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ABSTRACT Unmanned Aerial Vehicles (UAV) are part of precision agriculture; also, their impact on fast
deployable wireless communication is offering new solutions and systems never envisioned before such as
collecting information from underground sensors by using low power Internet of Things (IoT) technologies.
In this paper, we propose a (Narrow Band IoT) NB-IoT system for collecting underground soil parameters
in potato crops using a UAV-aided network. To this end, a simulation tool implementing a gateway mounted
on a UAV using NB-IoT based access network and LTE based backhaul network is developed. This tool
evaluates the performance of a realistic scenario in a potato field near Bogota, Colombia, accounting for real
size packets in a complete IoT application. While computing the wireless link quality, it allocates access and
backhaul resources simultaneously based on the technologies used. We compare the performance of wireless
underground sensors buried in dry and wet soils at four different depths. Results show that a single drone with
50 seconds of flight time could satisfy more than 2000 sensors deployed in a 20 hectares field, depending
on the buried depth and soil characteristics. We found that an optimal flight altitude is located between
60 m and 80 m for buried sensors. Moreover, we establish that the water content reduces the maximum
reachable buried depth from 70 cm in dry soils, down to 30 cm in wet ones. Besides, we found that in the
proposed scenario, sensors’ battery life could last up to 82 months for above ground sensors and 77 months
for the deepest buried ones. Finally, we discuss the influence of the sensor’s density and buried depth,
the flight service time and altitude in power-constrained conditions and we propose optimal configuration
to improve system performance.

INDEX TERMS Precision agriculture, NB-IoT, unmanned aerial vehicles, wireless underground sensor
networks.

I. INTRODUCTION
Recently, using Unmanned Aerial Vehicles (UAV) in agricul-
ture, commonly known as drones, has gained much interest.
Drones can play an essential role in the Precision Agriculture
(PA): from gathering images in hard-to-reach crops fields
to spraying pesticides in large fields on exact locations.
Similarly, also the use of drones in wireless communications
has gained substantially more interest in diverse applications
like supporting terrestrial cellular networks, assisting IoT
(Internet of Things) applications, or being a simple end-
user [1]–[4]. Recent advances in Long-Range Wide Area
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Networks (LPWAN) have made the usage of wireless sen-
sors into agriculture feasible [5]–[7]. However, these are
not practical to use in potato crops because plowing and
harvesting can damage the sensors. As a solution, a Wireless
Underground Sensor Network (WUSN) is presented as a
promising way to acquire parameters from the soil [8], [9].
However, having a fixed infrastructure in large fields could
lead to considerably larger distances and limitations in signal
propagation. These drawbacks, in turn, lead to broken links
in the network or rapid battery depletion. To overcome these
downsides, we propose using a UAV to collect the data from
underground sensors. This novel approach aims to reduce
the transmission power and thus increase sensors’ battery
life. In addition, it will result in reduced implementation and
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maintenance costs in the long term, making the solution
viable for farmers. This innovative methodology has not yet
proposed by other authors and promises to increment the
quality of potato crops and increase the production of these
fields.

In this article, we propose an IoT system solution based
on the usage of Unmanned Aerial Base Stations (UABS)
to gather information from Underground Sensors (UGS).
Its objective is to reduce the transmission power from the
sensors and extend battery life. First, the study of the
underground-to-aboveground (UG2AG) channel and its lim-
itation related to power transmission is presented. Next,
we evaluate the network performance based on the capac-
ity of the wireless links, the UAV altitude and flight time,
the density of the UGS, and the power consumption. As far
as the authors’ knowledge, there are no studies of IoT-based
UABS serving underground sensors. In this innovative study,
we evaluate the viability of the proposed network architecture
and diverse parameters related to the capacity and life exten-
sion of the system described. We designed a simulation tool
describing the network system architecture that includes a
resource allocation algorithm to evaluate performance param-
eters. This approach differs from existing ones in the way that
fixed infrastructure in large fields leads to excessive power
usage from ground nodes leading to rapid battery depletion
and substantial infrastructure deployment costs. Moreover,
compared with actual drone solutions, image processing from
on-board cameras is limited to indirect topsoil measurements
rather than actual underground values. Our results show that
the system architecture proposed is viable for aboveground
and underground sensors. Some coverage limitations are
found in wet soils that reduce the connectivity of sensors
buried under 30 cm. Lastly, the battery usage of the nodes
is found to last more than six and a half years in the proposed
configuration.

The outline of this paper is as follows. Section II presents
a survey of drone usage in agriculture and its relation
to potato crops. Section III reviews technical aspects of
WUSN, LPWAN technologies, and UAV-aided networks.
The methodology used to describe the network architecture,
the scenarios, the path-loss models, and the tool employed
for the system assessment is presented in Section IV. Results
are discussed in Section V, and Section VI collects the con-
clusions and discusses future work.

II. UNMANNED AERIAL VEHICLES IN AGRICULTURE
This section illustrates the relation between UAV in agricul-
ture and potato crops in order to define a proper scenario for
our study.

A. DRONES IN PRECISION AGRICULTURE
The role of Unmanned Aerial Vehicles (UAV) in agriculture
has gained much interest in recent years [10], [11]. Precision
agriculture and surveying are applications where crops are
monitored with drones. They take images for the detec-
tion of weeds, pests, and pathogens, using high resolution,

multispectral, or infrared cameras for later post-
processing [12]. Different cases of study for precision agri-
culture using UAV with IoT nodes are discussed in [13].
Similarly, data monitoring through the implementation
of Wireless Sensors Networks (WSN) will increase the
efficiency of crop supervision, reducing data acquisition
time [14]. This article is focused on the role of precision agri-
culture, specifically in the Wireless Sensor IoT measurement
system using UAV.

