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ABSTRACT Nowadays, the usage of the fog cloud-based Internet of Things (IoT) applications among users
has been growing progressively. These applications may be E-Transport, E-Healthcare, Augmented Reality,
and 3D-Game. Generally, contemporary cloud frameworks offer services based on virtual machines. These
frameworks incurred with following issues such as long boot-time, overhead and unnecessary cost to run the
IoT applications.We propose a newMicroservice container fog system (MSCFS) based framework to run the
mobility and delay-sensitive applications with minimum cost. The study the cost-efficient task scheduling
problem in the heterogeneous fog servers. Furthermore, the study introduces the Cost Aware Computational
Offloading and task scheduling (CACOTS)framework, which solves the task scheduling into multiple steps.
Such as task sequencing step, resource matching step and scheduling step. The experimental results prove
that the proposed MSCFS and CACOTS schemes can enhance server utilization. As decrease the services
latency and average services bootup time more effectively, and minimize costs.

INDEX TERMS Task scheduling, fog servers, boot-up time, microservices, container.

I. INTRODUCTION
Recently, explosive growth in smart devices (e.g., mobile
phones, sensors, and tablets), and the Internet of Things (IoT)
based smart applications have been growing progressive [1].
The applications may be E-Healthcare, Augmented Reality,
3D-Gaming, and E-Transport. However, still smart devices
face resource limitation issue (e.g., insufficient battery power,
poor CPU speed, and inadequate bandwidth utilization) [2].
It is hard to execute the applications as mentioned earlier
locally on smart devices [3]. Mobile Cloud Computing
(MCC) is an assuring clarification to alleviate the
resource-constraint issue of smart devices via computation
offloading method [3]. Computation offloading allows smart
devices to offload compute-intensive workloads to the rich
resource cloud for execution. Furthermore, MCC classified
into many types of paradigms such as Edge Computing
(EC), Fog Computing (FC), and cloudlet. FC is an emerging
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paradigm introduced for IoT applications with small end
to end latency and placed at the edge of the radio access
network [4]. Many studies [5]–[8] introduced computational
offloading frameworks for resource constraint devices in
the literature. The main goal was to improve smart device
battery life, enhance the performance of applications at the
resource-constraint devices. These computational offloading
frameworks offered virtual machine cloud services to the
user applications. However, the bootup time of services
at virtual machines is about 28 seconds and inter-process
between virtual machines incurred with heavyweight over-
heads. These limitations cannot meet the requirements of
fine-grained lightweight delay-sensitive IoT applications
during offloading.
Motivation: Smart devices based Internet of Things

applications are demanding by the users and growing
progressively. These applications are composed of light-
weight operations and required thin services to execute them
with minimum delay. Another hand, existing MCC paradigm
exploited heavyweight virtual machine to offer assistance to

56680 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-0003-285X
https://orcid.org/0000-0002-3648-9034
https://orcid.org/0000-0001-8641-6119


X. Zhao, C. Huang: Microservice Based Computational Offloading Framework and Cost Efficient Task Scheduling Algorithm

the user applications. These services are paid based on as you
go, pay model, therefore, cost, interactivity, and mobility are
the key challenges in the existing MCC paradigms. Further-
more, the IoT application, such as E-Business (e.g., Ticket
application), requires many different services from different
vendors to meet the requirements. Therefore, cost-efficient
resource scheduling is another critical challenge in the MCC
for IoT applications.

This paper considers the cost-efficient task scheduling
problem in heterogeneous fog cloud network for IoT applica-
tions. The goal is to minimize the costs of the services to user
applications. These costs determined by the communication
cost and computation cost during offloading and scheduling.
Every IoT application has a set of independent fine-grained
tasks. The fine-grained means, each task has its own data and
attributes and run independently. Each task has a set vector
attribute such as data size, require CPU instruction for execu-
tion, and deadline. We consider the various fog cloud servers
that are distinct by their speed and prices. In this paper,
the following questions are taking into consideration during
task scheduling. (i) How to choose an ideal and cost-efficient
fog server for each task, that meets the requirements of the
task. (ii) How to sequence offloaded tasks in a cost-efficient
way before task scheduling. (iii) How to do optimal task
scheduling which reduces the costs of tasks and execute them
under their deadlines.

Summary, the paper makes the following contributions.
• Computational offloading is a method between resource
constraint devices and the rich resource fog com-
puting model. We propose a novel microservices
container-based fog system (MSCFS). It improves
heavyweight virtual machines based frameworks with
the docker container at the resource level. MSCFS gains
lower boot-up time, less overhead among services.

• The paper considers a set of different fog cloud servers
with different attributes. However, each task of the
application has different vector set QoS requirements.
To meet the demand of a task, we require to choose
an optimal fog server, among others. We propose the
resource matching algorithm which matches each server
to the task requirements.

