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ABSTRACT Recently, high utility pattern mining (HUPM) is one of the most important research issues
in data mining. Because it can consider the non-binary frequency values of items in a transaction and
the different profit values of each item. It has been widely used. First of all, this paper briefly describes
the related concepts, formulas and examples of application for HUPM. Secondly, the key technologies for
HUMP are introduced in detail, and they are divided into main methods including Apriori-based, tree-based,
projection-based, list-based, data format-based, and index-based and so on. The paper further compares data
sets, uses, advantages and disadvantages of algorithms, laid the foundation for the next research direction.
Then, this article outlines the high utility derivative patterns, including high average utility pattern, high
utility sequential pattern, and high utility compact pattern and so on. Because static data is difficult to meet
the actual needs, this paper summarizes the efficient use of HUPMs’ methods over data streams, mainly
based on incremental methods, based on the sliding window model methods, based on the time decay model
methods and based on the landmark model methods and so on.

INDEX TERMS Survey, pattern mining, high utility pattern, data streams, incremental databases.

I. INTRODUCTION
Frequent itemsets mining (FIM) is one of the core tasks
in data mining. FIM mines the itemsets that often appear
together in the transaction database, and assumes that all
items have the same importance (unit profit, price, etc.).
However, an item may only appear once or zero times in
a transaction. For example, in a department store, diamond
sales may be much lower than ballpoint pen sales, but the
former has a much larger profit margin than the latter, which
may therefore make more sense. Traditional FIM will dis-
card this information, potentially mining many low-margin
frequent itemsets.

High utility mining (HUIM) is an important area of FIM.
HUIM considers the number and profit of items and itemsets
to measure the ‘‘usefulness’’ of them. If the total utility of
the itemsets in the database is not less than the user-specified
minimum utility threshold (minutil), it is called high utility
itemsets (HUIs). Otherwise, it is called low utility itemsets.
For example, in the background of market basket analysis,
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it involves finding all itemsets that produce a profit. Mean-
while, they are at least equal to a certain minimum utility
value. The goal of HUIM is to identify itemsets or items
that are meaningful to the users. Therefore, researchers have
proposed many methods for mining HUIs in order to quickly
take appropriate measures to meet the needs of users.

In the early period of HUIM, the researchers propose Two-
Phase [1] based on Apriori, which is one of the classical algo-
rithms. The algorithm proposes the attributes of transaction
weighted utility (TWU) and transaction weighted downward
closure (TWDC). In phase I, the TWDC is used to find
the high transaction weighted utility itemsets (HTWUIs); in
phase II, an additional database scan is needed to identify
the actual HTWUIs. The algorithm effectively reduces the
number of candidates and accurately obtains a complete set
of HUIs. However, the algorithm leads to excessive execution
time and memory usage due to generation and test methods,
and requires a large number of database scans. For this reason,
other algorithms are proposed to overcome the shortcomings
of the Two-Phase. As one of them, IHUP [2] uses the ihp-tree
data structure to generate HTWUIs for mining HUIs in the
incremental database [2]. However, it also generates a large

55798 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-0294-4331
https://orcid.org/0000-0002-1333-1090
https://orcid.org/0000-0002-8905-1028
https://orcid.org/0000-0003-1795-8867
https://orcid.org/0000-0003-3351-0093


C. Zhang et al.: Survey of Key Technologies for HUPM

number of candidates. With the continuous advancement of
technology, HUP-growth [9] mines HUIs without candidate
generation. It uses a two-phase model and the HUP-tree
structure tomaintain 1-HTWUIs, thus speeding up themining
process. In real-world applications, databases are often large
and dynamic because the contents of the database change
frequently regardless of the number of transactions inserted
or deleted [53]. PRE-HUI-INS [17] is based on the pre-large
concept and preserves the HTWUIs to avoid database redoing
until the cumulative total utility of the inserted transactions
reaches a safe limit. PRE-HUI-DEL [53] is used to pre-delete
the pre-large concept to update the HUIs, thereby speeding
up the processing time of updating information. PIHUP [18]
can handle dynamically added transactions with an additional
threshold, requiring only one scan of the database. Therefore,
it is more suitable for processing dynamic data. HUPPP [79]
extends the HUPM problem to high utility partial-cycle pat-
tern problem, taking into account not only the sequence of
events and the length of the period, but also the number of
events and personal profits. The algorithm uses a two-phase
periodic utility upper limit pattern to avoid the information
loss during mining. For example, this algorithm can dis-
cover itemsets that customers regularly purchase and generate
high profits. It considers the relative order of transactions,
so it tends to find patterns that are stable in terms of utility
throughout the database.

Because the two-phase algorithms generate a large num-
ber of candidates in phase I, and cause scalability problems
in phase II, it is less efficient. Although much effort has
been made to reduce the number of candidates generated
by phase I, the challenge still exists when the original data
contains many long transactions or where minutil is low.
Therefore, the proposal of one-phase algorithms effectively
alleviates this problem.