B. POTATOES CROPS
Potato crops are an essential product in agriculture.
In Europe, only in 2015, the fields added up to 1.6 million
hectares producing an equivalent of 23 million tons of pota-
toes. On the contrary, the situation in Europe was much better
in 2000, when the production rose to 83 million tons of pota-
toes [15]. This reduction of production was mainly related
to the lower production rate per hectare due to unpredictable
weather conditions. Moreover, in Europe, the size per field
is quite small compared with non-European countries. The
average in Europe is 0.8 hectare per field, with Denmark, the
Netherlands, and the United Kingdom having average sizes
of 20.6 hectares, 17 hectares, and 16.9 hectares, respectively.
In South American countries, such as Colombia, the average
field size was about 20 hectares [16]. Further, the production
of potatoes is close to 2.6 million tons in 2015. High plains
in Colombia with altitudes between 2000 m and 3500 m
above sea level, hilly topography regions and regular rains all
year round, make the country suitable for enormous potato
crops [17], [18]. In this assessment, we are going to focus on
20 hectares fields.

III. NETWORK ARCHITECTURE FOR WUSN USING UAV
A network architecture definition to support agricultural
applications using UAV and IoT are described here. First,
the role of the WSN in agriculture is described. Second,
the most relevant IoT long-range technologies are presented.
Finally, the innovation of the usage of UAV as gateways
and its role with IoT in agriculture is collected in the last
subsection.

A. WIRELESS SENSOR NETWORKS IN AGRICULTURE
The research field of wireless sensors in agriculture to collect
information from the crops has been growing actively in
recent years. Several authors have done surveys in this area
and have pointed out the importance of WSN in agriculture.
A broad review of WSN applications is presented in [19].
In [7], a description of the main types of sensor networks and
its challenges is presented, varying from terrestrial sensors
to multihop underground sensors. It also describes an exten-
sive list of sensors available in the market for agricultural
applications. An introduction toWSN in precision agriculture
within the study of a real soil sensor is presented in [6]. [20]
presents a comprehensive study of WSN, including the wire-
less technologies and the energy-efficient mechanisms used
in agriculture to extend sensors’ battery life. An introduction
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to the IoT and its technologies in smart agriculture is available
in [21]. A thorough description of the significant applications
and technologies, including UAV, is offered in [22]. In [23],
an architectural model for IoT monitoring in potato crops is
presented. A practical application of WSN within a complete
IoT scenario is presented in [24]. Gao in [25] introduces a
QoS prediction method for IoT services in diverse scenarios.

The usage of WSN will help to determine soil parame-
ters like humidity, volumetric water content (VWC), ground
temperature, and pH level. These will determine the rela-
tion of nutrient absorption from the soil. Due to the nature
of the potatoes’ harvesting process, mainly through plow-
ing, the most appropriate solution is to bury the sensors at
underground depths where plowing machines could not reach
and damage the sensors. In 2006, the concept of wireless
underground sensors networks (WUSN) and its challenges
were introduced [9]. Here the requirements of this technol-
ogy and its first applications were presented. Subsequently,
WUSN were gaining attention, mainly when power constrain
sensors could be implemented. Yu describes the importance
of WUSN and presents experimental results for an under-
ground network with a mobile robot above ground collecting
information [5]. A connectivity study of the WUSN for soil
parameters is presented in [26]. Finally, in agriculture, there
are mainly two types of WUSN: the ones in the topsoil
(between 0 and 30cm depth) and the ones in the subsoil (under
30cm depth) where soil characteristics affect the wireless
propagation differently [27]. In this study, we are studying
the impact of both types of soils.

B. LOW-POWER WIDE-AREA NETWORKS TECHNOLOGIES
The usage of Low-Power Wide-Area Networks (LPWAN)
wireless sensor technologies proposes several challenges to
the network definition. Specifically, the definition of the
underground wireless channel under the limits of low-power
wireless sensors. Batteries in IoT wireless sensors are
intended to last up to ten years [28], mainly if the site of the
sensor is unknown or if it is placed in a difficult-to-reach spot.
Two primary technologies could be used to deploy theWUSN
aided by UABS, which is Narrow Band IoT (NB-IoT) and
Long Range Radio (LoRa) [29]–[31].

The NB-IoT is one of three standards based on the LTE
release 13 - 3GPP standard [32], in conjunction with eMTC
and EC-GSM-IoT. It is the simplified version of the cellular
network for IoT low power communications. The NB-IoT
standard answers the need for low power transmissions,
reducing the complexity of the transmitters while using
channel bandwidths of 180 kHz [33], [34]. The advantages
of NB-IoT include the usage of time-scheduling that allows
the User Equipment (UE) to remain asleep while there is no
transmission, leading to low power consumption procedures
called power saving mode (PSM) introduced in the Rel 12.
This characteristic allows devices to have a battery life of
up to 10 years using appropriated scheduling and tracking
area update (TAU) parameters. The 3GPPTR 45.820 v13 [35]
defines in detail the physical and MAC layer aspects for IoT

communications, including download and upload physical
layer design, access procedures, and radio resource manage-
ment procedures. The 3GPP TR 36.802 v13 also defines the
radio requirements for NB-IoT, including frequency bands,
channel arrangements, minimum receiver parameters, and
coexistence prevention procedures [32].

