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ABSTRACT Traditional cuff-based blood pressure (BP) monitoring procedure causes inconvenience and
discomfort to the users. To overcome these limitations, cuffless BP estimation based on pulse transit time
(PTT) and single-channel photoplethysmography (PPG) has been proposed. However, existing studies based
on PTT and PPG for BP estimation did not achieve AAMI/ISO standard criteria for BP measurement (mean
difference within =5mmHg and SD of difference within +8mmHg) under each BP category (Hypotensive,
Normotensive and Hypertensive). This study aims to validate an innovative two-step method for PPG-
based cuffless BP estimation. A combined database was derived from two online databases (Queensland
and MIMIC II) to cover a wide range of corresponding BPs. In total, there were 18010 raw PPG signal
segments (5 seconds for each) with corresponding BPs, separated into two halves for training and testing
of algorithms (independent datasets). Each PPG signal segment was pre-processed to extract 16 signal
features. Later, three significant features have been selected using multicollinearity test. The traditional
generic (trained with uncategorized BP) algorithm and two-step algorithm (specifically optimized for each
BP category) were developed using machine learning. Generally, the two-step algorithm achieved the
AAMI/ISO standard in estimating systolic BP (mean £=SD: 0.07+7.1 mmHg, p<0.001) and diastolic BP
(—0.08+£6.0 mmHg, p<0.001). Categorically, the two-step method also achieved standard accuracy in all BP
categories except Hypotensive systolic BP whereas generic algorithm did not conform to standard accuracy in
any BP category except Hypotensive diastolic BP and Normotensive categories. Compared to the traditional
generic algorithm, the two-step algorithm specifically designed for three different BP category patients and
achieved standard accuracy for cuffless BP estimation.

INDEX TERMS Cuffless BP, pulse transit time, Photoplethysmography & categorical BP estimation.

I. INTRODUCTION

Blood pressure (BP) is a vital sign that reflects the state
of the cardiovascular system. BP is commonly measured
for the diagnosis of cardiovascular health. Abnormal BP
indicates various cardiovascular anomalies, including heart
attack, stroke, peripheral arterial diseases, kidney failure, and
vascular dementia [1]. Presently, automatic cuff-based BP
measurement devices have been routinely used in clinics and
hospitals [2], [3]. However, the cuff-based BP measurement
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procedure causes inconvenience and discomfort due to fre-
quent cuff inflation around the arm or wrist, especially for
multiple BP measurements.

To overcome these limitations of cuff-based BP, many
cuffless BP technologies have been proposed, including pulse
transit time (PTT) or pulse arrival time (PAT), vascular transit
time (VTT), tonometry, and pulse wave velocity (PWV) using
magnetic sensors as shown in Table 1 [4]-[7].

The PAT is a travel time of the pulse from the heart to
the peripheral artery of the finger which is measured by the
R-wave of electrocardiography (ECG) and the peak of pho-
toplethysmography (PPG) signal. The PTT is the time delay
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TABLE 1. Summary of key publications regarding cuffless BP estimation techniques.

Authors BP Estimation SBP DBP
Method
(Mean £ SD) mmHg Correlation (r) (Mean + SD) mmHg Correlation (r)
D. Buxi et al PAT 0+13.0 Not Available Not available Not Available
M. Kachuee et al. PAT 8.245.4 0.6 4.343.5 0.5
M.Park et al. PTT 0.3£9.9 Not Available -1.0£8.2 Not Available
P.M.Nabeel et al. Magnetism Not Available 0.7 Not available 0.8
S.N.Shukla VIT Not available Not Available Not available Not Available
Y. Zhang, & F. SVM 11.2+£9.0 Not Available 12.0£10.3 Not Available
Zhimeng
K.Atomi et al. Regression 1.5+8.4 0.8 Not available Not Available
A. Visvanathan et Regression Not available Not Available Not available Not Available
al.
S.G.Khalid et al. Regression -1.14£5.7 Not Available -0.34£5.6 Not Available

between ECG R-wave till the onset of the first derivative
of PPG. The vascular transit time (VTT) is an alternate for
PTT which was measured between fingertip with PPG and
the chest via phonocardiography [8]. In recent times, various
studies used a mobile phone camera to estimate BP whereas
some of the studies used different algorithms include the
Windkessel model and neural network [9]. Many of these
technologies achieved AAMI/ISO standard accuracies (mean
difference no greater than =5mmHg and SD of difference no
greater than £8mmHg) in terms of overall accuracy [4], [5],
[10]. However, these technologies require at least two sen-
sors, which makes them unsuitable for wearable applications.
The PPG signal, which detects the volumetric changes of
blood, has been widely used in wearable healthcare tech-
nologies. Some studies have attempted to use PPG for BP
estimation [11]-[13]. However, none of the proposed studies
achieved AAMI/ISO standards. Thus, a new algorithm to
accurately estimate BP from PPG is necessary for wearable
BP estimation.