• In our problem, tasks are arrived randomly to the system
and followed by the Poisson process. The offloaded
tasks are submitted randomly in a set without any
sequence. So we need to sequence these tasks first.
A three rule-based task sequencing method is employed.
The given deadline, size and slack time are critical to
sequence the task; therefore, we develop the three rules
to sort the submitted responsibilities concerning three
features. These rules are the Earliest Due Date (EDD),
Lateness Time First (LTF), and Shortest Size First (SSF).

• Schedule, a set of fine-grained tasks onto a network of
heterogeneous fog servers. With communication time
and computation costs, the scheduling becomes a chal-
lenging job. To deal with the problem, We propose
a cost-efficient task scheduling. The derived scheme

iteratively allocates the tasks onto servers to reduces
overall costs.

The rest of the paper is organized as follows. Section 2
shows the existing studies related to the task scheduling prob-
lem. Section 3 describes and formalizes the problem under
study. Section 4 describes the proposed algorithms CATSA
and their components. Section 5 evaluates the performance.
Section 6 is the conclusion.

II. RELATED WORK
With the explosive growth of the Internet of Things in
practice, computational offloading has gained a lot of
popularity among users. Computation offloading allows
resource-constrained devices offload resource-intensive tasks
of applications to the cloud servers for the execution. This
way, the battery power of the device could be improved,
as well as application performance could be improved. Many
efforts have made to improve the device and application
performances by different studies.

The paper [5] presented the CloneCloud framework, which
goals at increasing the battery life and execution on the
mobile phone. The study exploited offloading method to
offload compute-intensive tasks to centric cloud servers. The
paper [6] presented a computational offloading framework
that focuses on energy saving onmobile phones when execute
the compute-intensive applications on it. MAUI is a dynamic
computational offloading framework, which exploited differ-
ent profiling technologies. The goal was to make an offload-
ing decision whether a task runs locally or offload to the
server at the runtime of the application. ThinkAir [7] pre-
sented a computational offloading framework that allows
smartphone applications to offload their workload to the
cloud. The framework uses the idea of mobile phone virtu-
alization at the centric cloud and gives method level compu-
tation offloading. In addition, somemeta-heuristic algorithms
are also applied to scheduling problems [8], [9].

Computation offloading to the centric cloud is not ever-
more a resolution, because of the high wireless access net-
work latencies. Therefore the centric cloud resources to
be brought proximity to the mobile-user in the design of
cloudlets. Satyanarayanan et al. imply in [10] a VM based
cloudlet framework. Cloudlets are virtual-machine based
on provider scalability, mobility, and elasticity. They are
placed in single-hop proximity to mobile phones. The
Rattrap [11] presents Container Android Cloud-based frame-
work for smartphone computation offloading that replaces
virtual machines with containers. The goal was to decrease
the boot time of the monolithic services in the centric
cloud environment. However, the aforementioned computa-
tional offloading framework cannot meet the requirements of
fine-grained IoT applications.

The paper [12] investigates the offloaded tasks of mobile
devices at heterogeneous cloudlets while improving the
total cost-efficiency. The communication time and compu-
tation time, along with costs under deadline, are taken into
consideration by the study. Energy-efficient offloading and
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cost-efficient task scheduling type problems investigated in
these works [13]–[15]. They focused on improving battery
energy via computational offloading to cloud computing.
Resource cost includes storage and computingmodel reduced
via task scheduling inhomogeneous cloud environment. The
studies [16], [17] were investigated by resource models in
the mobile cloud system for mobile applications. Whereas,
the different pricing models discussed in these studies. For
instance, on-demand, on-revered and spot instance. The goal
was to decrease the renting costs of resources and execute all
applications under their deadlines. These studies [18]–[20]
considered the real-time and cost-efficient task scheduling
problem to minimize application costs. The main goal is
to enhance the performance for cloud service platforms by
reducing uncertainty propagation in scheduling workflow
applications that have both uncertain task execution time
and data transference time. Additionally, and these costs
include the communication cost and computation cost during
scheduling in the mobile cloud system.

To the best of our knowledge, microservices containers
based fog cloud framework for fine-grained delay-sensitive
has not been suggested. We propose a novel MSCFS frame-
work, which execute all tasks of applications with minimum
costs. To ensure the Quality of Service (QoS), we propose
the cost-aware computational offloading task schedul-
ing (CACOTS) framework. The CACOTS provide the appli-
cations QoS, minimize the cost of the resources and execute
them under their deadlines [21].

III. PROBLEM DESCRIPTION
We study, the cost-efficient task scheduling problem for IoT
applications in the heterogeneous fog cloud servers. The costs
determined by the communication cost and computation cost
during offloading and scheduling at the MSCFS. The goal
of the paper is to reduce applications costs at the MSCFS
during processing at the heterogeneous servers. The pro-
posed architecture MSCFS describes in detail in the next
subsection.

