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ABSTRACT In pattern recognition, the elimination of unnecessary and/or redundant attributes is known
as feature selection. Irreducible testors have been used to perform this task. An objective of the Minimum
Description Length Principle (MDL) applied to feature selection in pattern recognition and data mining
is to select the minimum number of attributes in a data set. Consequently, the MDL principle leads us to
consider the subset of irreducible testors of minimum length. Some algorithms that find the whole set of
irreducible testors have been reported in the literature. However, none of these algorithms was designed to
generate only minimum-length irreducible testors. In this paper, we propose the first algorithm specifically
designed to calculate all minimum-length irreducible testors from a training sample. The paper presents
some experimental results obtained using synthetic and real data in which the performance of the proposed
algorithm is contrasted with other state-of-the-art algorithms that were adapted to generate only irreducible
testers of minimum length.

INDEX TERMS Feature selection, MDL principle, minimum-length irreducible testors, testor.

I. INTRODUCTION
Feature selection is a significant task in supervised classi-
fication and other pattern recognition problems focused on
removing irrelevant and/or redundant features [22]. It is a
process of selecting subsets of the entire set of features to
optimally reduce the feature space according to certain eval-
uation criteria [2].

The aim of dimension reduction is to find a minimum set
of attributes that preserves all the essential information of
the training sample for pattern recognition or data mining
domains [23], [40], [45], [48], [49].

There are several problems described by a considerable
amount of data, in which is desirable to find an optimal
(or near to this) feature subset which maximizes the classi-
fication performance and minimizes the number of selected
features [10], [15], [41], [44]. Among other feature selection
developed techniques, testors have been focused on this pur-
pose; as well as the reducts from the rough set theory, which
have been related to a certain type of testors called typical or
irreducible [19].

The associate editor coordinating the review of this manuscript and
approving it for publication was Amjad Ali.

The concept of testor in pattern recognition problems was
introduced by Dmitriev et al. [12]. They defined a testor as
a subset of features that allows differentiating objects from
different classes. A testor is called irreducible if it is not a
superset of another testor. So, an irreducible testor has the
same capability as the entire feature set to discern between
objects belonging to different classes. This is the reason
why irreducible testors have been used for solving several
problems related to supervised pattern recognition (see for
example [11], [20], [25], [29], [47]).

The computation of the whole set of irreducible testors has
exponential complexity with respect to the number of fea-
tures [46]. In addition, the number of irreducible testors found
from a dataset could be outsize. Then, finding a subset of
irreducible testors that meet any specific property is desirable.

Some algorithms for data compression, noise elimination,
and pattern candidate generation, are based on the princi-
ple of Minimum Description Length [31]. One goal of this
principle applied to feature selection in pattern recognition
and data mining is selecting the minimal number of features
from a dataset. Besides, in decision rules generation algo-
rithms, minimum-length features subsets are desirable. These
rules would be simpler and easier to find. So, in practical
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applications, minimum-length descriptions are preferred (see
for example [1], [5], [6], [13], [14], [18], [24], [30], [42]

Consequently, the principle of Minimum Description
Length leads us to consider the subset of irreducible testors of
minimum length. Obviously, all minimum length testors are
irreducible but the reciprocal in general is not true.

Within the framework of rough set theory, algorithms have
been developed and are still being developed to calculate the
minimum length reducts and/or subsets of reducts that meet
certain optimality criteria [4], [8], [9]. However, no algorithm
specifically developed for calculating the minimum length
testors is reported in the literature.

In this paper, we propose the first algorithm specifi-
cally designed for computing all minimum length irreducible
testors from a training sample. The proposed algorithm,
MLIT, does not search the entire set of irreducible testors,
but only calculates those of minimum length.

The rest of this paper is structured as follows: in section II
we briefly comment about related work; section III contains
the theoretic background, section IV details our proposal; in
section V, we show and discuss the experimental results, and
finally our conclusions constitute section VI.

II. RELATED WORK
There exist several methods for computing irreducible testors
from a training sample. Some of them are exhaustive algo-
rithms and other heuristics.

The exhaustive algorithms take exponential time in the
number of features. Some examples of these algorithms
include the following: Lex [39], all-NRD [7], Fast-CT-EXT
[37], YYC [3], Fast-BR [21], and Parallel-YYC [27]. These
algorithms can be easily adapted to return only minimum-
length irreducible testors. This is possible if the algorithm
guarantees that the entire set of irreducible testors was found.