For cuffless BP estimation, generic regression-based
supervised machine learning algorithms have been proposed,
including Support Vector Machine (SVM), Multiple Linear
Regression (MLR), and Regression Tree. Zhang and Feng
suggested SVM as the best algorithm for cuffless BP esti-
mation from PPG signal waveform features [11]. However,
the study unsuccessful to achieve the AAMI/ISO standard
(11.6 £ 8.2 mmHg & 7.6 + 6.7 mmHg for systolic BP
(SBP) and diastolic BP (DBP)). Atomi et al. applied a linear
regression algorithm on the self-collected dataset, but there
was a contradiction found between the ages of participants
enrolled for the training dataset and testing dataset. The
training dataset only included aged individuals, whereas the
testing dataset was collected from young individuals [12].
Visvanathan et al. also extracted PPG signal features and
achieved accuracy measured in percentage for MLR (93.2
& 76.4) and SVM (51.6 & 53.6) algorithms for SBP &
DBP [13]. Nevertheless, these studies failed to conform
to AAMI/ISO BP standards. Khalid et al. suggested that
the regression tree is the best estimating algorithm which
achieved overall standard accuracy and better accuracy under
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each BP category for cuffless BP, but this study is limited
to Queensland database only [14]. A cuffless BP estimation
device has been proposed that achieved AAMI/ISO standard
in mean difference (3.8 mmHg for SBP and 4.6 mmHg for
DBP), but the technical details have not been revealed [15].
Moreover, in all the published studies, the BP estimation
accuracies have not been evaluated separately in various clin-
ical BP categories (Hypotensive, Normotensive and Hyper-
tensive). The classification machine learning algorithm is
another type of supervised machine learning algorithm used
to predict a specific group of data under study [16].

Researchers also attempted the classification algorithm to
predict BP of four different age groups from PPG signal. The
classification algorithm achieved more than 90% accuracy for
SBP and DBP [17]. A two-step approach (consists of different
type classification and regression algorithms) were tested on
ECG to estimate cuffless BP but the accuracy was not under
AAMI/ISO standards [18].

This study aimed to evaluate and compare overall accuracy
of an innovative two-step BP estimating algorithm (highly
optimized for specific BP categories) and traditional generic
algorithm (training and testing data contained uncategorized
corresponding BP). Their accuracy of BP estimation would
also be evaluated separately in three different BP categories
(Hypotensive, Normotensive and Hypertensive).

Il. MATERIALS AND METHODS
The flow diagram in Fig. 1 illustrates the major steps of the
proposed method:

1. Derive and select input PPG signal segments and the
corresponding BPs (SBP and DBP) from the combined
database.

2. Pre-process the raw PPG signal segments by noise filtra-
tion, baseline foot unification, and signal normalization.

3. Extract waveform features from the pre-processed PPG
signal segment and selects significant features.

4. Divide the combined database into two halves for train-
ing and testing dataset. Each half of the datasets are
independent of each other.
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FIGURE 1. The flow diagram illustrates the essential parts of this study.
The combined database (dashed line rectangle) contained raw PPG signal
segments along with reference SBP and DBP. Each raw PPG signal
segment was pre-processed by noise filtration, baseline correction and
signal normalization to extract signal features for BP estimation. Generic
and two-step algorithms were developed with significant PPG signal
features and reference BP. Algorithms were evaluated in terms of overall
and categorical BP estimation accuracies.

5. Develop a traditional generic algorithm with a
regression-based supervised machine learning algorithm
and an innovative algorithm with a two-step approach
using the training dataset.

6. Evaluate the overall and categorical BP estimation accu-
racy of both generic and two-step algorithm on the test-
ing dataset.

