack sequence CAS ′ = [sCE11 > sCE22 > . . . >

sCEmm ] can be obtained, in which different permutations of
alarm events constitute different fuzzy subsets CAS’.

Step3: The fuzzy subset of the CAS contains all pos-
sible combinations of the alarm events forming the attack
sequence. As shown in the example in Fig. 3, there are three
kinds of CASs that may attack the sequence set: CAS ′ =
{CAS ′1,CAS

′

2,CAS
′

3}, where CAS
′

1 = (s−1 , s+2 ),CAS
′

2 =

(s+1 , s
−

2 ), and CAS
′

3 = (s−1 , s
−

2 ).
Step4: Probability calculations are used to determine

which attack sequence CAS ′i has the greatest credibility. For
any attack sequenceCAS ′i ∈ CAS

′, its credibility is calculated
as follows.

Bel(CAS ′j )=max

α
∏
j

δ(CAS |S,K )
∏
i:si=s

+

i

πi
∏
i:si=s

−

i

(1− πi)


(2)

where α is the normalization constant, and πi is the
si prior probability of occurrence. The maximum value
of Bel ( CAS’j) indicates the alarm event combination
[sCEi11 , sCEi22 , . . . , sCEimm ], which is an accurate sequence of
actual CASj.

C. PAE RECOGNITION BASED ON COMBINED CRITERIA
1) PHYSICAL FEATURE CRITERIA CONDITIONS
The measurement data of the physical power grid contains
many attributes, including the voltage, current, phase angle,
positive sequence, negative sequence, and zero sequence. Via
analysis, it is found that under different types of attacks,
there are obvious differences in the characteristic curves of
these measurement data. The features can be summarized as
follows.
Attack type 1: Data injection attack. The measured value

is maliciously modified to disguise a normal fault, causing
the operator to mistakenly believe that a short-circuit fault
occurred and to issue a removal instruction. Fig. 4 presents
a recording of the time interval from 42 to 92, in which
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FIGURE 5. Characteristic curve of positive-negative-zero sequence.

FIGURE 6. Characteristic curve of the impedance phase angle.

malicious data tampering was performed, resulting in the
phase differences between A-C three-phase voltages not
being 120 degrees.
Attack type 2: Command injection attack of remote

switch. An attacker sends a malicious operation command
to the relay, causing the circuit breaker position to change.
Fig. 5 presents the positive-negative-zero sequence current
amplitude changes in the relay after the attacker injected a
malicious disconnect command in the time intervals from
36 to 38 and from 153 to 158.
Attack type 3: Relay setting parameter tampering attack.

The impedance relay main function is to measure the distance
from the short-circuit point to the protection installation.
In the attack state, because the protection distance parameter
is tampered with, the protection has no effect. Fig. 6 displays
the attacker tampering with relay protection parameters in
the time intervals from 25 to 60, and presents the change
in impedance angle ZH between the attack failure and the
normal failure.

Based on the analyses of the characteristic curves of these
three types of attack states, the physical feature criteria
for establishing abnormal conditions according to the oper-
ating characteristics of the physical power grid are listed
in Table 1.

In Table 1, ϕ(t), U (t), I (t), and z(t) respectively represent
the phase angle, voltage amplitude, current amplitude, and
impedance amplitude measured at time t , I_(t) and I0(t)
respectively represent negative and zero sequence currents,
1z represents the rate of change of impedance, and ε1, ε2, ε3,
and ε4 denote the allowable error ranges [29].

TABLE 1. Physical feature criteria for abnormal conditions.

2) RECOGNITION OF PHYSICAL ATTACK EVENTS
To accurately identify the specific attack type of the abnormal
state, three key indicators are defined according to the change
laws of the measurement characteristics under the attack.
Indicator 1: Phase difference change rate of voltage or cur-

rent. Taking a fixed interval window n, to reflect the average
deviation of the three-phase current or voltage.

ηU =

n∑
t=1

(
∣∣ϕAu (t)− ϕBu (t)∣∣− ∣∣ϕBu (t)− ϕCu (t)∣∣)

n
(3)

ηI =

n∑
t=1

(
∣∣ϕAi (t)− ϕBi (t)∣∣− ∣∣ϕBi (t)− ϕCi (t)∣∣)

n
(4)

Indicator 2: The amplitude fluctuation rate of volt-
age or current reflects the fluctuation degree of the three-
phase current or voltage at a certain moment.