LoRa is a physical layer technology patented by Semtech
that uses a novel spread spectrum modulation based in the
Chirp Spread Spectrum (CSS) [31]. LoRa, in association with
the LoRaWAN (Long-Range Wide Area Network) which is
the openMAC protocol defined by the LoRa Alliance, allows
engineers to develop a case-specific protocol according to the
specific needs of the network [36]. The most crucial advan-
tage of LoRa incorporates a receiver sensitivity of 20 dB
under the noise floor that includes interference tolerance
for communication at different data rates. The different data
rates are defined by the spreading factor (SF), which allows
the creation of virtual channels with orthogonal codes per-
mitting transmissions without interference if a different SF
is used. As a result, for higher SF values, the data rates
will be lower, resulting in more extended coverage areas
of tenths of kilometers [37]. This technology is planned to
work in the unlicensed bands of 433/317 or 868/915 MHz,
with bandwidths of 125 to 500 kHz depending on the region
and the data rate needs. All devices must support at least
three subchannels of 125 kHz in the ISM EU863-870 band.
Furthermore, the open architecture of the LoRaWANprotocol
allows that almost anyone could deploy a LoRa network. This
protocol is based in a duty cycle per subchannel, limiting
the amount of transmission in the air to 1% duty-cycle; this
means that a device could send a message of 1-second every
100 seconds, to avoid collision with other devices.

These two technologies are competing for the market of
IoT applications with communication distances greater than
1 km. Both are designed to fulfill different requirements in the
IoTmarket. Equally, they work in sub-1GHz frequency bands
with data rates up to 50 kbps and focuses on power efficiency.
However, each one has its advantages. NB-IoT outperforms
in latency and provides better QoS due to the usage of a
time-slotted synchronous protocol. Contrary, LoRa, could
overtake NB-IoT in the transmission range and coverage, and
the reduced cost of implementation [30]. Table 1 compares
these technologies in the context of agricultural monitoring.

TABLE 1. Comparison parameters of LPWAN technologies.
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C. UNMANNED AERIAL BASE STATIONS
Unmanned Aerial Vehicles have several applications in wire-
less networks. Recently, the implementation of gateways
into UAVs is gaining much attention among researchers.
This concept is commonly known as Unmanned Aerial Base
Station (UABS) when a base station (BS) is mounted on a
drone to support ground communications. The applications
of this model range from providing service to users in dis-
aster scenarios, to data acquisition from IoT devices [3],
[14], [38]–[42]. Mozaffari et al. [3] presents a comprehensive
review of the usage of UAV, providing connectivity to ground
devices. Also, in [43], they describe the vision of a 3D cellu-
lar network taking into account 5G network requirements.
Efforts focusing on the location of UABS are addressed
in [41]–[47]. This field is one of the most notorious research
directions ranging from optimization of the placement based
on energy, traffic or coverage to power-constrained networks.
Other works like [51]–[53] include the analysis of the access
and backhaul network performance. However, specific stud-
ies involving only M2M and IoT devices in agricultural sce-
narios are scarce. The works in [54], [55], explain a dynamic
clustering methodology to support link connectivity of IoT
Agricultural sensor nodes. [56] proposes a hybrid UAV-WSN
to acquire data from large areas based on the movement of
the UAV and WSN locations. The work in [57] discusses
the relationship between the location of the UAV and energy
consumption based on the sensor’s transmission policy. [58]
presents a multi-layer hybrid IoT–UAV–satellite architecture
to optimize coverage and densification. Mignardi in [59]
discusses the importance of proper trajectory design for UAV
while serving NB-IoT nodes. The work in [60] introduces a
multilayer UAV network for IoT applications using 5G net-
works. A practical LoRa deployment measuring the received
signal strength (RSS) is presented in [61]. Finally, [62] reports
experimental results for parameters affecting the link budget
of an IEEE 802.15.4 rural IoT sensors using a UAV.

IV. METHODOLOGY
In this section, we define the system architecture for WUSN
data collection through UABS. First, we describe the network
parameters, and then we define the scenario. Next, we discuss
the path loss for air-to-underground channels, and finally,
we present our system evaluation tool.

A. NETWORK DESCRIPTION
We propose a UAV-aided network to support IoT agricultural
applications and data collection, as presented in Fig 1. It is
based in general architectures used in [1], [38], [44], [53]. The
core network (CN) or facility, is the network part that allows
access to the internet. The blue arrow describes the backhaul’s
direct link, which is the connection between the drone and the
CN. From the CN part, connectivity can be provided through
an above-roof antenna or a fast-deployable crane antenna
to increase height and provide better link connectivity. The
backhaul link uses LTE release 14 in the 3.5 GHz band

FIGURE 1. UAV-aided network architecture for IoT agricultural
applications.

that could be used even in out-of-band or in-band frequency
allocation [63]. This band is envisioned as a promising band
because it is not broadly allocated, and its use could overcome
the limited available spectrum from other bands. Specifics of
the backhaul radio parameters are presented in table 2 and a
detailed analysis could be found in [53]. The orange arrow
describes the IoT access network. It defines the connectivity
between the UABS and the ground sensors. To the best of
the authors’ knowledge, there is no research using an IoT
gateway mounted on a UAV to collect data for agricultural
ground sensors, neither using LoRa nor NB-IoT technology.