A. ONLINE DATABASES

The Queensland database consists of vital sign parameters,
including PPG and the corresponding BPs, extracted from
32 patients during anesthesia [19]. This database has less
number of Hypertensive and Hypotensive signal recording
data. The MIMIC II data (extracted from 250 individual data)
also contained physiological measurement data with a large
amount of Normotensive and Hypertensive corresponding
BPs but did not contain Hypotensive corresponding BPs
[20]. Therefore, a combined database has been created that
contained both (Queensland and MIMIC II) data recordings.
The combined database is a large-scale one that covers a
wide BP range. The corresponding BP values were classi-
fied into three BP categories (Hypotensive, Normotensive
and Hypertensive) according to the reference BP chart in
Fig. 2(a). Each database has unequal data distribution among
different BP categories, as shown in Fig. 2(b). Besides, both
Queensland and MIMIC II databases have a large amount
of missing data and unacceptable signal recordings. Thus
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FIGURE 2. BP classification chart and reference BP categorical
distribution: a) BP is classified into three BP categories (Hypotensive,
Normotensive and Hypertensive) [12] and b) reference BP categorical
distribution in individual databases (Queensland and MIMIC II) and
combined database. Note: The data distributions in Fig. 2(b) present good
quality signal segments extracted from original databases (Queensland
and MIMIC II).

the PPG recordings from both the databases segmented into
5 seconds signal segments. The manual check has been per-
formed for each recording according to the selection criteria
to stack good quality signal segments only [14]. The Queens-
land and MIMIC II databases contained total 8133 and
9877 good quality PPG signal segments with corresponding
BPs, with the combined database covering all the three BP
categories. The Queensland database provide Hypotensive
(636 (8%) segments), Normotensive (6482 (80%) segments)
and Hypertensive (1015 (12%) segments) BP categories
while the MIMIC II database provide Normotensive (4763
(48%) segments) and Hypertensive (5114 (52%) segments)
BP categories.

Besides more data, the combined database covered all the
three BP categories, as shown in Fig. 2(b).

B. PPG SIGNAL PRE-PROCESSING

Savitzky-Golay filter was applied on each PPG signal seg-
ment to eliminate high-frequency noises, as illustrated in
Fig. 3(b). It is a moving average filter which removes opti-
mization process considered 3-neighbours (K=3) around the
query point, and the distances have been high-frequency
noises while preserves the sharp edges of PPG signals [21].
Respiratory activity which affects signal baseline deleted
from each PPG signal segments. The data from Queensland
and MIMIC II databases are different in sampling rate and
amplitude. Therefore, the width and height of each PPG
beat were normalized, as shown in Fig. 3(b) and (c). The
Queensland database contains non-continuous reference BPs
whereas MIMIC 1II database contains continuous reference
BP waveforms which only requires noise filtration to get SBP
peaks and DBP onsets.
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FIGURE 3. Pre-Processing of raw PPG signal segment to normalized
signal pulses and extracted PPG signal features: a) A 5s signal segment
represent BP pulses with systolic peaks and diastolic onsets (marked
with blue and red circles). b) A 5s signal segment of aw PPG pulses;

(c) The features were extracted from pre-processed (filtered, baseline
corrected and normalized) pulses.

C. FEATURES EXTRACTION AND SELECTION

Initially, 16 time-based signal features were extracted from
pre-processed PPG signal segments: Systolic Area (the area
under first onset and the systolic point of pulse), Diastolic
Area (the area under systolic point till second onset of pulse,
Total Area (Systolic Area + Diastolic Area), Width10%
(Width of pulse at 10% of peak amplitude), Width20%,
Width25%, Width30%, Width40%, Width50%, Width60%,
Width70%, Width75%, Width80%, Width90%, Rising Time
(time to reach systolic peak) and Reflection index (Diastolic
Area/Systolic Area) as shown in Fig. 3(c). The pulse areas
of the PPG pulse indicates changes in vascular tone [22].
Pulse rising time feature correspond to change in BP [23].
Visvanathan et al. added a pulse rising time feature with other
feature to estimate cuffless BP [13]. The PPG pulse widths are
related to systemic vascular resistance [24].

In this study, the most significant PPG pulse features (Total
Area, Rising Time and Width 25%) were selected by statis-
tical multicollinearity test. This statistical test was used to
detect the presence of collinearity among PPG signal features,
which lead to the unreliable machine learning model [25].