A. PROPOSED MICROSERVICES FOG-CLOUD
ARCHITECTURE
The proposed microservices container-based fog system
(MSCFS) consists of a client application layer, the control
layer, and the resource layer, as shown in Figure 1. Generally,
the client application layer generating offloading tasks of
different IoT applications and randomly arrive at the control
layer. Whereas, the control layers consists of four modules
to process the offload tasks at the various resource in the
resource layer. The Fog Cloud Agent (FCA) is orchestrator,
which is accountable for managing and handling the tasks
with assists of task sequence module and scheduling module.
FCA is a centralized controller, and it exists between user
applications and system resources. FCA monitor and collects
data (for example, metrics, configuration information, and
logs) from entities. These objects reside on hosts or virtual
hosts in a fog system network. These are Monitoring System,

FIGURE 1. Proposed CACOTS system architecture.
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Task Sequencing, and Task Scheduling. FCA utilizes all
components together to execute requested workloads and
measure the performances of the resources.

Initially, we arrange the offloaded tasks into the topological
order by the known sorting algorithm [19]. Furthermore, each
task has a set of vector attributes such as data size, required
CPU instruction, and deadline. To meet the requirement
of tasks, we proposed task sequence rules with a different
method to ensure sorted algorithm to be scheduled with min-
imizing cost under their deadlines. Monitoring system man-
ages lookup-table, which includes the list applications tasks,
status of available resources. The lookup-table updates after
the event occur, such as completion of a task, the resource
is free after getting the job done. Due to swapping the tasks
between servers, initial task scheduling will further improve
costs function of the resource by swapping tasks among
different fog servers.

The resource layer is composed of heterogeneous fog
servers with a limited set of homogeneous virtual machines.
We consider virtual machine at the top layer of resources,
internally we deployed docker-engine which add/remove
container microservices for the fine-grained offloaded tasks.
Each container holds one business microservice for each
fine-grained tasks, and it can communicate with microservice
via REST API.

B. TASK CHARACTERIZATION
The IoT application made up of independent fine-grained
tasks [22]. The fine-grained means here, all tasks have their
data in the application. These tasks run independently and
require different resources for execution. Whereas, every task
has vector attributes such as data size, required CPU and
deadline before task scheduling at the fog system. These tasks
arrive at the fog system based on the random method. The
preemption state during scheduling is not permitted.

C. MOBILITY MANAGEMENT
At the edge of the wireless network, we integrated all of the
fog cloud services. Mobility module in FCA allows service
networks to locate the attachment point of amobile subscriber
to deliver data packets (i.e. location management) and to
maintain the connection of a mobile subscriber as it continues
to change its attachment point (i.e. handoff management).
This segment addresses the problems and functionalities of
those operations. Handoff management is the mechanism
through which a mobile node triggers its connection while
moving from one access point to another. A handover process
involves three phases. Next, either the mobile device, or a
network agent, or the changing network conditions cause the
activation of handoff. The second stage is for a new connec-
tion process, where the network needs to find new handoff
connection tools and perform additional routing operations.
Finally, data-flow control must ensure data delivery from the
old connection path to the original connection path according
to the QoS support granted upon.

D. RESOURCE CHARACTERIZATION
In the fog cloud paradigm, the containers as a lightweight
methodology to virtualise applications have newly been thriv-
ing, especially to run IoT applications in the fog cloud [23].
Typically, the administration of groups of containers grows
crucial, and the orchestration of the development and deploy-
ment grows a fundamental problem. Microservices are small
autonomous services that communicate over well-defined
APIs. Small, self-contained teams own these services in the
MSCFS. We consider heterogeneous fog server, at the top of
the layer we exploited virtual machines. However, internally,
we deployed the docker engine, which adds and remove the
containers microservice easily. A heterogeneous cluster of
fog servers contains processors and devices with different
bandwidth and computational capabilities, runtime, virtual
machines (e.g., container-microservices) and costs.

E. MICROSERVICES RUNTIME IN MSCFS
Microservices are a technique of runtime software devel-
opment a variation of the service-oriented structured archi-
tecture model that arranges an application as a series of
loosely coupled services. Services are fine-grained in a
microservice architecture, and the protocols are lightweight.
In MSCFS, each fog server made of a single virtual
machine (e.g., on-demand). Whereas, each virtual machine
can support many container-microservices at a time. Each
container-microservice can run one task at a time. For
instance, requested doctor searching computational task of
healthcare application requires a searching service in fog
server. FCA assigns cost-efficient microservice to those as
mentioned earlier requested computational tasks to run with
the efficient result. The microservice (e.g., doctor searching
service) is a business goal which holds its resources and
libraries to run any task. Therefore, it is an effective way to
handle fine-grained tasks of application during offloading in
the system.

F. PROBLEM FORMULATION
In the fog cloud system, we assume a set of delay-sensitive
tasks T = {t1, t2, . . . ,N } to be offloaded and schedule to
the fog servers. Each task ti holds different attributes and
denoted by ti = {Wi, datai, di, si}.Wi denotes theworkload of
a task, datai shows the data size of a task during transmission,
di illustrates task deadline of a task, and si demonstrates
storage requirements of a task.