We propose to use NB-IoT due to its high tolerance to
interference, well-known technology and a licensed band.
These characteristics assure enhanced channelization and
reduce interference to achieve better links for aboveground
or underground communications [30], [33].

The access NB-IoT network consists of 36 sub-channels,
each with a bandwidth of 5 kHz, for a total of 180 kHz [31].
The system uses three bitrates of 900 bps, 1.8 kbps and
3.6 kbps for an SNR of 0.5 dB, 2.6 dB and 4.9 dB, respec-
tively [35]. Other radio parameters for the access network are
presented in Table 2. The system is aware of the following

TABLE 2. Backhaul and access link budget parameters.
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protocols. The physical and link layer protocols used are
NB-IoT as described previously. Next, it considers IPv6 over
6LowPAN (IPv6 for Low-power Wireless Personal Area
Networks) protocol to provide connectivity to a massive
number of devices with constrained capabilities. The usage of
open standards allows the interoperability and stability of the
platform. 6LowPAN is focused on transmission time into the
low-power network while maintaining connectivity with IPv6
networks utilizing i) header compression, ii) fragmentation
and iii) layer-two forwarding [64]. In order to reduce the
number of messages transmitted, User Data Protocol (UDP)
is considered. Its headers could be compressed into the
6LowPAN header to reduce packet size. On top of UDP,
the Constrained Application Protocol (CoAP) is used to
support the application layer in the replacement of the
Hypertext Transfer Protocol (HTTP). CoAP is designed to
support application in resource-based web services with
simple methods like Get, Put, Post and Delete, typical from
HTTP, but simple enough for monitoring application through
constrained devices [65]. Scheduling algorithms like the one
offered in [66] for cloud services are not considered in this
work. The above-described protocols are all designed to
achieve the lower communication time for devices allowing
the system to use the minimum transmission power and
maximizing the system throughput.

B. SCENARIO DEFINITION
A potato field typically ranges in size from a couple of
hectares to more than 30 hectares, depending on the region.
Twenty hectares is the average size in Colombia and the
maximum in some European countries, as described in
section II.B. We consider a potato field of 20 hectares in the
potato region in Colombia with low hills and small foliage
to focus on the underground impact. Using a uniform distri-
bution of sensors with 10 m spacing will sum up a total of
2000 nodes.

We will vary the number of nodes from 500 to 5000 to
evaluate the impact of a flexible number. The buried depth
of the sensors is varied for 0 cm, 25 cm, 50 cm and 75 cm.
Fig. 2 depicts the realistic scenario of a 20 hectares field
near Bogota, Colombia, where small barns are presented in
orange, and uniformed distributed sensors in green.

The sensors are configured to collect climate and soil
parameters like air and ground humidity, temperature, solar
radiation, pH and compaction. All these variables will add
a packet of 20 bytes per measurement. As described in
the previous section, we include the headers for NB-IoT,
IPv6/UDP compressed into 6LowPAN and CoAP protocols
to account for the total system performance. We propose one
measurement each hour and two flights per day, and as a
result, each transmitted packet will sum up 2144 bits per
device, as described in Table 3.

We propose to use a professional quadcopter able to carry
a payload enough for the BS equipment for a flight time
of at least 45 minutes. The MD4-100 fulfills these require-
ments with an average speed of 12 m/s, maximum flight

FIGURE 2. Potato field scenario used in the system evaluation.

TABLE 3. Packet description for NB-IoT system.

time 2400 seconds, battery capacity of 17.3 Ah and voltage
of 22.2 V [67]. Further, a facility deposit can support up to
10 drones, so when one is running out of battery, a new one
could replace it on the serving site.

C. PATH LOSS MODEL
Different path loss models focus either for aerial to ground
communications or for underground communications at the
selected frequencies [68]–[73]. However, there is none for
aerial to underground communications. Hence, we propose
a mixed path loss model consisting of the sum of the above-
to-ground path loss plus the underground path loss.

In [68], a two-ray model with experimental results using
ZigBee is available. A path loss model at 2.6 GHz in urban
scenarios accounting for the elevation angle is described
in [69]. Al-Hourani et al. [70] offers a statistical path loss
model based on the free space path loss (FSPL) model and
specific environment properties. It uses ray tracing for urban
and suburban scenarios were buildings and topography are
included in the construction of the model. The path loss
equation is presented in equation 1, where FSPL is the
free space path loss from the Friss equation and N is the
normal distribution from the excess path loss with a mean
of µ, and standard deviation σ , as described in equation (2)
where θ is the elevation angle, a and b are frequency and
environment-dependent variables.We select this model based
on its likeness for the evaluation tool used and for the pres-
ence of different frequencies. For the 700 MHz band in rural
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scenarios, the values for of Line-of-Sight (LoS) parameters
for µ, a and b are 0, 11.53 and 0.06 respectively, while for
No-Line-of-Sight (NLoS) are 18, 26.53 and 0.003.