The variance inflation factor (VIF) is the key parameter to
detect multicollinearity among features [25]. The VIF value
of each feature > 10 indicates that the feature is collinear with
other features. Low VIF (<10) value corresponding to the
significant features that were selected to develop a reliable
machine learning algorithm.
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FIGURE 4. The simplified flow diagram of the KNN classification
algorithm: algorithm analyses the features and measures the distances
between the query point and 3-neighbouring points in the Minkowski
metric. Majority checks have been performed to identify which BP
category obtain the majority.
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FIGURE 5. The flow diagram of Regression Tree algorithm shows different
significant features (Total Area, Rising Time and Width 25%) combination
were used with least square error function that leads to the pruning and
splitting of the tree into branch nodes. Each node (small black colour
filled circles) that attached with the branch node contains estimation
results [12].

Pruning of Trees
Converge

D. MACHINE LEARNING ALGORITHMS USED TO
ESTIMATE CUFFLESS BP

1) K-NEAREST NEIGHBOR (KNN) CLASSIFICATION
ALGORITHM

The KNN algorithm is widely used as a benchmark classifi-
cation technique. It measures the distances between the query
point and the neighbouring points of the training dataset.
In this research, the KNN algorithm measured using the
Minkowski metric from the query point. The algorithm sort
the measured distances in ascending order and check the
majority of distances belongs to which BP category as shown
in Figure 4. The selected BP category from majority checks
has been classified as predicted BP category.

2) REGRESSION TREE

The traditional generic algorithm was developed with Regres-
sion Tree machine learning algorithm, trained with signif-
icant features and corresponding BP categories as shown
in Figure 5. The previous study revealed that the Regression
Tree is the best algorithm for PPG-based cuffless BP esti-
mation [14]. It is a non-parametric type of machine learning
algorithm which is used to estimate BP. This algorithm has
relatively short training time as compared to the SVM algo-
rithm. Leaf nodes of Regression Tree carry decision from the
root node. Regression Tree was developed with binary data
splits but leaf nodes carry decision in the numeric form [26].
It splits the dataset with pre-set optimization criteria which
subject to the minimum leaf size and tree depth for each
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FIGURE 6. The diagram shows the working principle of two-step
approach developed for cuffless BP estimation from PPG only: a) first
step used KKN classification algorithm to identify BP category of PPG
signal features; b) the second step which consists of specific BP
algorithms estimate SBP and DBP.

predictor variable (Total Area, Rising Time and Width 25%).
The stopping criteria for tree split to create a pure node
depends upon the mean square error (MSE), as shown in
equation (1).

MSE (observed response) < MSE (observed response from
all data) x tolerance (1)

A pure node corresponds to the observed response MSE,
which is less than MSE of total dataset multiplied with the
tolerance [26]. To achieve optimization, Regression tree algo-
rithm splits tree branches to reduce prediction error as shown
in Fig. 5.

3) SPECIFIC BP ALGORITHMS

Specific BP algorithms were developed with Regression Tree
algorithms which were trained with specific BP category
(Hypotensive, Normotensive and Hypertensive) data only.
The combined dataset has been separated into three BP cat-
egories. Each category divided equally to make training and
testing dataset. Later, training dataset from each category was
used to train specific BP algorithms.

E. TWO-STEP BP ESTIMATING ALGORITHM

The Innovative two-step algorithm designed explicitly to
specific BP categories with highest possible optimization of
Regression Tree algorithm. The aim to develop this algorithm
is to get better categorical accuracy in three BP categories.

1) STEP 1

In the first step, as indicated in Fig. 6(a), the K-nearest
neighbour classification algorithm identifies one of the BP
categories (Hypotensive (1), Normotensive (2) and Hyperten-
sive (3)) using significant PPG signal features.
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2) STEP 2

In the second step, which is presented in Fig. 6(b), one of
three specific BP algorithm which belongs to the classified
BP category in step 1 estimate SBP and DBP.

F. TRAINING AND TESTING DATASET

The dataset collected from the combined database (18010
segments) was divided into two halves (each contained
9005 signal segments). Both the halves of dataset contained
an equal number of corresponding BP under each BP category
(318 segments for Hypotensive, 3064 from Normotensive
and 5622 from Hypertensive), extracted from the different
number of patients recordings to make sure testing dataset
completely independent of the training dataset. Half of the
dataset was used for the training of generic and innovative
BP algorithms and the other half used for the evaluation of
the developed algorithms.