On the other hand, heuristics take polinomial time in a
fixed number of generations. Some state-of-the-art heuristics
include the following: HC [38] and PHC [26]. For large
and/or dense datasets, these heuristics have shown very good
performance. However, the output of a heuristic is only a
subset of the entire set of irreducible testors. Therefore,
the minimum-length irreducible testors taken from the output
might not be actual minimum-length irreducible testors in a
global context.

Thus, the irreducible testors of minimum-length from the
output of a heuristics might not be all of them or even not be
minimum-length irreducible testors.

There exists no algorithm reported in the literature
designed just to find minimum-length irreducible testors.

III. BACKGROUND
Let TS = {O1,O2, · · · ,Om} be a training sample containing
m objects, distributed in c classes Ki, i = 1, · · · , c, described
in terms of n features R = {x1, x2, · · · , xn}, where xi ∈ R can
takes a qualitative or quantitative value.

LetDM be a dissimilarity matrix, whose rows are obtained
from feature-by-feature comparison between every pair of

objects belonging to different classes, using a criterion Di,
which returns 0 or 1, if the compared values of the corre-
sponding feature are similar or dissimilar, respectively [35].
Definition 1 [35]: Let p and q be two rows ofDM . We say

that p is a sub-row of q, if: ∀ j[qj = 0⇒ pj = 0] and ∃i[pi =
0 AND qi = 1], j ∈ {1, · · · , n}. A row r ofDM is called basic
if no row in DM is a sub-row of r . The submatrix of DM that
only contains all its basic rows (without repetitions), is called
a basic matrix (denoted BM )
Let T ⊆ R be a subset of features. BMT denotes the

submatrix of BM only containing all columns corresponding
to features in T .
Definition 2 [28]: Let p be a row of BMT ; we say that p

is a zero row if it contains only zeros.
Definition 3 [28]: A set T is a testor of TS, if there are no

zero rows in BMT

Definition 4 [28]:Let xi ∈ T , xi is called a non-removable
feature of T if there exists a row p in BMT such that if
we eliminate from BMT the column corresponding to xi, the
remaining row p is a zero row of BMT−{xi}. Otherwise, xi is
called a removable feature.
Definition 5 [28]: A set T is called an irreducible testor

of TS if T is a testor of TS and each feature xi ∈ T is a non-
removable feature of T .
Definition 6 A set T ′ is calledminimum-length irreducible

testor of TS if T ′ is an irreducible testor of TS and |T ′| ≤ |T |
for every testor T of TS.
Definition 7 [36]: Let T ⊆ R, xj ∈ R, xj /∈ T . Besides,

let zr(T ) be the number of zero rows of T . The feature xj
contributes with T if and only if zr(T ∪ {xj}) < zr(T ).
From these definitions, the following two propositions are

quite immediate [36].
Proposition 1: Let T ⊆ R, xj ∈ R, xj /∈ T . If xj does

not contribute with T , then T ∪ {xj} will not generate any
irreducible testor.
Proposition 2: Let T ⊆ R. If zr(T ) = 0 then T is a testor.
We introduce the following proposition to determine a pri-

ori if a zero row will prevail after adding any of the remaining
features to the current combination.
Proposition 3: LetQ = {xi1 , . . . , xiq},Q ⊂ R, and let xs ∈

R, xs /∈ Q. If there exists a zero-row p in BMQ such that pxs =
pxs+1 = . . . = pxn = 0 then Q ∪ {xs} will not generate any
testor.
Proof 1: Since there exists a zero-row in BMQ, Q is not

a testor. By hypothesis, if we consider BMQ∪{xs} the row
p prevails as a zero row, even if we add any feature in
{xs+1, . . . , xn}. So, we can conclude that Q ∪ {xs} will not
generate any testor.

IV. PROPOSED ALGORITHM
This section introduces an algorithm that finds the entire
set of minimum-length irreducible testors. Depending on the
density of the input basic matrix, this algorithm selects one
of two different search methods. We say that a basic matrix
is sparse if its density is not greater than 0.30. This number
was obtained experimentally, as will be discussed later.
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Like most of the algorithms reported for computing irre-
ducible testors, these algorithms operate over the basic
matrix, instead of the training sample [28]. They both
carry out a breadth-first search over the power set of fea-
tures instead of the depth-first search, performed by various
exhaustive algorithms like Fast-CT-EXT and Fast-BR.

