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ABSTRACT Particle swarm optimization (PSO) algorithms have low-quality initial particle swarm, which
is generated by a random method when handling the problem of task scheduling in networked data centres.
Such algorithms also fall easily into local optimumwhen searching for the optimal solution. To address these
problems, this study proposes combining opposition-based learning (OBL) and tentative perception (TP)
with PSO; the proposed method is called OBL–TP–PSO. This algorithm uses reverse learning to generate the
initial population, such that the quality of the initial particle swarm can be improved. Before the particle speed
and location are updated, the TP method is used to search for the individual optimum around each particle,
thereby reducing the possibility of missing the potential optimal solution during the process of searching.
In this manner, the problem in which the PSO algorithm easily falls into the local optimal is effectively
solved. To evaluate the performance of the proposed algorithm, simulation experiments are performed on
CloudSim toolkit. Experimental results show that in comparison with other algorithms (namely, Min-Min,
Max-Min and PSO algorithm), the proposed OBL–TP–PSO algorithm has better performance in terms of
the total execution time, load balancing and quality of service.

INDEX TERMS Big data processing, high-performance data processing, networked data centre,
opposition-based learning, tentative perception.

I. INTRODUCTION
Cloud computing [1], [2] is an emerging technology that
has been around for a few years. This new paradigm has
provided numerous benefits for the corporate world. Most
of the corporate world is now migrating to the cloud com-
puting environment from normal computing solutions. The
benefits of cloud computing include achieving economies of
scale by increasing volume output or productivity with few
people, reducing the cost of technology infrastructure and
maintaining easy access to information with minimal upfront
spending. Globalising the workforce in an affordable manner,
such as granting people cloud access worldwide, is possible
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provided an Internet connection. Streamline processes
accomplish tasks in less time with few people and
reduce capital costs (e.g. spending less on hardware, soft-
ware or licensing fees). Cloud computing improves accessi-
bility by accessing resources anytime and anywhere, thereby
making life considerably easy; it can monitor projects effec-
tively by staying within budget and ahead of completion cycle
times; and it requires few personnel training. It takes few peo-
ple to do accomplish many tasks on a cloud, with a minimal
learning curve on hardware and software issues. Moreover,
cloud computing minimises the licensing of new software,
such as stretch and grow, without the need to purchase expen-
sive software licenses or programs; it also improves flexibility
by changing directions without serious ‘people’ or ‘financial’
issues at stake [3], [4].
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Given these benefits from cloud computation environ-
ments, cloud computing still faces enormous challenges.
One of the challenges is task scheduling optimisation as
per different cloud consumer demands. In a cloud environ-
ment, many tasks and resources exist; thus, task schedul-
ing aims to meet optimal makespan, load balancing and
quality of service (QoS) requirements [5], [6]. Many task
algorithms, such as those that are based on particle swarm
optimisation (PSO) [7]–[9], ant colony optimisation (ACO)
[10]–[12], greedy strategy [13]–[16], and genetic algorithm
(GA) [17]–[20].

PSO [7]–[9] is a type of evolutionary algorithm that is
similar to simulated annealing. It begins from random solu-
tions through the iterative search for the optimal solution.
It can also evaluate the quality of the solution through fitness
functions. Different fromGA, PSO includes no crossover and
mutation operators. This algorithm has attracted the attention
of the academic circle for its advantages of easy implemen-
tation, high precision and fast convergence; and its advan-
tages are shown in solving practical problems. For example,
Almaamari and Omara [8] proposed a dynamic adaptive PSO
algorithm (called DAPSO) to improve the performance of the
PSO algorithm by decreasing the makespan and increasing
resource utilisation. However, PSO algorithms have low-
quality initial particle swarm, which is generated by a random
method when handling the problem of task scheduling in
cloud computing; such algorithms also fall easily into local
optimum when searching for the optimal solution [9].

The idea of ACO [10]–[12] comes from the ant foraging
behaviour in life. Ants are often successful at finding the
shortest distances to acquire food and they also send a unique
signal along the way to attract other ants to find the food.
This special behaviour of ants is applied to job scheduling
and a ‘signal’ is used to obtain the optimal solution. ACO
algorithms can realise the optimal route selection schedul-
ing between jobs and resources through signal information.
Dai et al. [12] proposed a novel algorithm based on the com-
bination of ACO and GA to achieve the performance goal of a
task scheduling algorithm. The experimental results showed
that the proposed algorithm surpassed other algorithms in
terms of QoS and load balance (LB).