PLAG = FSPL +N (µ+ σ ) (1)

σ = a ∗ e(−b∗θ) (2)

The underground communication channels could be char-
acterized by two parts, namely the ground-to-ground part
and the refraction from the air-to-ground interface [26], [27].
An underground model based on electromagnetic propaga-
tion, including direct wave, reflected wave and lateral wave
components, is discussed in [71]. The work in [72] proposes a
path loss model considering the attenuation from soil compo-
nents such as reflection, refraction and phase-shifting. In [73],
an aboveground-to-underground time-domain analysis is pre-
sented, including the refraction due to the interface air-soil,
based on the soil properties. Li et al. [74] presents a two-ray
path loss model for 300 to 700 MHz considering effects
such as multipath, soil composition, water content and burial
depth. This model is selected for this paper for including a
complete analysis of soil parameters and its impact on the
propagated wave. Equation 3 describes the path loss used for
underground propagation, where d is the distance in meters
for the buried sensor, β is the phase-shifting constant and α
is the attenuation constant of the soil. These last parameters
are dependent on the dielectric properties of the soil. We use
β = 30.85 and α = 1.92 for a VWC of 5%; and
β = 59.83 and α = 4.95 for VWC of 25% using to Peplinski
equations [75].

PLUG = 6.4+ 20log(d)+ 20log(β)+ 8.69αd (3)

D. SYSTEM EVALUATION TOOL
The tool employed in this evaluation is based on the
one used in [53], [76]. This tool, implemented in java,
deploys a UABS-aided network. The access network uses
the NB-IoT 3GPP TR 36.802 Rel 13 [32] and 3GPP TR
45.820 Rel 13 standards [35] while the backhaul uses the
3GPP TS 36.213 Rel 14 standard [77]. The novelty of the
evaluation tool is the inclusion of a simultaneous radio allo-
cation for access and backhaul links for UABSs, and the
usage of hybrid path loss models for links between the UABS,
the underground sensors and the facility antenna. The stan-
dard coded in the tool is following the most realistic sce-
nario possible to integrate the aforementioned technologies
in the frequency bands used [31], [78]–[80]. This tool has
been experimentally validated in various researchworks, with
results from mobile operators [76] to comparison between
simulations [31] and measurement campaigns [80]. To the
best of author’s knowledge, there are no commercial network
simulation tools that include UAV andWUSN. The algorithm
of the tool is described next.

A detailed diagram of the algorithm deployed in the tool
is presented in Fig 3. First, we use a realistic shape field
from a known crop field to generate the serving area (Box 1).
This stage includes the generation of the location of the

FIGURE 3. Resource allocation algorithm of the evaluation tool.

facility, the generation of the 3D flight grid for the UABS,
and the uniform location and traffic parameter of the ground
sensors. Second, when all the sensors are positioned, the tool
initializes a random sensor resource allocation, consisting
of the following steps (Box 2). i) The sensor calculates its
path loss to all the available UABS in the 3D grid and
organizes it accordingly. ii) It attempts to connect to the
first activated UABS in the list, aiming to fulfill the required
SNR. If the SNR is fulfilled, the tool calculates the data
rate based on the modulation and coding scheme (MCS)
(described in Table 2 ). It computes if the backhaul resources
are available, assigning the sensor to this UABS. iii) If the
power is not enough, it attempts increasing the transmitted
power until the maximum value is achieved. iv) If the SNR
is not fulfilled, the next UABS is evaluated following the
same procedure until the sensor is allocated. v) If none UABS
could serve the sensor, it is marked as unachievable. vi) The
next sensors are evaluated within the same procedure from i-v
until all the sensors are evaluated. Third, the UABS capacity
is calculated based on the transmission airtime per sensor in
each subchannel (Box 3). Therefore, an optimization method
is introduced when the power of the UABS is incremented.
By calculating the sensor’s SNR again, we define if we can
modify its data rate to adjust the UABS’s resource allocation.
This calculation will give a relationship between the number
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of nodes, the file size of each node, the modulation and
coding scheme (MCS) used, the time-on-air and the number
of available drones; with the capacity of the system. Finally,
the tool collects all the results and print them in spreadsheet
files for further post-processing and analysis.

The input files for the tool include the information of
the crop field, drone specification, the access and backhaul
technology parameters including radio and power constraints,
and the simulation specific parameters like the number of
sensors, buried depth, facility size, and flight height among
others. The output files collect the statistics from served
sensors, activated UABSs, access and backhaul used capacity,
the power used and so on.

V. RESULTS OF SYSTEM EVALUATION
To evaluate the system described above, we consider a
realistic scenario in a 20-hectares potato field in Colombia.
First, we study the performance of the NB-IoT base station
mounted on a UAV using the 716 MHz band. For this,
we study the network performance of sensors buried at 0cm,
25cm, 50cm and 75cm, uniformly distributed. Moreover,
we evaluate the impact of the flight altitude on the system
performance when varying it between 20m and 200m. Next.
We investigate the impact of the capacity for different flight
times from 10 to 100 seconds. Following, we assess the
impact of dry and wet soils into the network performance.
Finally, we evaluate the power performance of the network to
maximize the lifetime of the UGS. The simulation parameters
are listed in Table 4.

TABLE 4. Simulation parameters.

A. WUSN DENSITY
We study the performance of the system by varying the
deployed sensors’ density. We vary the number of sensors
from 500 to 5000 sensors, representing internode distances
of 20 m to 6.5 m, respectively. First, we consider the ground
sensors in dry soil at buried depths of 0 cm, 25 cm, 50 cm and
75 cm. The UABS’s flight altitude is set to 100 m above the
ground and a limited (one UAV) and the unlimited facility is
used.