In general terms, the algorithm builds feature combinations
in non-decreasing order of length. It never builds a combina-
tion longer than a minimum-length irreducible testor.

For each feature combination built, it is verified whether it
satisfies the testor property or not (see Definition 3).

The first feature combination holding this property is a
minimum-length irreducible testor since it cannot be a super-
set of an irreducible testor which has not been found yet (see
Definitions 5 and 6).

As in [36], a preprocessing of the basic matrix is performed
before calling any of these algorithms in order to improve
performance. This preprocessing finds a row with the least
amount of ones (rmin) and each column ci where rmin[i] = 1
is moved to the left in the basic matrix. The features are
relabelled according to this new arrange. fmin denotes the
number of ones in rmin.

Every combination built by any of these algorithms con-
tains a feature in the range [x0, · · · , xfmin ] at its first position
because otherwise rmin would be a zero-row, leading us to a
non testor (see Definition 3).

A. IN-PLACE SEARCH BASED ON NEXT
COMBINATION CALCULATION
If the basic matrix is not sparse, this technique iteratively
produces the next feature combination from the current one,
by modifying the value of one or more features in the input
combination (see Algorithm 1). The sequence of combina-
tions follows the lexicographical order of feature indexes,
such that the combination size ranges from 1 to |T | where
T is the first testor found.
Example 1: Sequences of combinations for n = 5 and

fmin = 3, grouped by length s, are:
s = 1 : {x1}, {x2}, {x3}
s = 2 : {x1, x2}, {x1, x3}, {x1, x4}, {x1, x5}, {x2, x3}, {x2, x4},
{x2, x5}, {x3, x4}, {x3, x5}
s = 3 : {x1, x2, x3}, {x1, x2, x4}, {x1, x2, x5}, {x1, x3, x4},
{x1, x3, x5}, {x1, x4, x5}, {x2, x3, x4}, {x2, x3, x5}, {x2, x4, x5},
{x3, x4, x5}
s = 4 : {x1, x2, x3, x4}, {x1, x2, x3, x5}, {x1, x3, x4, x5},
{x2, x3, x4, x5}
s = 5 : {x1, x2, x3, x4, x5}
As can be seen in Example 1, every combination is built

as an increasing sequence of feature indexes. That is, if T =
{xf 1, · · · , xfs} is a combination of s features, the following
holds: f1 < f2 < . . . < fs.
If TL = {xl1 , xl2 , · · · , xls} is the last combination of s

features in the enumeration, then for s ≥ 2, ls = n, and
lj = lj+1 − 1 for every j = 1, · · · , s− 1 if s ≥ (n+ 1− fmin),
but for j = 2, · · · , s− 1 if s ≤ (n− fmin)

Besides, for all s, l1 = min{fmin, n− s+ 1}.

The next-combination method (NC) searches for the right-
most feature xci in the current combination {xc1 , xc2 , · · · , xcs},
that fulfils ci < li. If such feature xci exists, then ci increases
by one and, for each j > i, xcj = x1+cj−1 .
Otherwise, the current combination is actually the last

combination of length s. Therefore, the first combination of
the next length is built as: {x1, . . . , xs}

B. SEARCH WITH PRUNING BASED ON FEATURE AND
ROW CONTRIBUTIONS
If the basic matrix is sparse, we apply another strategy;
it prunes the search space required by the lexicographical
order by keeping in a queue data-structure only potential
combinations (see Algorithm 2), i.e. it discards combinations
that will not lead us to any irreducible testors. In sparse matri-
ces, non-potential combinations are very common. By using
propositions 1 and 3, we can determine if the current combi-
nation will not lead us to any irreducible testor after adding
new features. We refer to this strategy as pruning based on
feature and row contributions (PFRC).
In Algorithm 2, the invocation Cont(T ; xf ) returns true

only if the number of zero-rows in BMT∪{xf } is less than
that in BMT . The invocation ZeroRowPrevails(T , xf ) returns
true if there exists at least one zero-row in BMT that will
prevail in BMT∪T ′ , being T ′ = {xf , xf+1 · · · xn}. In order
to determine this in constant time, a boolean matrix AZR is
built a priori. AZR is just an auxiliary matrix that contains
cumulative information about the existence of prevailing zero
rows to the right of a cell.