δI =
max(IA∨B∨C − IA + IB + IC

/
3)

IA + IB + IC
/
3

× 100% (5)

δU =
max(UA∨B∨C − UA + UB + UC

/
3)

UA + UB + UC
/
3

× 100% (6)

Indicator 3: The mutation coefficient of the negative/zero
sequence. When the system fails or attacks, it usually breaks
down the current negative and zero sequence amplitude.
Therefore, detecting these two variables that should not occur
in the normal state can be used as a basis for judging whether
the system is abnormal.

Setting the window length 1t ,If I0(t) or I−(t) have a
change in the adjacent 1t interval is more than 20% [30],
it may be considered as an abnormal value.

τ (t)=


1, |I0 or −(t)−I0 or −(t −1t)|>0.2×I0 or−(t−1t)

and |I0 or−(t+1t)−I0 or−(t)|>0.2× I0 or−(t)
0, |I0 or −(t +1t)− I0 or −(t)| < 0.2× I0 or −(t)

(7)

The above three indicators are merged, a physical attack
event recognition algorithm based on RF, called PAR-RF,
is proposed to realize the classification detection of abnormal
measurement data. The main steps of the algorithm are as
follows.
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Step1: The original physical grid measurement dataset W
is obtained according to the established physical feature crite-
ria condition table to perform a preliminary determination of
the normal state and the attack state. Additionally, a candidate
attack dataset that may have attack eventsW ′ is generated.

Step2: Supposing that W ′ contains m samples and each
sample has X features, a random forest containing T decision
trees must be trained, Bootstrap is used for sampling, and T
training sets K of size n (n < m) are obtained fromW ′.
Step3: In each training set K , the phase change rates of

voltage and current ηU and ηI , the amplitude fluctuation rates
of voltage and current δI and δU , and the mutation coefficient
of the negative/zero sequence τ are calculated. Additionally,
the feature extraction method is used to select important
features x ′ according to the feature importance value (x ′ <
X), and combined with the three key indicators, namely (x ′,
ηU , ηI , δI , δU , τ ).

Step4:CART is used to build a classification decision tree,
and steps 2 and 3 are repeated to build T decision trees, i.e., T
classifiers. Rules are then generated to determine the type of
attack. Finally, the voting results of the T classifiers are used
to determine the final attack PAE event category ei.

D. AP EXTRACTION BASED ON TEMPORAL-TOPOLOGICAL
CORRELATION
Based on the captured CAS and PAE, the temporal and topo-
logical relationships between the physical and cyber compo-
nents are used as correlated conditions. The frequent pattern
tree (FP-Tree) is improved via the time scale and topology,
and a coordinated network attack sequential pattern mining
algorithm (NSPMA) is proposed. By establishing a topol-
ogy frequent pattern tree (TFP-Tree), the coordinated AP of
the electric power CPS network is mined. The steps of the
NSPMA method are as follows.

Step1: Cyber-physical attack sequential connection based
on topology. According to the topological relationship O <

CEs, PEs, R >, the CAS set {CAS1, CAS2 ,. . . ,CASm} and
the PAE set {PAE1, PAE2 ,. . . ,PAEn} are traversed, and if
there is a connection relationship, operation CASi ∪ PAEj is
performed.

Step2: The complete attack sequence for each attacker is
obtained based on a new dynamic time window. The cyber-
physical attack sequence is sorted according to the attacker’s
AID as the primary key and the timestamp as the secondary
key. To avoid dividing the sequence of the same attacker
into different sequences, the dynamic time window winterval
in the attack scene is designed. The attack sequence is then
segmented to obtain the complete attack sequence database
(AD) for all attackers.

For CASi (which occurs at [ti, ti+n]) and PAEj (which
occurs at [tj, tj+n]), the attack interval is1t = |tj_ti+n|. In the
relevant literature [31], when 1t > 240 seconds, after the
attack step interval exceeds 240 seconds, the attack result will
be invalid, even without any threat. Themaximum upper limit
of winterval is set to 240 seconds. When 1t < 240 seconds,
winterval is dynamically calculated and determined according

FIGURE 7. TFP-tree example.

to the average time interval of each type of attack sequence.

winterval =



240, 1t > 240 sec onds
l∑
i=1

ni∗tk

l∑
i=1

ni

, 1t < 240 sec onds
(8)

where tk represents a time interval in which a certain type of
attack sequence CASi => PAEj may occur among different
attackers, and ni represents a cumulative number of occur-
rences of the CASi => PAEj sequence in each tk interval.