In Fig. 4a, the number of served sensors is presented. It can
be seen that for an unlimited UAV facility (dotted lines),
100% of the sensors are served. When a large number of
drones are at disposition, even the farthest and deeper sensors

FIGURE 4. Results for sensors for wireless underground sensor network
(WUSN) density analysis. (a) Total served sensors. (b) Needed unmanned
aerial base Stations (UABS). (c) Total resource usage from backhaul.
UGXX-Ltd/UnLtd = Underground sensor at XX (00, 25, 50, 75) cm with a
limited (Ltd – continuous lines) or unlimited (UnLtd – dotted lines) facility
size.

could choose a UABS that serves it and attempt to connect.
In contrast, if there is only one UABS serving the field
(continuous lines) limited by the UAV facility size, two
phenomena occur. For ground sensors that suffer from a sig-
nificant path loss, its power could be insufficient to connect
to the UABS located in the center of the field. Furthermore,
the maximum access capacity could be reached by the ground
sensors, and it is dependent on their SNR values that affect the
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overall time-on-air of the ground sensors. For the three MCS
used by the NB-IoT standard [35], the calculated maximum
number of served nodes is 755, 1511 and 3022 for the
SNR values of 0.5 dB, 2.6 dB and 4.9 dB respectively, in a
50 seconds flight time circumstance (Fig. 4a). For ground
sensors (buried depth of 0 cm), the maximum number of
served sensors is 3016, described in the blue line. This behav-
ior suggests that the majority of sensors are connected using
2/3 π /4-QPSK modulation scheme. The number of served
sensors slightly decreases to 2912, 2892 and 2258 for 25 cm,
50 cm and 75 cm buried depths, respectively. This happens
because, at deeper distances, the nodes experience higher
path losses and significant number of nodes are connected
to lower modulation schemes, needing more time-on-air for
its transmissions. It should be noted that the performance
of 25 cm and 50 cm buried depth are quite similar despite
the difference of more than 10 dB on average between its
path loss calculations.

The number of required UABSs to serve the deployed
sensors is presented in Fig 4b. These values are averaged
through ten simulations and then rounded to the next inte-
ger value. As expected, for a limited facility (with just one
UABS – continuous line) in all the scenarios, only one
UABS is used. For an unlimited facility size (dotted lines),
the number of needed UABSs increments with the number
of deployed sensors, i.e., for above ground sensors, for more
than 3000 sensors, a second UABS is needed. Besides, for
buried sensors, at depths of 25 cm and 50 cm, the behaviour
is quite similar, and a second UABS is needed from 2500 sen-
sors and 1000 sensors, respectively. Finally, for the maximum
depth (75 cm), three UABSs are needed from 500 sensors,
increasing to four from 1500 deployed sensors.

The backhaul usage in total Resource Blocks (RBs) from
the aerial network is shown in Fig 4c. The total consumption
is rather small compared to the available capacity of the back-
haul channel. Hence, the capacity limitation due to saturation
of the backhaul channel was never reached. The simulation
results indicate that less than 15% of the backhaul capacity is
used even for the scenario with the highest bitrate demand.
The backhaul RB usage trend is similar to the number of
served sensors, although some small differences are found
due to the assigned traffic rate at the side of the sensor.
In particular, deeper buried scenarios (75 cm) consume fewer
RBs than aboveground due to the smaller data rate assigned
based on smaller SNR values. This behavior could be clari-
fied since the UABS’s RB allocation is done by requested bit
rate, rather than the actual packet size–following minimum
latency goals– resulting in less traffic allocated to sensors and
fewer RBs assigned to the backhaul channel.

B. IMPACT OF FLIGHT ALTITUDE
For the flight altitude analysis, we vary the flight height from
20 m to 200 m for only 2000 sensors maintaining a 10 m
spacing density. Following the results from Section IV.A,
2000 sensors could be served without time-on-air capacity
restrictions. As a consequence, deploying 200 sensors will

only be affected by the aboveground-to-underground channel
comportment. The results in Fig 5a show that for an extensive
facility, the number of served sensors is 100%, inclusive for
deeply buried sensors. That can be served for close-by UABS
locations. However, for a limited facility, the total number of
served sensors decreases with lower altitudes. For example,
at a buried depth of 75 cm, the number of served sensors
reduces from 1991 at 200m down to 1951 at 100 m and
1741 at 20m. Instead, at 50 cm depth, 2000 sensors are served
at 120m and decrease slowly down to 1947 sensors at 20 m
height.

FIGURE 5. Results for flight altitude analysis. (a) Total served sensors.
(b) Unconnected Sensor distribution for the worst-case scenario
(c) Needed unmanned aerial base stations (UABS). UGXX-Ltd/UnLtd =

Underground sensor at XX (00, 25, 50, 75) cm with a limited (Ltd –
continuous lines) or unlimited (UnLtd – dotted lines) facility size.
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This decrement is due to the small angle of arrival, between
the UAV and the underground sensor, that increments the path
loss value significantly in distant sensors. Fig 5b illustrates
an example of this case for a buried depth of 75 cm, with
a flight altitude of 20 m. Here, only 1747 (87.3%) sensors
could be served as depicted by the green stars. The red crosses
show the unconnected sensors that are too distant from the
UABS in the center of the field, exhibiting a circular shape
based on the omnidirectional antenna used. At smaller depths,
the performance is improved, achieving 100% of connectivity
at altitudes of 120 m for 50 cm, and 60 m for 25 cm. The
number of required UABSs is also affected by its flying
height. Fig. 5c shows that at higher altitudes, the number of
needed UABSs is reduced, where optimal usage is achieved
when only one UABS is needed, finding similar results from
the connectivity where 140 m and 60 m are the optimal flight
heights for 50 cm and 25 cm buried depths, respectively.