Each cell (row, col) is filled as follows:

AZR(row, col) =

 1 if ∃ k, col ≤ k ≤ n,
such that BM (row, k) = 1

0 otherwise

Thus, if for each zero-row r in BMT , AZR(r, xf ) = 1, then
ZeroRowAccFound(T , xf ) returns false; otherwise, it returns
true.
Example 2:

BM =


x1 x2 x3 x4 x5 x6
1 1 0 0 0 0
1 0 1 0 0 1
0 1 1 1 0 0
0 0 0 0 1 1
0 1 0 1 1 0

 (1)

AZR =


x1 x2 x3 x4 x5 x6
1 1 0 0 0 0
1 1 1 1 1 1
1 1 1 1 0 0
1 1 1 1 1 1
1 1 1 1 1 0

 (2)

In Example 2, AZR(2, 2) = 1 because BM (2, k) = 1,
for k = 3 and k = 6. Similarly, AZR(3, 5) = 0 because
BM (3, k) = 0, for 5 ≤ k ≤ 6.

Following the steps of Algorithm 1, the first combinations
built are {x1} and {x2}. None of them is a testor, so both are
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enqueued. The first combinations dequeued are {x1} and {x2}.
We determine if each of the following combinations is either a
testor or potential: {x1, x2}, {x1, x3}, {x1, x4}, {x1, x5}, {x1, x6},
{x2, x3}, {x2, x4}, {x2, x5} and {x2, x6}.
Combination {x1, x2} is not a testor because there is a zero

row (row 4) in BM {x1,x2}. Therefore, we test if {x1, x2} is
a potential combination. We can see that {x2} contributes
with {x1} because there are fewer zero-rows in BM {x1,x2}

than in BM {x1}. Besides, no zero-row in BM {x1} prevails in
BM {x1,x2}∪T

′

, being T ′ ⊆ {x3, x4, x5, x6}. Therefore, {x1, x2}
is enqueued. x3 and x4 contributes with {x1}, but combinations
{x1, x3} and {x1, x4} are not a testor, because there are zero-
rows in BM {x1,x3} and BM {x1,x4} respectively. Both combina-
tions are enqueued.

On the other way, x5 and x6 contributes with combination
{x1}. However, for these combinations, AZR(3, 5) = 0 and
AZR(3, 6) = 0. Like BM (3, col = 1) = 0, then any of these
features will generate a testor with {x1}. Both combinations
are not enqueued. The next combination dequeued is {x2}.
We determine if each of the following combinations is a
testor: {x2, x3}, {x2, x4}, {x2, x5} and {x2, x6}. Only combi-
nation {x2, x6} is a testor, so it is added to the final list,
and MinLength is set to 2. The next combination dequeued
is {x1, x2}. Since its length is no less than MinLength it is
discarded (it will not produce a minimal-length testor) and
the queue is emptied.

Figure 1, shows the general behavior of proposed
algorithm.

The input of algorithms 1 and 2 is the following: a Basic
Matrix BM which columns are arranged in a way that the first
fmin columns contain 1 at rmin, and the number of features at
rmin. The output of both algorithms is a list L containing all
the minimum-length irreducible testors of the input matrix.
Algorithm 1 In-place search based on next combination
calculation.
NC-MiLIT (BM, fmin)

Let L be an empty list of feature combinations
Let T ← {x1}
Let MinLength← 0
While MinLength = 0 OR MinLength ≥ |T |

If IsTestor(T ,BM )
L ← L ∪ {T }
MinLength← |T |

T ← NextCombination(T , fmin)
Return L

Algorithm 2 Search with pruning based on feature and row
contrubitions.
PFRC-MiLIT(BM, fmin)

Let L be an empty list of feature combinations
Let Q be an empty queue of feature combinations
Let MinLength← 0
For f ← 1 to fmin

Let c← {xf }
Q.enqueue(c)

While Q is not empty
Let T ← Q.dequeue()

FIGURE 1. Flowchart with the behavior of proposed algorithm.