Step3:Construct attack sequence TFP-Tree. By setting the
threshold α for attack pattern support, the AD is scanned to
count each of the attack items, and the CE or PE component
number is recorded simultaneously. Only the frequent attack
items greater than α are retained, and the support items are
sorted in descending order. Then, by scanning the attack
sequence of each attacker in the AD, the sorted frequent items
in each attack sequence are obtained, and the attack sequence
TFP-Tree is established, as shown in Fig. 7.

α =
Number of attackers on [S1> S2. . . Sn−1=> ei]

Total number of attackers
(9)

Step4: The TFP-Tree is mined to find extremely frequent
sequences and generate APs. Each item in the header of table
is traversed in turn, all existing attack paths are extracted
according to the node list, and the subschema base is cal-
culated to build a conditional FP tree. Finally, all A Ps are
obtained according to the set attack sequence mode confi-
dence β threshold. (10), as shown at the bottom of the next
page.

IV. EXPERIMENT AND ANALYSIS
The testbed of Mississippi State University was utilized to
analyze and verify the proposed method of coordinated net-
work attack pattern extraction [32]. The experimental connec-
tion topology is illustrated in Fig. 8. The physical grid system
contains the following components: 2 power generators G1
andG2, 4 intelligent electronic devices (IED) R1 through R4,
they can switch the breakers on or off. 4 circuit breakers BR1
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FIGURE 8. Testbed topology.

to BR4. R1 controls BR1, R2 controls BR2 and son on accord-
ingly. 2 grid lines L1 and L2; the components are numbered
from PE1 to PE12. The cyber system contains the following
components: a router, switch, snort, syslog server, open PDC,
computer terminal, software system, etc. The components are
numbered from CE1 to CE9.

A. VALIDATION AND ANALYSIS OF CAS RECOGNITION
A total of 28,901 alarm data was generated in the deployed
snort, syslog servers, routers, and switches. A fuzzy C-means
clustering algorithm that takes into account cyber attack char-
acteristics was verified to aggregate network attack events.
In the experiment, the attackers were divided by IP address.
Membership degree was calculated based on the continuous
variables such as timestamp, and sig_name, and the alarm
events to which attack activities belong were determined by
the values. There were 12,360 alarm events after calculation,
and the results are presented in Fig. 9, which displays the
changes in the numbers of the top 8 cyber alarm events before
and after aggregation.

The events were numbered from s1 to s8, and the specific
event information is presented in Table 2.

Based on this clustering data, a temporal causal Bayesian
network model was used to identify the attack sequences
belonging to the same attacker, and a total of 420 cyber attack
sequences was obtained. Based on the maximum confidence

FIGURE 9. Comparison of the numbers of original alarms and aggregated
alarms.

TABLE 2. Meanings of some cyber alarm events.

probability calculation, a total of 138 actual attack activity
sequences was identified. Due to space limitations, only the
top 10 cyber attack sequences with high credibility are listed,
as presented in Table 3.

As is evident from Table 3, the maximum credibility of
a 3-step attack was 98.4%, the maximum credibility of a
4-step attack was 82.5%, and the maximum credibility of a
5-step attack was 77.1%. As the length of the identified cyber
attack sequence increased, the credibility decreased signifi-
cantly. This is because when the length of the attack sequence
increases, the attacker’s intention to attack is uncertain.

β =
Number of attacks on[antecedent S1 > S2 . . . Sn−1 ∩ consequent ei]

Number of antecedent attacks[S1 > S2 . . . Sn−1]
(10)
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TABLE 3. Top 10 cyber attack sequences with high credibility.

Various tentative attacks will affect the accuracy of the iden-
tification rate.

The cyber attack sequence recognition method proposed in
this paper and other methods proposed in previous research
[33] are aimed at the mining of network alarm logs of
multi-step cyber attack sequences. Thus, to further verify the
effectiveness of the method proposed in this paper, an exper-
imental comparison with related methods was carried out.
The aggregated 12,360 alarm event data were used in the
experiment, and were divided into 10 groups of test data sets.
The experimental results are presented in Fig. 10.