C. FLIGHT SERVICE TIME ASSESSMENT
Because the capacity for each user is dependent on its time-
on-air (ToA), this subsection investigates the impact of the
flight time on the capacity of the system. We performed
simulations varying the flight time from 10 s to 100 s, with
a fixed number of 2000 of deployed sensors within different
buried depths (0 cm, 25 cm, 50 cm and 75 cm). First, the time
behavior of the system is investigated. 3GPP rel 12 [35] states
that the IoT devices can work in three modes: i) Connected
Mode, where the device can receive and transmit data, ii) Idle
Mode, where the device enters in sleep mode, but the BS is
able to wake it and put in connectedmode, and iii) Power Sav-
ing Mode (PSM), the mode with lower transmission where
the radio equipment is turned off; hence no communication
is available. Devices have two option for waking up from
PSM. Initializing Random Access Channel (RACH) commu-
nication to move to connect mode or if the traffic is delay
acceptable, wait for the Tracking Area Update (TAU) timer
to wake it up. We configure the TAU to 120 s each hour.
This means that all the devices have 120 s to exit from PSM
mode and enter in connected mode to request RACH requests
and allocations. Because the UABS only flight twice per day,
when the IoT devices do not receive a response from the
RACH request, they enter in PSM for the next hour. When
the UABSs are flying to collect data, they have to arrive at
the serving location in advance, before ground sensors start
waking up, so RACH requests could be attended. Once all
the IoT devices have asked for radio resources during the
TAU period, the UABS allocates them through the Down-
link Control Information (DCI) channel; the UABS proceeds
to receive all the data from ground sensors. Details of the
scheduling procedures are found in section 7.1.4 from the
NB-IoT standard [35].

Fig 6 shows the flying service time, which is defined as
the time when all the ground nodes are served after the
allocation process. Ten seconds is sufficient time for serving
2000 ground sensors when an unlimited facility is used.
Instead, when only one UABS is available, the number of

FIGURE 6. Results for flight service time for unmanned aerial base
stations (UABS). UGXX-Ltd/UnLtd = Underground sensor at XX
(00, 25, 50, 75) cm with a limited (Ltd – continuous lines) or unlimited
(UnLtd – dotted lines) facility size.

served sensors increases from nearly 600 nodes at ten sec-
onds, to 2000 nodes at 40 s. For the 75 cm buried depth, one
UABS needs nearly 60 s to serve only 97.4% of the nodes.
As expected, for topsoil sensors (blue lines in Fig 6), there
are 11%, 7.7% and 5.5% more nodes served compared with
the buried nodes at distances of 25 cm and 50 cm.

D. WATER CONTENT EVALUATION
The impact of the wet soil on the network perfor-
mance is investigated by simulating the network under dry
(VWC = 5%) and wet (VWC = 25%) circumstances,
at 20 m and 100 m of flight altitude and for buried depths
between 0 and 1 m. Besides, the scenario consists of 500 and
2000 deployed underground sensors using only one drone.
In Fig. 7, the percentage of served sensors is presented. The
continuous blue line represents the percentage for 500 sensors
buried in dry soil with a UABS flying at 100 m above ground
level.

FIGURE 7. Results for water content evaluation for volumetric water
content (VWC) = 5% and VWC = 25% for 500sensors and 2000sensors
at 100 m and 20 m of flight altitude (FA).
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The system could serve up to 500 nodes at 55 cm buried
depth. Similar behavior is presented in the blue dotted line,
for 2000 sensors. However, from 80 cm, the percentage
decreases sharply, due to the capacity restrictions on the time-
on-air for those sensors that the SNR uses the lowest MCS.
When the UABS is flying at 20 m, the incidence angle affects
severely, resulting in an increasing path loss and leaving
more sensors disconnected. When the water content in the
soil is increasing, the results are disastrous for the network
performance in deeply-buried sensors.

The continuous green line in Fig 7 shows the served nodes
when the VWC is 25%. From 35 cm, the percentage is sharply
reduced, from 100% at 30 cm down to 0% at 60 cm depth and
more. Similarly, the green dotted line shows the results when
2000 sensors are deployed. Network saturation due time-on-
air could be seen between 35 and 55 cm, but after this, path
losses are so significant, that service is hardly achievable.
On the other hand, for the UABSflying at 20m, the increment
in the path loss due to the angle, diminishes the service from
20cm, as presented by the dashed green line.

E. POWER USAGE EVALUATION
The power usage in the IoT system is studied in two parts.
The first one is the study of the power consumed by the aerial
network, which includes the access and backhaul network
consumption, plus the power consumption of the drone’s
flight [53], [81]. The second part is the study of the WUSN,
in specific the life span of the deployed sensors.

In the first analysis, we review the results from flight
elevation scenarios. Fig. 8a shows themean power usage from
UABS flying from 20 m to 200 m, for four different burier
depths. The values are quite similar for all the scenarios,
concluding that at higher altitudes, the drone needs more
energy to climb higher. The results show that the drone needs
approximated 125 mW for each meter increment in its flight
height. Also, at higher altitudes, the NB-IoT transmission
power to reach sensors and the backhaul power to reach the
facility antenna should increase, increasing the overall power
consumption. However, the differences in these scenarios are
quite small, considering that the drone motion consumes the
majority of the energy instead of the transmission power.
The average power usage for the unlimited scenarios is 2 W
less than the limited scenario because, in the unlimited one,
the UABSs are flying close to sensors’ positions hence reduc-
ing the transmission power.