We assumed that, the fog cloud system consists of M
heterogeneous fog servers, i.e., F = {f1, f2 . . . ,M}. Each fog
server fj has the following attributes, i.e., fj = {Bwj, ζj, Sj,Vj}.
Whereas,Bwj shows the bandwidth between centric fog cloud
agent and fog cloud server during task offloading. ζj illus-
trates the computing rate of the jth fog server, Sj demonstrates
the total capacity (e.g., storage) of the fog server j in the
system. Vj denotes the number of deployed virtual machine
docker for microservices with same capability in the fog
server j. Each Vj made up of different containers and to be
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executed many microservices for the offloaded tasks. Each
microservice can run autonomously with its libraries and
database during task execution.

Moreover, we show bij is a bandwidth demand of a task ti
when it schedules at fog server j. Cj denotes resources (i.e.,
RAM, Storage, Bandwidth, etc) cost of server j when it
executes the offloaded task ti and state remains on i.e., yj = 1.
The paper has limited page space. Therefore the remaining
notations are listed in Table 1. We describe a binary vari-
able xij to show either a task ti to be scheduled to a fog server fj
or not as

xij =

{
1, ti← fj
0, otherwise,

(1)

TABLE 1. Mathematical notation.

It is similar to the assignment problem, each task is exactly
assigned to the one fj, and similarly the fog server exactly
schedule one task at a time. We denote assignment of task ti
to the fog server j as follows

M∑
j=1

xij = 1. (2)

Each fog server has limited resource capability, so that the
offloaded task execution requirement must not be exceed
capability of fog server. We show this expression as follows

N∑
i=1

xijsi ≤ Sj. (3)

Due to the resource-constraint of fog server j, it has limited
virtual machine docker for offering microservice to each task.
Thus, the requested tasks workload must be less deployed
virtual machine capacity. This expression is described as

N∑
i=1

xijwi ≤ Vj. (4)

Each offloaded task to be scheduled to any optimal server j,
that is decided by the fog cloud agent where to schedule

task ti. We measure the task execution to server j as

T ei =
M∑
j=1

xij
wi
Rj
. (5)

Since, a task ti to be offloaded to the fog server for process-
ing, therefore a task gains some extra communication during
offloading and get back its by fog server as

RTT =
(
dataini
Bwupij

+
dataouti

Bwdownij

)
. (6)

dataini shows input size of a task ti and dataouti illustrates out-
put of a task ti after being processed at server j.Whereas, bwupij
and bwdownij show uplink and down link rate of bandwidth
between application and server j during offloading and get
back its result. RTT is the round-trip time which is equal
to data sending and receiving time between application and
server j for all tasks. Therefore, the bandwidth requirement
of each task is measured as follows

xij

(
RTT + T ei

)
≤ di. (7)

The inequality bandwidth of a task ti can be obtained as

bwij >
datai
di −

Wi
ζj

(8)

To minimize the cost of each fog server j, we make sure all
tasks are finished before their respective deadlines constraint.
Then, the required bandwidth between application and fog
server can be measured as

bwij =
datai
di −

Wi
ζj

(9)

Since, each fog server j has limited bandwidth, therefore the
all scheduled tasks at server jmust be less than its bandwidth
constraint as

N∑
i=1

xijBwij ≤ Bwj. (10)

Fog Computing Agent (FCA) is a orchestrator which commu-
nicates with each fog server and monitors them in the given
interval. The cost of each fog server depends on two main
elements such as On state and resources required to execute
microservices for each offloaded task. The cost of each fog
server not only depends on its On state, but FCA only charge
user’s only for requested functions rather than entire server
cost. We use a binary variable yj to denote show the on/off
state of fog server j as

yj =

{
1, fj← on
0, off,

(11)
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G. COST MODEL
The price model is taken into consideration based on-demand
method which is similar to the prevailing business enterprise
application.

Cj = µj.xij.T ei . (12)

µj the unit price of each fog server as shown in Table 2. The
resource constraint cost optimization problem of each fog
server is formulated as

minZ =
N∑
i=1

M∑
j=1

yjCj ∀i ∈ N . (13)

Subject to minZ =
N∑
i=1

M∑
j=1

yjxij.Cj ∀i ∈ N . (14)

Tj,0 = 0, ∀{j = 1, . . . ,M}, (15)

Tkj=Tkj−1+
N∑
k=1

xkjT ek ∀{j = 1, . . . ,M}, (16)

T ei =
M∑
j=1

xij ×
Wi

ζj
∀{i = 1, . . . ,N }, (17)

Fi =
M∑
j=1

Tkjxij ∀{i = 1, . . . ,N }, (18)

Fi + RTT ≤ di, (19)
M∑
j=1

xij = 1 ∀{i = 1, . . . ,N }, (20)

N∑
i=1

xij = 1 ∀{j = 1, . . . ,M}, (21)

N∑
i=1

xijsi ≤ Sj ∀j ∈ 1, 2, . . .M , (22)

N∑
i=1

xij ≤ Vj ∀j ∈ 1, 2, . . .M , (23)

N∑
i=1

xijbij ≤ Bwj ∀j ∈ 1, 2, . . .M , (24)

xij = {0, 1}. (25)

TABLE 2. Unit price of fog servers.