G. OVERALL AND CATEGORICAL BP ESTIMATION
EVALUATION

The generic (uncategorized Regression Tree algorithm) and
two-step BP estimating algorithms were firstly evaluated in
terms of overall BP estimation accuracy. Both algorithms
were separately applied on test dataset that produced esti-
mated BPs (SBP and DBP) in the response of each set of
significant PPG signal segment features. Overall mean differ-
ence and SD of differences were calculated. For categorical
estimation accuracy evaluation, all the estimated and corre-
sponding data separated into three BP categories. Mean, and
SD of differences was calculated under each BP category
separately for generic and two-step algorithm.

H. DATA ANALYSIS

Significant PPG signal features were selected by statistical
multicollinearity test. In overall and categorical evaluations,
the mean difference and SD of BP difference from both the
generic and two-step algorithms were compared. Secondly,
the p-value using paired t-test of estimated and reference BPs
was calculated. Finally, the Bland-Altman plots were drawn
between the estimated and reference BPs.

Ill. RESULTS

A. COMPARISON ANALYSIS OF EXISTING CLASSIFICATION
ALGORITHMS

BP category prediction by maximally optimized classifica-
tion models using a bayesian optimization technique was
compared in Table 1. The KNN algorithm is the only classifi-
cation algorithm which has the highest prediction accuracy
(> 90%) as shown in Table 2. Prediction accuracy tested
on the testing dataset which is independent of the train-
ing dataset.

B. OVERALL BP ESTIMATION ACCURACY OF GENERIC
AND TWO-STEP ALGORITHMS

The overall BP estimation accuracies of the generic algo-
rithm and two-step algorithm are compared in Fig. 7(a),
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TABLE 2. Prediction performance of classification algorithms to classify
BP categories from significant PPG signal features.

Algorithm Prediction Performance (%)
Discriminant 71.3
Analysis
Decision Tree 82.7
SVM 72.4
KNN 91.7

shows that two-step algorithm conformed to AAMI/ISO
standard criteria of BP measurement (mean difference no
greater than £5mmHg and SD of difference no greater
than 8mmHg) whereas generic algorithm did not achieve
AAMI/ISO standard criteria as their SD of difference for SBP
(9.6mmHg), and DBP (9.2 mmHg) exceeded the standard
limit of (=8mmHg). However, the generic algorithm shows
an acceptable mean difference ( £5mmHg). The p-value
(p<0.001) shows that there is a significant difference between
the generic algorithm and the two-step algorithm exist for
SBP and DBP. The Bland-Altman plots in Fig. 7(c, e) show
that there are agreements between the two-step algorithm
and reference method. However, limits of agreement (dashed
lines) of generic algorithms in Fig. 7(b, d) are wider than the
two-step algorithm.

C. CATEGORICAL BP ESTIMATION ACCURACY OF
GENERIC AND TWO-STEP ALGORITHMS

The BP estimation accuracies of the generic algorithm and
two-step algorithm under three BP categories are presented
in Fig. 8. For SBP estimation, which is shown in Fig. 8(a)
for categorical BP estimation evaluation, the data were cate-
gorized into three BP categories (Hypotensive, Normotensive
and Hypertensive) according to the reference BP value. The
comparison of estimation bias between generic and two-step
algorithms was compared separately for each BP category
according to AAMI/ISO standard criteria for BP measure-
ment.

For the generic algorithm, mean differences of BP cat-
egories were within the standard limit (=5mmHg) except
Hypotensive, whereas all the SDs of BP difference exceed
the standard (£8mmHg). Contrarily, the SBP accuracy of
two-step algorithm achieved standard accuracy in Normoten-
sive BP category (—0.7+5.8 mmHg) and Hypertensive
(1.74£7.6 mmHg). However, the accuracy in Hypotensive BP
category (—3.0£8.2 mmHg) shows little over the maximum
standard limit for SD of difference (£8mmHg).

For DBP estimation, which is shown in Fig. 8(b),
the generic algorithm did not achieve standard accuracy in
Hypertensive BP category (0.5+9.5 mmHg) due to higher SD
of difference, but the two-step algorithm achieved standard
accuracy under each BP category. The p-value (p<0.001)
from paired t-test also shows that there is a significant dif-
ference between generic and two-step algorithm for SBP
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FIGURE 7. Evaluation of overall BP estimation accuracy: a) Overall
evaluation of BP estimation accuracy using a testing dataset of the
combined database, separately for generic and two-step algorithms. (b-e)
Bland —Altman plots for the estimated BPs from the generic and two-step
algorithm. (b-c) are for generic and innovative algorithm SBP and (d-e)
are for DBP algorithms. Note: * = Significant difference.

whereas no significant difference found between generic and
two-step algorithm under Hypotensive and Normotensive.