Other task scheduling algorithms include simulated
greedy strategy [13]–[16] and GA [17]–[20]. Etminani and
Naghibzadeh [13] proposed a novel algorithm called
Min-Min in handling the problem of task scheduling to
improve the resource utilisation and minimise the task exe-
cution time. The weakness of the Min-Min algorithm is that
it prefers scheduling small tasks. Different from the Min-Min
algorithm,Moreno and Alonso-Conde [14] proposed an algo-
rithm called Max-Min, which prefers to schedule big tasks.
The experimental results showed that the proposed algorithm
could achieve a good performance in terms of LB and deliver-
ing QoS for users. GAs [17]–[20] leverage related technolo-
gies, including coding, decoding, reproduction, crossover
and mutation approaches, to optimise task assignment and
execution, with the intention to reduce task execution time.

Manasrah and Ali [20] proposed a novel algorithm called
GA–PSO algorithm based on the combination of GA and
PSO algorithm to improve the efficiency of task allocation
and minimize the cost and makespan. However, to some
extent, the aforementioned task algorithms do not fulfil all the
previously mentioned objectives, such as optimal makespan,
load balancing and QoS requirements. In many cases, load
balancing is ignored or avoided. In some case, optimal
makespan and QoS are met, although a scope of QoS require-
ments can still be improved.

In this study, we propose an improved PSO algorithm
integrated with opposition-based learning (OBL) and tenta-
tive perception (TP). We call this algorithm OBL–TP–PSO.
The proposed algorithm optimises the cloud computational
task scheduling efficiently to meet all the objectives of task
scheduling. The significance of the proposed algorithm is
that it finds the optimal solution at minimum number of
iterations compared with existing task algorithms. We con-
duct extensive simulation experiments using the CloudSim
toolkit. The outcome of the simulation experiments shows
that OBL–TP–PSO significantly performs better than other
existing task scheduling algorithms. Overall, the contribu-
tions of this study can be summarised as follows.
(1) A formalised definition of LB and QoS indicator is

presented. The QoS indicator considers several factors,
such as the total task execution time, rate of conver-
gence and LB.

(2) The OBL–TP–PSO algorithm is proposed on the basis
of the combination of OBL and TP.

(3) The efficiency of the proposed algorithm is evaluated
and verified through extensive experiments through
using the CloudSim toolkit.

The remainder of this paper is organized as follows.
Section 2 introduces the methods. Section 3 presents the
results and discussion. Finally, Section 4 concludes this study.

II. OBL–TP–PSO ALGORITHM
The PSO algorithm is a random search algorithm that sim-
ulates the behaviour of birds in the natural world, that is,
searching for food. It is a branch of evolutionary algorithm
that mainly finds the optimal solution through a group col-
laboration mechanism. In comparison with GA, ACO, simu-
lated annealing and tabu search algorithms, PSO has various
advantages, including fewer parameters, easier realisation
and higher rate of convergence. Therefore, PSO is widely
used in solving engineering optimisation problems, such
as task scheduling, combinatorial optimisation and image
processing.

A. PRINCIPLE OF PSO ALGORITHM
In the traditional PSO algorithm, assuming that m parti-
cles form a particle swarm in a D-dimensional solution
domain, the position of particle i at the k-th iteration cycle
is expressed as

X ki = (xki1, x
k
i2, · · · , x

k
id ) xkid ∈ [Xmind ,Xmaxd ] (1)
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where X ki denotes the position of particle i at the k-th itera-
tion, and [Xmind ,Xmaxd ] refers to the range reachable by the
moving particle.

Particle velocity is expressed as

V k
i = (vki1, v

k
i2, · · · v

k
id ) vkid ∈ [Vmind ,Vmaxd ] (2)

where V k
i is the velocity of particle i at the k-th iteration, and

[Vmind ,Vmaxd ] denotes the range of velocity of the moving
particle.

The optimal position of particle i that has been found up
to the present moment is the individual extremum and is
recorded as Pbesti. Meanwhile, the optimal position of the
entire particle swarm that has been found up to the present
moment is the global extremum and is recorded as Gbest.