Moreover, note that for 75 cm buried sensors, the power
consumption is higher than the sensors above the ground.
This comportment happens because buried sensors would
needmore transmission power on average to achieve the same
MCS than sensors on the surface. For an altitude of 20 m,
the average power consumption is 19.7 W +− 0.5 W and
increases up to 26.3 W +− 1.5 W for 100 m flight altitude.

The second analysis consists of the evaluation of the
consumption of the ground sensors and battery lifetime.
Equation 4, as shown at the top of the next page, described
the battery life of an NB-IoT sensor, where the lifetime,

FIGURE 8. Results for power consumption analysis. (a) Mean power
consumption per unmanned aerial base stations (UABS), (b) Cumulative
distribution function (CDF) for average serving time. UGXX-YYm =

Underground sensor at XX (00, 25, 50, 75) cm with a YY (20, 100) m flight
altitude (FA). With a limited (Ltd – continuous lines) or unlimited
(UnLtd – dotted lines) facility size.

in hours, is the result of the battery capacity in watts per hour,
multiplied by the interval time in hours, divided by the total
power consumption per transmission interval. The power
consumption is the sum of products of the transmitted power
by the time-on-air, the sleep power by the sleep time and
the active power by the Difference Timer. All the time units
should be used or converted in hours. In NB-IoT, the Tracking
Area Update (TAU) is part of the PSM procedures used in the
3GPP Rel 12 standard to conserve battery.

We define the Difference Timer (Equation 5), as shown
at the top of the next page, as the difference between the
TAU time and the PSM cycle, where the sensor node is
reachable [82]. The ToA (Equation 6), as shown at the top
of the next page, and sleep time (Equation 7), as shown at the
top of the next page, are calculated based on the bit rate of the
sensor [32], [34], [82]. The parameters used for the sensor are
described in Table 5.

We evaluate the performance of 500 ground sensors at
four different depths with two flight elevations. Fig 8b elu-
cidates the cumulative distribution function (CDF) of the
battery lifetime for these scenarios. It can be seen that the

56832 VOLUME 8, 2020



G. Castellanos et al.: System Assessment of WUSN Using NB-IoT UAV-Aided Networks in Potato Crops

LifeTime [h] =
BatteryCapacity

[w/
h
]
∗ TxInterval [h]

Ptx [w] ∗ ToA [h]+ Psleep [w] ∗ TSleep [h]+ PActive [w] ∗ TDiff [h]
(4)

TDiff [h] = TAU [h]− PSM [h] (5)

ToA [h] =
PacketSize [bits]

bitrate [bps] ∗ 3600
(6)

Tsleep [h] = TxInterval [h]− ToA[h]− TAU [h] (7)

TABLE 5. Sensor power parameters.

lifetime depends on the buried depth. For above-ground sen-
sors, the batteries could last up to 81 months and decreases
for deeper sensors. In the worst-case scenario, i.e., 75 cm
depth, the batteries of the sensors should be changed every
77.8 months when between 10% and 40% of the sensor
batteries would have been depleted. These results mean that
under those conditions, the system could be operative for
nearly 6.5 years. This inference is essential because a farmer
could deploy the sensors in the topsoil and plant the potatoes
in the organic layer above the sensors without the need for
replacement them in each crop.

VI. CONCLUSIONS AND FUTURE WORK
The usage of UABSs to collect data form potato crops using
underground sensors is a new subject in the precision agricul-
ture field that needs profound research due to the versatility
of drones in large fields that could reduce the need for fixed
infrastructure reducing cost. Using NB-IoT as a low power
technology, allow us to determine system characteristic that
needs attention in the design of the monitoring system. From
the simulated results, the capacity of the system is found
to be related to the time-on-air of the system and the path
loss between the UABS and the ground sensors. Our results
show that up to 2500 underground sensors could be served
for a 50 second flight time, even for 75 cm buried depths.
Furthermore, using multiple UABSs could aid in serving
more sensors and reduce the transmission power of the sen-
sors. The impact of the flight altitude is primary for the buried
sensor: for lower altitudes, a small angle between the UABS,
the sensor and the ground, will increment the path loss and
reduces the quality of the link between the ground sensor and
the UABS, leading to potential uncovered sensors. However,
for aboveground sensors, 60m is an optimal altitude for single
drone usage.

Also, the impact in the VWC could rapidly diminish the
performance of the system leading to smaller burier depths,
changing from 75 cm in dry soil down to 30 cm in wet soil,

for a 100% service. Finally, the power consumption of the
aerial network is highly dependent on the flight elevation and
flight time, with small increments for deeply buried sensors.
For the underground network, the battery life study indicated
that the ground sensors could serve more than 6.5 years and
depends on the buried depth, being the shortest lifetime for
the deepest buried sensors.

This system assessment has included several parameters to
evaluate the overall network’s performance, such as the drone
flight height, the buried depth of sensors, the density of sen-
sors and the flight time. The results found in this evaluation
could be applied to a different type of crops like wine and
olive crops, or rice and corn crops where water contents are
highly relevant. Future work will include the evaluation of
a single moving UABS IoT gateway, a detailed study of the
network protocol configuration, and its implications into the
system behavior and comparison with other low power tech-
nologies like Low-Range Radio (LoRa). Lastly, a laboratory
trial to evaluate and compare results with the proposed path
loss model to validate its accuracy is part of the future work.
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