IV. PROPOSED ALGORITHM FRAMEWORK CACOTS AND
SYSTEM
Cost Aware Computational Offloading and task schedul-
ing (CACOTS)framework consist of multiple components

as depicted in Figure 2. The first component is fog server
resource matching which matches each task to the different
fog servers based on pair-wise approach [24]. Task sequence
module is a crucial module which sorts the tasks into different
sequence order in a way the optimal scheduling to be per-
formed on the tasks by the scheduler. The sequence ti to be
scheduled to the fog server j if xij = 1, otherwise xij = 0.
The process will continue until all requested works execute
their execution under their deadlines at the MSCFS. The IoT
applications to be processed by multiple components to get
their executions. For instance, in Algorithm 1, we define the
entire process of an application to achieve the best optimal
scheduling in the heterogeneous fog servers.

Algorithm 1 CACOTS
Input : G ∈ A, T ∈ G, {t1, t2, . . . ,T }, j ∈ M
Output: minZ ;

1 Call Multi-criteria Decision Scheme;
2 Call Task Sequencing;
3 Call Task Scheduling;
4 PLIST []← null;
5 begin
6 foreach (k as M) do
7 foreach (G as A) do
8 foreach (vi as T ) do
9 if (T 6= φ) then
10 Call Resource Matching Algorithm;
11 PList[]← ti← j;

12 if (PList[] 6= φ) then
13 Call Task Sequence Component;

14 Call Task Scheduling Component;
15 Calculate Z∗← PList[] based on equation

(13);

16 Z ← Z∗

17 return Z ;

18 End-Loop;

A. FOG SERVER RESOURCE MATCHING
Since the fog servers are heterogeneous in the cost opti-
mization problem. Therefore, how to select edge servers to
process the sequenced tasks is necessary. Recall the goal of
our task scheduling strategy is tominimize the costs of the fog
computing system, while selects the server with the smallest
unit cost µj as shown in the equation (27). Where we know
different fog servers are also unequal.

µj =
Cj
zj
. (26)

where zj denote the size of fog server fj, which can be deter-
mined as

zj =
MSj∑M
i=1 Sj

+
MVj∑M
i=1 Vj

+
MBj∑M
i=1 Bj

. (27)
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FIGURE 2. CACOTS framework.

We name qfj as the remaining available resources of server fj
after scheduled some tasks. We define the largest to be the
task that maximizes the dot product hi [25]. We determine hi
as follows We name qfj as the remaining available resources
of server fj after scheduled some tasks. We define the largest
to be the task that maximizes the dot product hi [25].
We determine hi as follows

hi = qfjPtij
= siS lj q+ V lj q+ bijB

l
jq (28)

qfj = (S lj q,V
l
j q,B

l
jq)

= Pfj −
∑

Pt∗j (29)

Pt∗j denote the resource requirements of all tasks which are
to be scheduled at fog server fj.

Resource matching is a process of selecting the best and
optimal resource for each task in the heterogeneous fog
servers. However, each task ti has vector attributes (e.g.,
data size, workload, and deadline) and each resource also
has vector attributes (e.g., storage, cost, virtual machine
capacity, and bandwidth). We exploit Analytic hierarchy
processing (AHP) [24] and Technique for Order of Prefer-
ence by Similarity to Ideal Solution (TOSS) method [26]
to make the multi-criteria decision of resource matching.
Algorithm 2 takes attributes of tasks, and resources as an
input. PList[] is a preference list array which stores match
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Algorithm 2 Fog Server Resource Matching
Input : G ∈ A, T ∈ G, ti← {si,Wi, di},

kj← {SJ ,VJ ,BJ};
Output: PList[]

1 begin
2 foreach (G as A) do
3 foreach (T as G) do
4 if (ti ↔ kj = true) then
5 Apply AHP;
6 Apply TOPSIS;
7 Add PList[ti, kj]

8 else
9 Repeat step-4 again;

10 return PList[ti, kj]

11 End-Loop;

of a task to the fog server kj based on requirements that to
be fulfilled by the resource kj. Line-4 verifies that the needs
of a task ti are met by fog server, and condition returns true,
and we add this matching to the preference list PList[ti, kj].
The process will repeat until all tasks are matched to the
heterogeneous fog servers.

B. TASK SEQUENCING
In our problem, tasks are arrived randomly to the system
and followed by the Poisson process. The offloaded tasks are
submitted randomly in a set without any sequence. So we
need to sequence these tasks first. A three rule-based task

sequencing method is employed. The given deadline, size
and slack time are critical to sequence the task. Therefore we
develop the three rule to sort the submitted responsibilities
concerning three features. These are defined as follows:
• Earliest Due Date (EDD): We sort the set of tasks based
on their deadline. The small deadline task sort first and
the bigger one later. If the deadline is the same the task
with the smaller size is ranked with a higher priority.
We determine the task lateness in the following way.

LTF = di − fi. (30)

• Lateness time first (LTF): The tasks are sorts according
to the task lateness time. The task which has shortest
lateness time, they schedule early.

• Shortest size First (SSF): The task are sequenced based
on the size of the task, quickest task arranged first and
the bigger one later.