When the individual and group optimal solutions are
found, the particle velocity and position are updated using
Formulas (1)–(4).

vt+1ik = vtik+c1r1(Pbesti−x
t
ik )+c2r2(Gbest − x

t
ik ) (3)

x t+1ik = x tik + v
t
ik (4)

where c1 and c2 are the learning factors, which are also
called acceleration constants and represent the influences
of individual and group optimal solutions on the previous
velocity, respectively; and r1 and r2 are random numbers
within the range of [0, 1]. Formula (3) is a particle swarm
velocity update formula, which can be divided into three
parts. First is the ‘inertia’ part, which reflects the particle’s
inertia and represents the particle’s trend of maintaining its
previous velocity; second is the ‘cognition’ part; and third
is the ‘social’ part, which reflects the collaboration among
particles. Formula (4) is a particle position update formula.
Particle movement in PSO algorithm is shown in Fig. 1.

FIGURE 1. Particle movement.

B. PROCEDURE OF PSO ALGORITHM
On the basis of the principle of PSO algorithm, its basic
procedure is as follows.
(1) Generate initial particle swarm. Assume that the popu-

lation size is N , and the position and velocity of each
particle are Xi and Vi, respectively.

(2) Calculate the fitness value in each particle state
(Ffitness[i]).

(3) Compare the fitness value of each particle (Ffitness[i])
with the corresponding individual extremum (Pbest[i]).
If the fitness value of the particle is better than
the individual extremum, then replace Pbest[i] with
Ffitness[i]. For example, for a minimum optimisation
problem, if Ffitness[i] < Pbest[i], then replace Pbest [i]
with Ffitness[i]; for a maximum optimisation problem,
if Ffitness[i] > Pbest[i], then replace Pbest[i] with
Ffitness[i].

(4) Compare each particle’s fitness value (Ffitness[i]) with
the global extremum (Gbest). If the particle’s fitness
value is better than the global extremum, then replace
Gbest with Ffitness[i].

(5) Update particle velocity Vi and position Xi according to
Formulas (1)–(4).

(6) If the end condition is met, then exit from the iteration
cycle; otherwise, return to Step (2), where the end
condition usually refers to the maximum number of
iteration cycles’’.

C. OBL–TP–PSO ALGORITHM
1) STRATEGY OF PARTICLE SWARM INITIALISATION
BASED ON OBL
a: PRINCIPLE OF OBL
Assume that x i = m + n − xi, where xi denotes the original
data; x i is the target data; and m and n refer to the lower
and upper limits of range (m, n), respectively. Then, x i is the
opposite of xi. This principle is extended to multidimensional
vectors. Assume that the value range of each dimension of
n-dimensional vector Xi = (x1, x2, x3, . . . , xn) is (mk , nk ).
Then, the opposite vector obtained from X1 is X i = (m1 +

n1 − x1, m2 + n2− x2, m3 + n3 − x3, . . . ,mk + nk − xn).
At this point, assuming that n particles are present in the

space, the population formed by these particles is called the
original population. Pi denotes particle i at a certain velocity
and position in the space; its velocity vector is expressed as
Vi, and its position vector is expressed as Si. Then, particle
i is expressed as Pi = {Vi, Si}. The OBL method can
show that having an opposite particle Pi = {V i, S i} in the
space is inevitable. The population formed from the original
population using OBL is called the opposite population.

b: PRINCIPLE OF PARTICLE SWARM INITIALISATION
BASED ON OBL
Traditional PSO algorithms are highly dependent on the
initial particle swarm when finding the solution. Therefore,
using an appropriate method to optimise the initial particle
swarm plays a critical role in finding the solution to the
problem. When a PSO algorithm solves a task scheduling
problem, the computation time of the algorithm is related to
the distance between other individuals and the optimal indi-
vidual in the population. The closer other individuals are to
the optimal individual, the easier it will be for the algorithm to
converge quickly. For PSO algorithms, the particles generated
by a pure random function are not estimated; thus, predicting

55874 VOLUME 8, 2020



Z. Zhou et al.: Improved PSO Algorithm Integrated With Opposition-Based Learning and TP

the rate of convergence is impossible. The probability that a
certain particle will be close to the optimal particle is equal
to the probability that the opposite particle of this particle
will also be close to the optimal particle. Therefore, the initial
particle swarm formed by better particles, which are prefer-
entially selected from the particle population considering the
opposite particle of each particle, will also be of better quality.
The detailed procedure is as follows.
1) Randomly initialise n particles to form an initial

population.
2) Generate n opposite particles through OBL to form an

opposite population.
3) Calculate the fitness values of the original and opposite

particles in the initial and opposite populations, and
select better particles to form an initial population for
the PSO algorithm.