IV. DISCUSSION

A. SUMMARY OF RESULTS

This study proposes to validate the two-step BP estimating
algorithm according to AAMI/ISO standard criteria and com-
pare with the traditional generic algorithm in terms of BP
estimation accuracy. In general, the method of overall BP
estimation accuracy has been followed to check algorithm
accuracy. However, in this research, categorical accuracies of
both the algorithms were also evaluated. The study revealed
that the two-step BP estimating algorithm achieved standard
accuracy in terms of overall and categorical BP estimation.

B. THE ADVANTAGE OF TWO-STEP ALGORITHM
COMPARED WITH EARLIER RESEARCH

Single PPG provides the possibility of wearable and low-
cost BP measurement. Cuffless BP estimation using a sin-
gle PPG signal has been investigated by other research
groups [11]-[14]. Visvanathan et al. used PPG features (dif-
ferent set) with linear regression and SVM algorithm [11].
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Likewise, Ruiz-Rodriquez et al. applied a regression model
on 525 subjects [27]. However, previously proposed studies
did not indicate significant PPG signal features for algorithm
development [5], [12], [13]. The two-step algorithm uses
significant features which are indicated in this research that
used to estimate cuffless BPs. This new method provides
the possibility of continuous and wearable BP monitoring
without limiting the daily activities of the patients.

Some researchers have inconsistency in their training and
testing dataset. They achieved standard accuracy using PPG
signal features (different set) for SBP only [11]. Two research
group used Queensland database that lacked hypotensive data
[11], [28]. Additionally, they did not include a clear BP
distribution chart in their published work. Some research
studies did not match with the standard criteria of AAMI/ISO
standard.

In the current work, firstly, the combined database con-
tained a large amount of data (18010 signal segments in
total) to ensure the accuracy of validation. Secondly, the
reference BP values covered a wide range across the three BP
categories, enabling the estimation of algorithmic accuracy
in different BP categories. As far as we know, this is the first
time that the accuracy of the PPG-based BP estimation algo-
rithm was evaluated categorically on the combined database.

Clinically, the accurate estimation of hypertensive and
hypotensive BP is significant for early diagnosis of many
diseases [29]. The high accuracy for normal BP estimation
could cover the fact that the majority of current cuffless
BP estimation algorithms are inaccurate in hypotensive and
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hypertensive cases, as the results are shown in Fig. 8(a) and
Fig. 8(b).

C. APPLICATION OF TWO-STEP APPROACH

PPG sensors are low-cost and easy to be integrated into smart-
phones and other daily devices. Therefore, PPG has been
widely applied in healthcare monitoring [30]. The proposed
innovative algorithm could be applied in low-cost, wearable,
and continuous BP monitoring with a single optical sensor
without any discomfort to the users. This algorithm is highly
efficient and could be incorporated as an android application
within the smartphones for telemedicine and other transla-
tional applications.

D. LIMITATION AND FUTURE STUDIES

This study had some limitations. Firstly, PPG signal quality
has been manually checked to avoid the use of bad quality
signal segment during algorithm training, which is not a prac-
tical approach. Thus, an advanced PPG signal pre-processing
algorithm needs to be developed. Secondly, Queensland and
MIMIC II databases, data collected under certain clinical con-
ditions (supine and sitting postures). The effects of physiolog-
ical conditions, such as posture, movement, and age, were not
included. The algorithm testing on a newly collected dataset
from different body postures, with different movements, and
from different age groups, will be useful for future BP mea-
surement accuracy evaluation. Thirdly, other BP-related clin-
ical parameters (sex, height and weight) could be introduced
to train or test the algorithm which might improve the BP
estimation accuracy. Only AAMI BP measurement accuracy
criteria has been followed instead of compete standard the
physiological data were collected by the previous researcehrs.

V. CONCLUSION

This study validated the two-step BP estimating algorithm
according to AAMI/ISO standard BP measurement crite-
ria and revealed that the two-step algorithm conformed to
standard criteria in terms of overall and categorical accu-
racy. Furthermore, the two-step algorithm showed better BP
estimation accuracy than the traditional generic algorithm
in both overall and categorical BP estimation evaluations.
The current study shows that the two-step algorithm has the
potential to be incorporated into a smartphone for cuffless BP
estimation using a single optical sensor.
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