If MinLength > 0 AND |T | > MinLength
Q.empty()

Else
If IsTestor(T ,BM )
L ← L ∪ {T }
MinLength← |T |

Else
Let i← |T |
Let nf → NextFeature(T [i], fmin)
For f ← nf to F

If Cont(T , xf ) and
not ZeroRowPrevails(T , xf )
Q.enqueue(T ∪ {xf })

Return L
Let T be the first testor found. The output of the algo-

rithm proposed is a list containing every testor of length |T |.
By proposition 4, T is an irreducible testor. By corollary 1, |T |
is the minimum length of any testor of BM . By corollary 2,
we can conclude that all the testors found by the algorithm
proposed are minimum-length irreducible testors.
Proposition 4: Let T be the first testor of TS found by the

algorithm MLIT, then T is an irreducible testor.
Proof 2: Since the search strategy of the algorithm is

breadth-first, from feature subsets with lower cardinal to
subsets with greater cardinal; if some subset of T is a testor,
it would have been previously found by the algorithm. Then,
being T a testor without subsets that are testors, T is an
irreducible testor.
Corollary 1: Let T be the first testor found by the algo-

rithm MLIT, then |T | is the minimum-length of the irre-
ducible testors of TS.
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Corollary 2: Let T be the first testor found by the algo-
rithm MLIT, then the algorithm MLIT stops searching min-
imum length irreducible testors when the search among the
subsets of cardinal equal to |T | ends.
Remark 1: The length of the irreducible testors computed

from a given basic matrix cannot be determined beforehand.
If a depth-first search (DFS) is used, in the worst case all
the irreducible testors must be computed in order to deter-
mine which ones have minimal-length. This would happen if
testors are found in decreasing order of length.

On the other hand, when a breadth-first search (BFS) is
applied, the combinations are processed in non-decreasing
order of length, thus, the algorithm is certain that the first
testor found has minimal length.

If a DFS-based algorithm process the BM described
in equation 1, with the same pruning criteria utilized
in example 2, the following 18 combinations are pro-
cessed, where NT, TE and IT stand for No Testor, Testor
and Irreducible Testor, respectively: {x1} (NT), {x1, x2}
(NT), {x1, x2, x5} (IT), {x1, x2, x6} (TE), {x1, x3} (NT),
{x1, x3, x4} (NT), {x1, x3, x5} (IT), {x1, x3, x6} (NT),
{x1, x4} (NT), {x1, x4, x5} (IT), {x1, x4, x6} (IT), {x2}
(NT), {x2, x3} (NT), {x2, x3, x5} (IT), {x2, x3, x6} (NT),
{x2, x5} (NT), {x2, x5, x6} (TE), {x2, x6} (IT). Notice that
the only minimal-length testor was found at the end.

On the other hand, when a BFS-based algorithm is utilized,
9 combinations are processed, as is previously showed in
example 2.

C. COMPLEXITY ANALYSIS
The term that will dominate the equation expressing the
running time of any of algorithms 1 and 2 corresponds to
the loop in charge of building and processing combinations.
Hence, we start this analysis by calculating the number of
combinations built by Algorithm 1.

As mentioned above, both algorithms carry out a BFS,
which enable them to process combinations in increasing
order of length. Let k be the length of the first testor found.
Algorithm 1 finishes after all the combinations of length k are
processed. Equation 3 expresses the number of combinations
processed by the algorithm as the sum of the first k binomial
coefficients for fixed n:

C(n, k) =
k∑
i=1

(
n
i

)
(3)

If we plot Equation 3 for a fixed two-digit n and every
k from 1 to n, we obtain a logistic curve (see Figure 2).
Equation 4 expresses an approximation of the number of
combinations built as a logistic function, setting 2N as the
curve’s maximum value, and 2N−1 as the sigmoid’s midpoint.
Clearly, as k becomes smaller, the denominator grows and,
therefore, the number of combinations reduces dramatically.

C(n, k) =
2N

1+ e−(k−2N−1)
(4)

FIGURE 2. Proportion of MinIT length (k) with respect to number of
features (n).

Figure 2 also depicts the number of combinations pro-
cessed by the algorithm with respect to the total number
(Equation 3), using three of the datasets reported in Table 1:
Student-Mat, QSAR-Biodeg and Keyword activity. There,
we can appreciate that when the length of the minimum
testors is less than a quarter of the number of features,
the number of combinations built and processed is negligible
with respect to the power set of features.

Algorithm 1 builds and evaluates every combination of
length 1 to k . To do this, it calls function NextCombination
in charge of producing the next combination in terms of the
current one. Function isTestor takes O(r ∗ k) time since it
searches for a zero-row in the basic matrix considering only k
columns. Function NextCombination takes O(k) time since it
modifies at most |T | values at the current combination (either
from left to right or viceversa), and |T | is upper bounded by
k . Equation 5 expresses the running time of Algorithm 2.