2) SEARCH STRATEGY BASED ON TP
When the PSO algorithm searches for the optimal solution to
a problem in the solution domain, all particles will ‘‘fly’’ to
the optimal position in the particle swarm at the time of each
iteration and update, such that the algorithm can converge
quickly. The update pattern is shown in Fig. 2.

FIGURE 2. The update pattern of particles.

We assume that four particles form a particle swarm in the
solution domain, in which the optimal solution to a certain
problem can be found. The current positions and velocities
of these particles are {s1, s2, s3, s4} and {v1, v2, v3, v4},
respectively. To further address the problem, we assume that
the fitness value corresponding to the position of each particle
is the individual extremum that has been found up to the
present moment, and the fitness value corresponding to s1 is
the optimal fitness value of particles in the swarm. On the
basis of the particle velocity and position update formula,
s2, s3 and s4 all approach towards group optimal solution
s1 during update and search for the optimal solution. The arc
area in Fig. 2 is the range of updated velocity. Assume the
velocity update method of standard PSO algorithm is used
to search for the solution in the solution domain; if point x
denotes the position of an optimal solution existing around

s4 under ideal conditions, which objectively exists but has not
been found, then the algorithm tends to omit such objectively
existing optimal solutions and become stuck in local optima.
Even if x can be found at the late stage of iterative search by
adjusting the values of ω, c1 and c2 in the PSO algorithm,
the possibility of finding this value remains extremely low.

In response to the preceding problems, this study proposes
a search method based on individual TP. Assuming that
before the velocity of each particle is updated, q probes at
random directions are virtualised at the current position, and
the size of q depends on the scale of the problem and the size
of the initial population. When the scale of the problem is
given, the smaller the initial population is, the larger q will
be. The velocity and position of probe j in dimension k at
iteration t of particle i are expressed as follows:

V j
ik =ωvtik+c1R1(Pbesti − x

t
ik )+ c2R2(Gbest − x

t
ik ) (5)

X jik = x tik + V
j
ik (6)

R1 = a− r1 (7)

R2 = b− r21 (8)

On the basis of Formulas (5) and (6), the velocity of
the initialised probe of particle i is also composed of three
parts, that is, the constraints of the original particle’s velocity,
of the individual historical optimal solution and of the group
optimal solution on the probe. Parameters c1 and c2 denote
the acceleration factors; r1 and r2 are random numbers within
the range of [0, 1]; and parameters a and b are constants
within the range of [0, 1]. By setting the values of a and b,
the probability that the probe will move in the direction
opposite to that of Pbest and Gbest under the original particle
conditions can be controlled.

In comparison with the velocity update formula in the PSO
algorithm, the initialised probe has a larger space to move in.
If the fitness value of the j-th initialised probe of particle i
is better than the Pbest of this particle, then this particle is
replaced by probe j.

FIGURE 3. Tentative perception model article movement.

The model of the search strategy based on TP is shown
in Fig. 3. Assuming that q = 3, three probes at random
directions {s41, s42, s43} are distributed around particle
s4 before its velocity and position are updated; that is, before
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Algorithm 1 OBL–TP–PSO Algorithm
Input: particle swarm size N, probe number q, task number M
Output: Gbest and i
For each particle i

Initialize velocity Vi and position Xi for each particle i;
Initialize velocity Vi’ and position Xi’ for each particle i using OBL;
Evaluate positions Xi and Xi’ of particle i with the fitness function fit (Xi);
Choose the better position to be Xi and set Pbesti = Xi;

End for
Gbest =Min{fit(Pbesti)};
While i < maxTimes

For i = 1 to N
new q probes from particle i;
Evaluate each probe with fitness function fit();
Select the best one from Pbesti and probes and set it to be particle i;
Update the velocity and position of particle i;
If fit (xi) < fit (Pbesti)
Pbesti = Xi;