Offloaded tasks randomly inter arrived at fog cloud sys-
tem. FCA arranged them in the first in first order with task
sequencing. The FCA exploits proposed sequence rules in a
particular order to get the execution done in a cost-efficient
manner. Figure 3 depicted the entire process from offload-
ing to sequencing orders of tasks with different methods.
Different task sequencing methods have different scheduling
results. Therefore, we will choose an optimal task sequence
of offloaded tasks which satisfy the constraint and objective
function of the problem.

C. TASK SCHEDULING
After task sequencing and resource matching, we get the
preparatory task scheduling method. However, initial task

FIGURE 3. The task sequence adjustment of all applications.
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scheduling is not the final solution to the IoT application in
term of cost. Due to the seasonal changes in network con-
tents and fluctuation in cloud resources, the initial does not
remain stable. Therefore, we need to improve it further with
new solutions. For instance, we consider there are two tasks
t1, t2 to be executed onto two heterogeneous cloud servers
k1 and k2. The resource demand attributes of tasks t1, t2
are (data size:10mb, CPU required: 10, and deadline: 20),
and (data size:30mb, CPU required: 30, and deadline: 40),
separately. On the other hand, the possible resource attributes
of servers k1 and k2 are (Sj: 15, VMj: 4, Bj: 10) and (Sj: 20,
VMj: 8, Bj: 20), sequentially.

At the initial scheduling, task ti will be scheduled to fog
server k1, after that task t2 to be scheduled to fog server k2.
In this way, the total cost of the application is the aggregate of
two fog servers cost. Nevertheless, if all tasks are scheduled to
fog server k2 for executing, the cumulative cost of application
is exclusively the cost of fog server k2. Whereas, this schedul-
ing policy reduce the computation cost of the applications.
Figure 4 illustrates that in the solution space, we have more
than one solutions. However, we accept some worst solution
too during process. However, it is a challenge which optimal
solution must be picked by the scheduler, which reduces the
total costs of the system.

FIGURE 4. Different objective functions.

Whereas the example mentioned above showed, the fog
server, which is picked by the scheduler, only has a small cost
of resources for execution. Hence, at the initial scheduling,
we require to additional optimize the scheduling method to
reduce high cost. Whereas, initially selected fog servers will
have a substantial cost of available resources. We introduce
an optimization task scheduling method to improve resources
utilization of the selected fog servers. The goal of the opti-
mization is to reschedule the application tasks in the smallest
cost fog servers from the initial task scheduling stage. This
way, the task scheduler algorithm can improve the utilization
of fog servers with the most expensive cost, and reduce extra
cost, which was made by the scheduler at the initial stage.
Hence, enhance the application cost, we propose the task
scheduling algorithm to determine our optimization problem,

as depicted in Algorithm 2. The input of the algorithm is the
sequenced set of tasks to be scheduled to the heterogeneous
fog servers.

The execution process of the Algorithm 3 is detailed below.

• We declare the different variables inline 1-5. All fog
servers are sorted into the descending order according
to µj and Cj based on equation (27) and (28).

• We read all applications tasks and their requirements
along with resource specification inline 7-9.

• If the set T of application G has unpublished tasks,
then choose smallest cost fog server µj. We pick the

Algorithm 3 Cost-Efficient Task Scheduling
Input : Set of applications: G ∈ A, Set of tasks T , Set

of fog servers F
Output: Task Scheduling xij, state of fog servers yj

1 Declaration all binary variable xij to 0;
2 Initial Solution Z ;
3 Declaration of fog servers state yj to 0;
4 Take the vector attributes Pfj ;
5 Determine the unit cost µj of fog servers k ∈ M ;
6 Set of fog servers that are exploited E = {};
7 begin
8 foreach (G as A) do
9 foreach (ti as T ) do
10 foreach (fj as F) do
11 if (T ∈ G 6= φ) then
12 Choose smallest cost µj;
13 ti← fj;
14 Compute h of all tasks to fj;
15 Assign task ti with the largest size of

dot product in fog server fj;
16 T ← T | {ti} |;
17 Establish xij = 1;
18 Establish yj = 1;
19 E = E ∪ {fj};
20 Z ← xij optimal assignment;

21 F = F ∪ {fj};

22 Get selected fog server fg1 and server fg2
with small cost unit in E ;

23 if (fg1 > fg2 in E) then
24 Swap: ti← fg1 to ti← fg1;
25 Assign xig1 = 1;
26 Z∗← xij optimal assignment;

27 else if (ti← fg2 = φ) then
28 Set E ← E | fg2 |;
29 Set yfg2 = 0; Get the newest fog server

fg2 with small cost in E ;

30 End-Assignment;

31 End Application Assignment;

32 End-Loop;
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fog server to execute unscheduled tasks based on their
resource requirements and the available resources of
the fog server. After that, we choose the server fj with
the smallest unit cost in the set of available servers F .
If the available resource of the picked fog server can sat-
isfy the resource demands of some tasks in the unsched-
uled tasks set T , then prefer the most significant task to
insert into server fj. Otherwise, the server fj is removed
by the set of possible servers F is defined by line 10-19.