TNC−MiLIT (r, n, k) = C(n, k) ∗ (O(r ∗ k)+ O(k))

= O((r ∗ k) ∗ C(n, k)) (5)

Algorithm 2 builds and evaluates only potential combi-
nations of length 1 to k . To do this, the algorithm holds a
queue data-structure. Those combinations that will definitely
never lead us to a testor are not enqueued. Both functions that
determine this –Cont and ZeroRowPrevails– take O(r ∗ k)
time. Therefore, Equation 5 represents an upper bound of
the untime, where every combination is potential. However,
in sparse matrices, a huge amount of combinations will never
lead us to a testor because current zero-rows will remain the
same. Equation 6 expresses a lower bound of the runtime,
where we assume that, for each length l = 1, 2, . . . , k − 1,
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TABLE 1. Basic matrices with small amount of columns.

the algorithm chooses only one combination from the set
of at most n possible combinations; for instance: < x1 >,
< x1, x2 >, < x1, x2, x3 >, . . ., < x1, x2, . . . , xk >. The
average runtime of Algorithm 2 is somewhere in between
Equations 5 and 6.

TPFRC−MiLIT (r, n, k) = O((r ∗ k) ∗ (n ∗ k)) (6)

Regarding to the space complexity, the present analysis
does not consider the memory required by the input matrix
and the list of irreducible testors returned. Algorithm 1 is an
in-place search which means that it does not require extra
memory to perform its work, except for the current combi-
nation. Therefore, its space complexity is O(n). In contrast,
Algorithm 2 requires a queue data-structure to discard com-
binations with no future. In addition, this algorithm requires
a (r × n) matrix employed by function ZeroRowAccFound to
determine if the current combination has future. The space
complexity is in terms of the maximum size of the queue.
As k approaches to n

2 , the number of combinations of length
k becomes larger. Equation 7 expresses the space complexity
of Algorithm 2, assuming k < 1

2n.

SPFRC−MiLIT (r, n, k) = O((r ∗ n)+ n ∗
(
n
k

)
) (7)

V. EXPERIMENTS AND RESULTS
We carried out some experiments with the aim of comparing
the efficiency of the algorithm proposed with other algo-
rithms in the state of the art, namely, GCreduct [32] and
Parallel-YYC [27]. We have selected these two algorithms
for being recent and the fastest ones in finding the entire set
of irreducible testors in most of the basic matrices employed.
We added to both algorithms a process that finds and selects
only minimum-length irreducible testors from the output.
This process consumes negligible time with respect to the
total execution time.
Remark 2: In table 1, the original Chess dataset has

3196 objects, indeed. However, the input of our algorithm
is a basic matrix. In this particular case, the basic matrix
contains only 29 rows. Recalling Definition 1, the basic

matrix contains only the basic rows from the dissimilarity
matrix which, in turn, is obtained from feature-by-feature
comparison between every pair of objects at the training set.

Table 1 contrasts the run time of the proposed algorithm
with GCreduct and Parallel-YYC using some datasets pre-
sented in [32]. The description of the table is as follows:

a) Dataset is the name of the original training sample;
b) dimensions of each basic matrix is expressed as rows
per columns; c) density is calculated as the number of ones
divided by the total number of cells of the basic matrix;
d) Column titled IT denotes the maximum number of irre-
ducible testors that can be found from each training matrix.
e) MiLIT stands for the number of minimal-length irre-
ducible testors; f) GCR means GCreductR; g) length refers
to minimal-length; for some basic matrices, this length is 1;
this means that they have at least a column containing only
ones. h) PYYC means Parallel-YYC; i) MF denotes the algo-
rithm proposed (MiLIT Finder) and the name of the strategy
employed is in brackets. The last three columns show the run-
time in seconds for the corresponding algorithm. In tables 1,
2, and 3, on MF(algorithm)∗, P-M refers to PFRC-MiLIT,
N-M refers to NC-MiLIT.

For each row, the cell containing the shortest runtime is
highlighted.

Tables 2 and 3 present similar comparisons, but using sin-
tetics basic matrices obtained from previously works as [21]
and [26], respectively. OOM indicates an Out of Memory
Error occurred during the execution, whereas NF means that
the algorithm did not finish its execution in less than a week.

All algorithms were implemented in Java. The experiments
were performed on a 3.00 GHz Intel Xeon E5-1607 processor
with 8.0 GB of memory, running Windows 8 (64 bits).