End if
If fit (Pbest) < Gbest
Gbest = Pbesti;

End if
End for

End while
return Gbest and i;

it flies to the swarm, their fitness values are calculated and the
optimal probe is selected. If the fitness value corresponding
to this probe is better than that corresponding to s4, then
s4 is replaced by the position of the optimal probe and the
particle velocity and position are then updated for the next
iteration cycle. If the fitness values of all probes are worse
than that of s4, then s4 will remain unchanged and the particle
velocity and position are updated for the next iteration cycle.
This search strategy tentatively perceives any position around
each particle that is more optimal than the position of this
particle to prevent such positions from being omitted during
the search for optimal solution. This search method based on
TP improves the capability of the PSO algorithm to find local
optima while preventing the algorithm from being stuck.

3) OBL–TP–PSO ALGORITHM
Algorithm 1 shows the pseudo-code of the improved PSO
algorithm integrated with OBL and TP (OBL–TP–PSO) algo-
rithm. The procedure for OBL–TP–PSO is as follows.
(1) Initialise n original particles to form an initial

population.
(2) Generate the opposite particles of n original particles

through OBL.
(3) Select better particles from the original and opposite

particles to form an initial particle swarm.
(4) Calculate the fitness value of each particle using the

fitness function.
(5) Generate q probes around each particle to perceive any

position that is better than this particle’s position.

(6) Calculate the fitness value corresponding to each probe.
Select the optimal fitness value and compare it with
the fitness value of the present particle. If the former
is better than the latter, then replace the present particle
with the probe.

(7) Update the particle velocity using Formula 2.
(8) Update the particle position using Formula 1.
(9) Determine whether the cycle end condition is met.

If met, then exit from the iteration cycle; otherwise,
return to Step (4).

4) OBL–TP–PSO ALGORITHM SOLVING TASK SCHEDULING
PROBLEM IN CLOUD COMPUTING
a: ENCODING PROBLEM
Encoding plays an important role for the PSO algorithm.
Currently, many encoding methods exist for intelligent opti-
misation problems. In this study, particles are encoded
sequentially. Assume that N tasks andM resources exist, and
N > M . Then, the particle encoding and decoding processes
are as follows.

Assume that N = 10; M = 5; and number of tasks
and resources is expressed as (1, 2, . . . , 10) and, respectively.
Then, a sequential code A = (1, 3, 5, 2, 4, 5, 1, 3, 4, 3)
exists, where the order of digits in the code corresponds to
the task number, and the digits in the code represents the
resource number. At this time, variable A can be deemed
as a particle in the solution domain and corresponds to a
certain task scheduling scheme. The code expression is shown
in Table 1.
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TABLE 1. Encoding.

TABLE 2. Decoding.

The code above can be expressed as follows. For execu-
tion, Task 1 is assigned to Resource 1, Task 2 is assigned
Resource 3, Task 3 is assigned to Resource 5 for execution,
and so on. Encoding corresponds to decoding.We can decode
the particles to understand the status of task execution on each
resource. The results of task scheduling after decoding of A
are shown in Table 2.

After A is decoded, the results of task scheduling can be
observed clearly. The tasks assigned to Resources 1–5 are
{1, 7}, {4}, {2, 8, 10}, {5, 9}, and {3, 6}, respectively.

b: SELECTION OF FITNESS FUNCTION
PSO and improved PSO algorithms require fitness values
to determine the soundness of a particle position, which is
usually a multi-objective optimisation problem. However,
multiple objectives are mutually contradictory and conflict
with one another in most cases of multi-objective optimisa-
tion. Therefore, the best optimisation method measures each
objective and obtains the corresponding extremum based on
actual conditions. In this study, total task execution time is
used as the main indicator of the algorithms’ performance.

Task scheduling aims to complete the tasks in a most
efficient way within the shortest time. The shorter the task
completion time is, the larger the value of the objective func-
tion and the higher the fitness of particles in the swarm will
be. Therefore, the objective functionmust be initially defined,
and Formula (1) is substituted into fitness function f (x) to
determine the fitness value.