• Weget the last picked fog server fg1 and the fog server fg2
with the small cost in E . If the available resources in
server fg1 can satisfy the resource demands of task ti
in the fog server fg2. Hence, we swap the task ti into
server fg1 and update the task scheduling variable. When
tasks in the fog server fg2 are all removed, the fog
server fg2 will be removed from E , and update the state
of the fog server fg2. Then the new server with the small
cost is got from E is defined by line 20-27.

D. TIME COMPLEXITY OF CACOTS
We show the time complexity CACOTS framework into dif-
ferent components. (I) Resource Matching: We exploit AHP
and TOPSISmethods tomatch each task to the heterogeneous
servers. The time complexity is equal to O(T ×M ). T shows
the number of tasks arranged for pairwise matching to the
M number of resources based on multi-criteria. (II) Task
Sequences: We sort all tasks into ascending order of their
deadlines, lateness and shortest size with O(mlogn). M is
the number of methods which were exploited to sorted the
tasks accordingly. And n is the number of sorted tasks during
sequences. (III) Task Scheduling: We sort all fog servers
in descending order of their µj and Cj. Therefore, the time
complexity isO(logM )+N 2.O(logM ) is the time complexity
for sorting all fog servers into descending of their pricing in
the scheduling process. N 2 shows the time complexity the
swapping of tasks between fog server fg1 and fg2.

V. PERFORMANCE EVALUATION
To evaluate the performance of the proposed MSCFS and
CACOTS framework, we generated the practical results when
experiments are conducted on different benchmarks of IoT
applications by the system. In this paper, the experimen-
tal setup divided into separate parts. (i) MSCFS imple-
mentation part, (ii) Components Calibration and Metric
parameter. (iii) Comparison of computational offloading
framework (iv) Task Scheduling and algorithm comparison
part. The simulation parameters described in Table 3. The
resource specification of fog servers demonstrated in Table 4.
Whereas, Table 5 shows the workload analysis of IoT
applications.

A. BASELINE FRAMEWORK AND ALGORITHMIC
APPROACHES
The following existing computational offloading framework
approaches are taken by experiment into consideration in
comparison.

TABLE 3. Simulation parameters.

TABLE 4. Fog servers specifications.

TABLE 5. Workload analysis of IoT applications.

• Baseline 1: We implement the virtual machines based
computation offloading framework for the testing. These
studies adopted aforementioned framework [12]–[14].
The goal was to offload the entire mobile application to
the cloud server.

• Baseline 2: We implement virtual machines dynamic
computation offloading framework, which is adopted
by these strategies [4]–[6]. The aim is to offload entire
applications to heterogeneous servers when there are
sufficient resources to fulfil the requirements.

The following existing task scheduling approaches are taken
into consideration in comparison.
• Baseline 1: We implement the existing cost-efficient
static task scheduling strategies [13], [14] in the experi-
ment part, and test their performance as compared to the
proposed scheme in term of application costs.

• Baseline 2: We implement the existing cost-efficient
dynamic task scheduling strategies [15], [16] in the
experiment part, and test their performance as compared
to the proposed scheme in term of application costs.

• Baseline 3: We implement the existing cost-efficient
static task scheduling strategies [17], [18] without task
scheduling in the experiment part, and test their perfor-
mance as compared to the proposed scheme in term of
application costs.
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FIGURE 5. MSCFS implementation.

FIGURE 6. Boot-time of microservices.

B. PERFORMANCE METRICS
The component calibration in the paper recommends the
experimental methodwhich randomly generates a diverse fig-
ure of application tasks which are illustrated in Table 3. In the
experiment, there are four different numbers of applications
taken into account for testing. For the different forms deadline

FIGURE 7. CPU utilization of resources.

constraint, the paper sets the deadline for tasks based on the
following equation:

da,i = Fa,i + γ × Fa,i (31)

The deadline da,i of the task is acquired by the earliest fin-
ishing duration and a definite proportion of the early finish
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FIGURE 8. Overhead of microservices.

FIGURE 9. The mean plot of α with 95.0% Tukey HSD intervals and The
mean plot of random arrival tasks of applications rules with 95.0% Tukey
HSD intervals.

time. We used γ to prove the parameter to handle the tight-
ness of task deadline, and their values range exists between
.2 and 1, i.e., γ ∈ {.2, .4, .6, .8, 1}, thus, each task can obtain

five unlike size of deadlines, i.e., D1,D2,D3,D4,D5.
Furthermore, to verify the performance of algorithms in the
dissimilar deadline of each task, the paper calculates accord-
ing to following formula (31). In order to compute the recital
of the VFCN, MTOP and CTOS, the paper exploits RPD
(Relative Percentage Deviation) statistical analysis. It eval-
uates the power consumption consumed by dissimilar
parameters and framework plus algorithm permutation
throughout the parameter of component calibration. The
RPD estimation can be as demonstrated in the following
Equation (32):

RPD(%) =
F∗a − Fa
F∗a

× 100% (32)

Fa shows the objective function of the paper.