The experimental results demonstrate that the proposed
method exhibited obvious advantages in both the number
of recognized attack sequences and the accuracy of recog-
nition. This is because the proposed method establishes an
optimization objective function to determine the membership
of each sample point to all class centers, thereby effectively
reducing the number of redundant types of alarm information
and making up for the shortcomings of the other algorithms,
which only cluster by the time attribute or attack type. It is
therefore more in line with the actual situation of multi-step
attack implementation. On the contrary, the intelligent plan-
ning method pre-defines the prerequisites and consequences
of the attack steps, and the alarm correlation method uses
the time window to segment the alarm sequence in sections,
the randomness and uncertainty of the attack sequence events
are ignored.

B. VALIDATION AND ANALYSIS OF PAE RECOGNITION
The physical grid data set was collected by 4 PMUs, and
includes 28 types of attack scenarios and 9 types of normal,
short-circuit, and maintenance scenarios. The numbers and
event descriptions of all 37 scenarios are listed in Table 4.

The data set contains 128 features with a total of about
70,000 pieces of data, and is divided into 15 sub-data sets.
The features are explained in the Table 5. There are 29 types
of measurements from each PMU, so the 4 PMUs have
116 measurement columns. There are 12 columns for control

FIGURE 10. Performance comparison of the proposed method, intelligent
planning method, and alarm correlation method.

TABLE 4. Physical attack event descriptions.

panel logs, snort alerts and relay logs. The last column is the
marker.

The physical attack event recognition method was veri-
fied, and an initial random forest with a size of 100 was
then constructed. The decision rules were generated from the
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TABLE 5. Data set features descriptions.

TABLE 6. Top 5 decision rules for accuracy.

training data set, and the top 5 rules for accuracy are listed in
the Table 6. The index of each rules is in the form of ‘‘R#-
Signal Reference’’ that indicates a type of measurement from
a PMU specified by ‘‘ R#’’. For example, R3-PM7:V means
Pos voltage phase magnitude measured by PMU R3.
According to the classification rules, the accuracy analy-

sis experiment of physical attack type recognition was per-
formed. The experiment was performed using PAR-RF and
the original RF on the test data set. The size of the initial
random forest scale was 20. To ensure the stability of the
experimental results, the experiment was repeated 20 times on
each data set. The recognition capabilities of the twomethods
are presented in Fig. 11.

The experimental results reveal that PAR-RF exhibited bet-
ter overall classification accuracy than RF due to the addition
of the key indicators for classification feature selection. The

FIGURE 11. Comparison of classification accuracy under forests of
different scales.

best classification accuracy was 97.9%, and the forest size
was 88.

Additionally, a test data set was randomly selected from
15 sample data sets. It contained a total of 5,069 samples,
of which 4887 test classificationswere correct, accounting for
96.41%, and 182 were misclassified, accounting for 3.59%.
The classification of 37 scenarios was analyzed via the con-
fusion matrix performance, as presented in Fig. 12. The main
diagonals of the matrix were classified correctly, the others
were misclassified.

The accuracy and false positive rates of the 37 attack
scenarios were calculated according to the confusion matrix,
as presented in Fig. 13.

The experimental results demonstrate that the proposed
method has a better recognition effect on single or combined
relay remote command injection attacks and data injection
attacks. The top three attack scene recognition accuracy rates
were e20, e11, and e16; the respective recognition accuracy
rates were 100%, 99.06%, and 99.03%, and the respective
false detection rates were 0.03%, 0.02%, and 0.04%. The top
three misdetection rates for attack scenarios were e1, e7, and
e21; the respectivemisdetection rates were 0.11%, 0.09%, and
0.08%, and the respective accuracy rates were 95.6%, 92%,
and 97.8%.

The causes of error are analyzed. e1 is a normal short-
circuit fault of Line1 at 10%-19% of the position, and the
attack events e7 and e21 were tampering via malicious data
injection or relay R1 parameter settings, resulting in a positive
sequence of Line1 short-circuit fault at 10%-19%. Addition-
ally, the negative/zero sequence amplitude and phase angle
change were similar, which could easily cause confusion in
recognition.