Assume that T = {T1,T2, . . . ,Tr} denotes r inter-
independent tasks; and R = {R1,R2, . . . ,Rs} denotes s
computing resources in the cloud data centre, where r > s,
the exeTime matrix of r x s denotes the time required to com-
plete the execution of task queue on each computing resource,
T(Ti) denotes the size of task Ti and Mips(Rj) denotes the
computing capacity of resource Rj. Then, the time required
to complete the execution of task i on resource j is expressed
as follows:

exeTime(i, j) =
T (Ti)

Mips(Rj)
(9)

Assuming that n tasks are assigned to resource j, the time
required for resource j to complete all tasks is:

com Time (j) =
∑n

i=1
exe Time (i, j) (10)

where i denotes task i executed on resource j, and n denotes
the total number of tasks assigned to resource j. Then, the total
time of execution of all tasks in the system is:

AllexeTime(i) = Maxsj=1(comTime(j)) (11)

Fitness represents the soundness of particle position. In this
study, the network bandwidth and the tasks’ demands for the
resources’ performance and security during task scheduling
are ignored, and only the total time of task scheduling is
considered. In this case, the fitness function is defined as:

F(i) =
1

AllexeTime
(12)

where F(i) denotes the fitness value corresponding to particle
i. A short total task execution time, expressed by AllexeTime,
indicates small task makespan, large corresponding fitness
value and good particle position.

III. RESULTS AND DISSCUSSION
In this experiment, Java was used as the program devel-
opment language in Eclipse 4.3, and CloudSim 3.3.2
[21], [22] was used as the cloud computing simulation plat-
form. The experimental environment was configured as fol-
lows: Intel(R) Core(TM) i5 Dual-Core 3.4 GHz CPU, 4 GB
internal memory and Windows 7 operating system. The pro-
posed task scheduling algorithm integrated with OBL and TP,
that is, OBL–TP–PSO algorithm, was analysed and compared
with Min-Min [13], Max-Min [14] and PSO [8] algorithms.

The parameters of the PSO algorithm were adjusted sev-
eral times. The results indicated that when w = 0.5 and
c1 = c2 = 1, the PSO algorithm could quickly find an accu-
rate solution. The parameters of OBL–TP–PSO algorithm
were set similar to those of the PSO algorithm; and param-
eters q and a in the OBL–TP–PSO algorithm were set as
3 and 0.5, respectively. Such setting represents that before
each particle flies to Pbest and Gbest, three probes could
be generated randomly at the original position for tentative
search. In this manner, we could determine if any solution
that is more optimal than the present position exists. The
probability that each probe would search along the direction
opposite to that of the group and individual optimal solutions
was 50%.

For this experiment, the number of tasks was set to 100,
200 and 500; the size of tasks was generated as random
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TABLE 3. Total task execution time when task number is 100.

TABLE 4. Total task execution time when task number is 200.

TABLE 5. Total task execution time when task number is 500.

numbers within the range of [100, 1000000]; the number of
VMs was set to 5; and the processing capacities of single-
core processors were {100, 200, 300, 400, 500} [6]. Under the
same conditions, each random search algorithm was operated
for 10 times to determine the mean. Finally, the performance
of the algorithms was analysed from the perspectives of total
task execution time, rate of convergence, LB and QoS.

A. TOTAL TASK EXECUTION TIME
The total task execution times when the number of tasks is
100, 200 and 500; the number of resources is 5; and the
size of particle swarm is 100, 200 and 500 are summarised
in Tables 3–5, respectively.

The experimental data from Tables 3–5 show that in
comparison with PSO, Min-Min, and Max-Min algorithms,
the OBL–TP–PSO algorithm approximately saves 5%, 2%
and 1% total execution time, respectively. In other words,
the solution found by the OBL–TP–PSO algorithm is more
accurate than the other algorithms. The reasons are as follows.
For the Min-Min or the Max-Min algorithm, the total task
execution time is based on individual task execution time. The
two algorithms pursue the minimum total completion time of
each task when it is scheduled and cannot guarantee the total
time of execution of the entire task group. Meanwhile, the
OBL–TP–PSO algorithm can search for possible individual
optimal solution around the particle by means of TP before
each particle flies to the group optimal solution; moreover,
a probability exists that the probe of the particle would search
along the direction opposite to that of the group and individ-
ual optimal solutions. In this manner, the algorithm can be
prevented from being stuck in local optima, and the search

capability of each particle can be enhanced. Therefore, the
OBL–TP–PSO algorithm can find a more accurate solution
than the other three algorithms.