C. MSCFS IMPLEMENTATION
From the user perspective, we develop the Internet of
Things (IoT) applications in Android Studio and inte-
grate GenyMotion emulator for testing [27] as shown in
Figure 5. From the resource panorama, we integratedMSCFS
based Edge X Foundry open-source platform, i.e., https://
docs.edgexfoundry.org/Ch-QuickStart.html. The MSCFS
consist of three main layers, such as the user device layer, Fog
Control Agent Layer, and resource layer. IoT applications are
offloading their tasks randomly to the Fog Computing Agent
Console (FCA) via Representational State Transfer (REST)
API. Gateway is a standard interface in the FCA, which
interprets any request in JavaScript Notation (JSON) for-
mat in order console interface read it immediately. Device
services tell FCA what kind of service a task requires for
execution. Monitoring System manages a look-up table of
tasks and resources to ensure the system is stable or not.
Task Sequence and Scheduler are methods in the FCA, which
sort the tasks into some orders and schedule them onto the
heterogeneous fog server for processing. The runtime is an
environment where the system will operate. For instance,
Java Runtime Virtual (JVM) can run a dot class file of
java program efficiently. It is similar to the VM window

FIGURE 10. Total cost of all tasks.
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FIGURE 11. Failed tasks during scheduling.

docker, where container images have created for autonomous
microservices. Each container must be registered via reg-
istry services to consume it easily. REST API offers inter-
service communication among microservices with lower
overhead.

D. COMPARISON OF COMPUTATIONAL OFFLOADING
FRAMEWORKS
The proposedmicroservices container fog system based com-
putation offloading has incurred with lower bootup time
as compared to existing heavyweight virtual machine-based
framework. Another hand, we improved the resource uti-
lization of services in the proposed system. We prove
these aspects via experimental and simulation environment.
As Figure 6, 7 and 8 show that, our proposed computation
offloading improved boot uptime of services, overhead and
utilization of the resources. The main reason behind that
containers are lightweight as compared to the heavyweight
virtual machines when to run the IoT applications during
scheduling. Therefore, our computational offloading frame-
work is an efficient platform to execute the delay-sensitive
applications.

E. TASK SEQUENCING
The proposed task sequencing rules(i.e., EDD, SPF, and
SSTF) are the components calibrated for organizing tasks for
the scheduling. Figure 9 (b) demonstrates the mean plot α of
proposed task sequence rules with 95.0% Tukey HSD spaces,
the RPD significance of the EDD is noticeably lesser than the
SPF and SSTF as illustrated in Figure 9 (b). It is accomplished
that the task is mapped or scheduled by the task sequence,

FIGURE 12. Failed tasks due to resource-constrained fog servers.

which is created by the EDD rule incurs to the lower
delay fog clouds in a heterogeneous environment. Therefore,
we have chosen EDD for the task sequencing component in
the Mob-Cloud. In our paper, we exploit the EDD sequence
method to compute the task priority. The higher priority is
to set to those tasks which have the smallest deadline among
others.

F. TASK SCHEDULING
Cost-efficient task scheduling is the key to IoT applica-
tions. The applications costs (e.g., communication cost and
computation cost) and tasks deadlines are the key issues
are taken into consideration during scheduling. We consider
the different fog servers for the task scheduling problem.
We aim to minimize applications costs and execute them
under their deadlines. Figure 10 and 13 illustrate that the pro-
posed scheme CACOTS incur lower applications costs for all
applications and run them under their deadlines. We consider
the different deadlines, as mentioned in the equation (31). The
main reason is that the proposed scheme iteratively improve
the solutions from neighbour space until the final optimal
solution to be reached. We improve the ratio of task failure
in our task scheduling scheme as compared to the existing
studies. As an existing baseline approaches only consider
the initial solution. Figure 11 and 12 records that after the
experiment, the failure ratio of tasks reduces in the proposed
scheme as compared to the baseline approach. Hence, the pro-
posed dynamic CACOTS method is efficient in a dynamic
situation and improve the costs and execute them under their
deadlines.
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FIGURE 13. Different deadlines of tasks of different applications.

VI. CONCLUSION AND FUTURE WORK
In this paper, we consider the cost-efficient task schedul-
ing problem in the heterogeneous fog servers. We propose
a new Microservice container fog system (MSCFS) based
framework to run the mobility and delay-sensitive applica-
tions with minimum cost. Furthermore, we introduce the
Cost Aware Computational Offloading and task schedul-
ing (CACOTS)framework, which solves the task scheduling
into multiple steps. Such as task sequencing step, resource
matching step and scheduling step. The experimental results
prove that the proposed MSCFS and CACOTS schemes can
enhance server utilization. As decrease the services latency
and average services bootup time more effectively, and min-
imize costs.

In the future, we will focus on services composition to run
the IoT application onto the hybrid service platforms such as
Amazon, Azure and Google together. Security and transient
failure are taken into account during task scheduling and
offloading in the system.
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