C. VALIDATION AND ANALYSIS OF ATTACK PATTERN
EXTRACTION
CASs and PAEswere recognized based on the reported exper-
iments. The NSPMA algorithm was used to mine frequent
item sets by establishing a TFP-Tree, α=30, β=30; from
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FIGURE 12. Confusion matrix for the recognition of 37 scenarios.

FIGURE 13. Accuracy and false detection rate of 37 scene recognitions.

FIGURE 14. Descending statistics of sequence number in attack pattern.

which the sequential pattern of the coordinated network
attack was extracted.

Via experimental verification, a total of 461 complete
attack paths were obtained, and 22 frequent attack patterns
were mined. The results are sorted in descending order
according to the number of sequences that occur in each
pattern, as shown in the Fig.14. This proved that frequent
attack patterns account for only a small percentage.

TABLE 7. Coordinated network attack pattern with top 6 confidence.

A total of 6 frequent coordinated network attack sequential
patterns with a confidence level of greater than 90% were
found, as shown in Table 7. For example, the pattern [sCE45 >

sCE31 => ePE221 ] indicates that when the cyber componentCE4
is attacked by a Sadmind Ping (s5), and then CE3 is attacked
by an sshd buffer overflow (s1), the physical component PE2
suffers a relay setting change attack (e21) with a confidence
of 93.1%, support of 97.5%.

By summarizing the results of these attack patterns, three
typical network cooperative attack patterns can be deter-
mined.

1) The data injection attack patterns mainly focus on net-
work monitoring, packet read and write (such as the Netcat
tool) attack events, and the injection of maliciously tampered-
with data to affect the dispatcher’s decision, such as the
following pattern: [sCE77 > sCE45 > sCE33 => ePE117 ].

2) The command injection attack pattern mainly uses pass-
word brute force cracking and privilege elevation attacks.
After gaining the root privileges of the dispatcher, malicious
load shedding attacks on the physical grid are performed,
such as the following pattern: [sCE66 > sCE48 > sCE34 =>

ePE11 7].
3) The attack pattern of tampering with relay setting

mainly targets router or switch security vulnerabilities. The
relay device is invaded through a network connection to
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FIGURE 15. Algorithm running times with different support thresholds.

maliciously modify the protection distance parameter, which
causes the relay to refuse to operate when a fault occurs, such
as the following pattern: [sCE46 > sCE32 => ePE92 7].

To fully verify the efficiency of the NSPMA algorithm
proposed in this paper, four representative sequential pattern
mining algorithms, namely Prefix Span, Free Span, GSP, and
Spade, were selected for comparison experiments.

Under the same conditions, according to the different
support levels set, each algorithm was independently run
20 times, and the average running time was taken as the
calculation result. The time efficiency comparison of the four
algorithms is presented in Fig. 15.

The results demonstrate that with the increase of the
support threshold, the running time of each algorithm will
decrease rapidly. The reason for this is that as the support
threshold increases, the number of frequent pattern sequences
that meet the threshold will decrease, and the running time
will also decrease. In terms of running time, NSPMA was
found to be superior to the other algorithms. This is because
the connection topology of components is considered in the
frequent item set comparison process, i.e., item sets that have
no relationship will be directly pruned without the need for
connection operations; this avoid a large number of useless
candidate sequence item sets, thereby effectively improving
the efficiency of pattern mining.

V. CONCLUSION AND FUTURE WORK
This paper proposes a new method for the automatic mining
of attack patterns from measurement data and information
alarm logs based on the characteristics of coordinated net-
work attacks that occur in physical space and cyber space,
and the temporal and topological correlation between each
attack step. The proposed method can restore the complete
attack path of the attacker and identify the key cyber and
physical components that are vulnerable in the electric power
CPS network. This method proposes the concept of coordi-
nated network attack modes and uses corresponding algo-
rithms for physical attack event identification, cyber attack
sequence identification, and multi-step frequent attack mode
extraction.

This paper comprehensively considered the attack process
of both cyber and physical space. Moreover, the proposed

method does not rely on various complicated association
rules that are set manually, and does not require a large
amount of prior knowledge to achieve good practical results.
In complex electric power CPS networks, the attack patterns
discovered in different network cooperative attack sequences
may be local. Therefore, future research will focus on the
investigation of attack pattern fusion methods in large-scale
topologies.
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