B. RATE OF CONVERGENCE
The number of iterations for the PSO and OBL–TP–PSO
algorithms under the conditions of different numbers of tasks
were analysed and compared. The experimental results are as
follows. The comparisons between the experimental results
of the PSO and OBL–TP–PSO algorithm when the number
of tasks is 100, 200 and 500 and the population size is 100,
200 and 500 are shown in Figs. 4–6, respectively.

FIGURE 4. The iteration number for two algorithms when task number
is 100.

The results of the Min-Min and the Max-Min algorithms
are simple, and these algorithms do not require iteration
cycles to find the solution. Thus, their convergence is not
considered, and only the convergence properties of the PSO
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FIGURE 5. The iteration number for two algorithms when task number
is 200.

FIGURE 6. The iteration number for two algorithms when task number
is 500.

and the OBL–TP–PSO algorithms are compared. The com-
parison between the preceding experimental results indicates
that the OBL–TP–PSO algorithm converges more quickly
than the PSO algorithm at the early stage; after the same
number of iterations under the same conditions, the total task
execution time of the former is shorter than that of the latter;
and at the late stage, the OBL–TP–PSO algorithm achieves
better convergence and finds a solution closer to the optimal
solution.

Under the same conditions, the OBL–TP–PSO algorithm
can generate initial particle swarm with higher quality com-
pared with the PSO algorithm. In other words, the initial par-
ticles are more optimal and closer to the population and it is
easier for them to find the Gbest. In addition, the TP strategy
can be implemented before the last iteration cycle, and the
probe can find better Gbest for the next iteration cycle. There-
fore, for the same number of iterations, the OBL–TP–PSO
algorithm can find better Gbest and converge more quickly
compared with the PSO algorithm.

C. LOAD BALANCE (LB)
Among task scheduling problems in cloud computing, LB is
an important indicator for task scheduling evaluation and can
well reflect the overall resource utilisation rate. Assuming
that Mi denotes the number of tasks assigned to resource i,
and M denotes the average number of tasks assigned to the
resource, then LB is defined as follows:

LB =
∑j

i=1
(M −Mi)2 (13)

From this definition, the more balanced the task load on
cloud computing resources is, the lower the LB level will
be. The LB levels for different numbers of tasks are shown
in Fig. 7. The LB levels of the PSO and OBL–TP–PSO
algorithms are the mean values of solutions found by these
algorithms for 10 times.

FIGURE 7. Load balancing variance.

As shown in Fig. 7, the Min-Min and Max-Min algo-
rithms achieve relatively low level of LB, whereas the
OBL–TP–PSO and PSO algorithms achieve relatively high
level of LB.

Traditional Min-Min algorithms always preferentially
assign small tasks to resources with high processing capacity
for execution, thereby resulting in unbalanced task load on
resources. Meanwhile, Max-Min algorithms preferentially
assign large tasks to resources with high processing capacity
for execution, which effectively overcomes the load unbal-
ance problem of the Min-Min algorithm. However, these two
algorithms assign tasks to system resources merely depend-
ing on the size of tasks and do not consider task combination
and optimisation. Therefore, the performance of both algo-
rithms is not ideal in terms of LB. In comparison, PSO algo-
rithms can determine more optimal makespan and achieve
better LB when solving the task scheduling optimisation
problem.

IV. CONCLUSION
To overcome the disadvantages of PSO algorithms, such as
its dependence upon initial particle swarm and tendency of
becoming stuck in local optima, we proposed an improved
PSO algorithm called OBL–TP–PSO algorithm integrated
with OBL and TP. The experimental results show that the
proposed algorithm OBL–TP–PS algorithm is more accurate
than the other algorithms, namely, Min-Min, Max-Min and
PSO algorithms, in terms of total execution time, rate of
convergence and LB.

In the future, we will conduct an actual experiment
under cloud platform to evaluate the effectiveness of the
OBL–TP–PSO algorithm.
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APPENDIX
ABBREVIATION
PSO: Particle swarm optimization
OBL-TP-PSO: An improved PSO algorithm based on

OBL and TP algorithm
OBL: Opposition-based learning
TP: Tentative perception
QoS: Quality of service
ACO: Ant colony optimization
GA: Genetic algorithm
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