As can be seen in Tables 1, 2 and 3; in very few
cases, the algorithm proposed was outperformed by either
GCreduct or Parallel-YYC. However, the difference in run-
ning time in such cases was in the order of the milliseconds,
which is negligible if we consider the running time achieved
with large basic matrices.

Previously, we conducted an experiment, to select a thresh-
old that would allow us to discern when to use one strategy
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TABLE 2. Basic matrices with medium dimensions.

TABLE 3. Basic matrices used by heuristics.

TABLE 4. Contrasting run times of strategies 1 and 2 with basic matrices of different densities.

or the other. For this, we selected some training samples,
with different densities in their basic matrices and execute
the two strategies. Table 4 contains the samples selected for
this experiment, sorted according to their density, likewise,
the table shows the runtimes obtained for each strategy.

From this experiment, we selected 0.30 as threshold to
consider if a matrix is sparse or not, and consequently choose
the PFRC strategy or the NC, respectively. This result is
compatible with others reported in related papers [32]–[34].

The algorithm proposed has proved to have a good perfor-
mance no matter the density of the input basic matrix. We can
conclude that if the input basic matrix has low density (<0.3),
the search with pruning based on feature and row contribu-
tions, (PFRC), performs very well because it discards quickly
combinations that will never lead us to an irreducible testor.
Otherwise, the in-place search based on next combination,
(NC), is the best option because it does not consume time in
creating objects and never runs out of memory.

A. DISCUSSION
In most of the datasets used in experiments, the length of
minimum irreducible testors are much less than half of the
number of columns, as is described in sub-section IV-C.

As can be seen in Table 1, the length of the minimum
irreducible testor is 1 in some cases. This means that these
basic matrices have at least a column containing only ones.

As shown in tables 2 and 3, for some datasets both algo-
rithms YYC and GCreduct took hours or days to finish their
execution because they have to find the entire set of irre-
ducible testors to detemine which ones are of minimal-length.

Pruning techniques introduced in section IV-B reduced
dramatically the search space in sparse matrices, but they
require extra memory to keep only potential combinations.

Finally, the experiments carried out also proved that, if we
follow the lexicographical order of feature indexes, we can
find minimum-length irreducible testors much faster than
running the fastest algorithms based on depth-first searches.

B. PERFORMANCE ON CLASSIFICATION OF MiLIT
This work is not focused on assessing the performance of
minimal-length irreducible testors on classification tasks.
Nevertheless, a comparative study in this regard can be found
in [43]. This article shows the effectiveness of minimal-
length reducts over variable-length reducts for object classifi-
cation purposes. If the dissimilarity matrix has no zero-rows,
the algorithm proposed in [43] can be adapted easily to find
irreducible testors.

This algorithm performs a Depth-First search (DFS) to find
reducts. When a new reduct is found and its length is shorter
than the reducts found before, all these reducts are replaced
with the new reduct. In the worst case, all reducts have to be
computed, i.e., the DFS traverses the entire search space.

VI. CONCLUSION
Computing the set of all the irreducible testors of a training
sample is a problem of exponential complexity, and therefore
it consumes a great amount of computation time. Hence,
it makes sense to consider finding some subset, instead of
finding all of them. Among those subsets, we can think of
calculating only those minimum-length testors. As far as we
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know, although there are a number of algorithms published
to compute all irreducible testors, there is no previous pub-
lication that contains a proposal like the one presented here,
which is specifically designed to get the shortest testors.

To reduce execution times, our proposal takes into account
the density of 1’s of the basic matrix, adapting the strategy to
whether that matrix is more or less dense; which is intuitively
related to the length of the shortest testors.

The proposed algorithm proved to be a viable option,
since it finds all the shortest testors of a training sample and
achieves it in a considerably shorter time than the modified
variants of the algorithms that find them all. Minimum-length
testors could be an option of support sets for decision-rule
based algorithms.

Although deep learning based methods have been very
popular in pattern recognition due to efficient formulas
behind them [16], it is commonly known that parameters
(such as batch size [17]) should be chosen carefully and
training sets should be created carefully. Also, appropriate
activation, loss and optimization functions should be chosen.
However, there is not any clear way how to chose these
parameers and functions in different cases. Therefore, feature
selection is still an open issue and significant task in tradi-
tional and deep learning based methods.
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