HUI-Miner [12] is the first one-phase algorithm to discover
HUIs. It proposes a new structure, utility list [12]. The utility
list stores not only utility information about the itemsets,
but also heuristic information about whether the itemsets
should be pruned. Unlike previous algorithms, HUI-Miner
does not generate candidate HUIs. Although HUI-Miner is
very effective, mining HUIs is still computationally expen-
sive. Because it has to perform expensive join operations
for each pattern generated by its search process. Therefore,
FHM [13] proposes a new pruning strategy, EUCP (Esti-
mated Utility Co-occurrence Pruning), which can prune the
itemsets without performing the connection, considering
the co-occurrence between the 2-itemsets and improving
the pruning performance. CHUI-Mine [57] proposes a new
structure called EU-List (Extended Utility List) to maintain
utility information for itemsets in a transaction, which allows
efficient calculation of in-memory itemsets without scanning
the original database. It is the first compact algorithm to
find a complete set of closed high utility itemsets from the
database without generating candidates. EFIM [50] relies on
two new upper bounds: revision sub-tree utility and local
utility to prune the search space more efficiently. MHUI [65]

is used to mine HUIs with multiple minutils. This algorithm
introduces the concept of minimal suffix utility and pro-
poses a generalized pruning strategy for mining of HUIs effi-
ciently. kHMC [71] finds Top-k HUIs, using real item utilities
(RIU), co-occurrence utility descending order (CUD) and
coverage of coverage (COV). These three strategies increase
their internal minutil and reduce the search space effectively.
FOSHU [76] considers the spot time period of the item and
the item with positive/negative elements. The algorithm uses
a utility list and the depth-first search while mining HUIs at
all times. HUPNU [52] relies on probabilistic-utility lists with
positive and negative margins to mine HUIs directly in uncer-
tain databases without generating and testing candidates.

In recent years, the key technologies [34] for mining
HUIM have been extensively studied. UDHUP-Apriori [14]
speeds up the mining process by mining the latest high utility
patterns in a horizontal way and recursively deriving HUIs
using methods similar to Apriori. HUI-list-INS [15] is an
incremental algorithm for inserting transactions in a dynamic
environment, which reduces the amount of computation with-
out generating a candidate list. It also uses an enumeration
tree and 2-itemsets to speed up the calculation. PHUS [60]
proposes the maximum utility metric to simplify the utility
evaluation of subsequences in a set of quantitative sequences,
and also adopts an effective sequence-utility upper-bound
(SUUB) model to avoid missing information in mining. The
algorithm also designs an efficient projection-based pruning
strategy to produce a more accurate sequence-utility upper
subsequence. CHUM [32] uses an EU-List structure, which
is a vertical representation of the database. The vertical data
structure is capable of computing closures of the itemsets and
efficiently generating candidates.

From the development of HUPM to the present, there are
many reviews about the mining of high utility patterns, such
as [34], [86], [87] and so on. Survey [86] focuses on the types
of HUIs, specifically the compact representation of itemsets,
including closed HUIs, maximum itemsets, generators of
HUIs and minimum HUIs; Top-k HUIs; high utility itemset
mining with average utility metrics; high utility itemset for
negative utility and other novel pattern mining. Survey [34]
comprehensively reviews utility-oriented pattern mining,
describing various problems related to mining-based utility
patterns andmethods to solve these problems. This paper pro-
poses the most common and advanced classification methods
for mining different types of high utility patterns, and pro-
vides a comprehensive review of advanced topics in existing
high utility pattern mining techniques, and discusses their
advantages and disadvantages. Finally, it introduces some
famous UPM open source software packages. Survey [87]
studies different algorithms of HUPM, their workflows and
their limitations. This article provides an overview of com-
parative studies of various algorithms that are used to improve
the mining efficiency of HUIs. This paper describes in
detail the algorithms of Two-Phase, U_Mining, FUM, CTU-
PROL, IHUP, HUI_Miner, UP_Growth, UP_Growthn+,
FHM and so on. There are papers presenting algorithms,
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FIGURE 1. Tree-based HUPM algorithms.

year of publication, authors, and deficiencies of the proposed
algorithm.

Although these reviews are mainly from the perspective
of mining types of HUIs, typical algorithms in HUPM, and
key technologies of HUPM, we will further classify these key
technologies. The difference lies in:

1) In the Apriori-based methods of the third chapter,
the types of mining HUIs are classified into the classification
criteria, namely, the algorithms of mining the complete set,
the algorithms of mining the average itemsets, the algorithms
of mining the closed itemsets, and the algorithm of mining
the potential itemsets.

2) In the tree-based methods of the third chapter, the algo-
rithm is classified into two categories, namely, the algorithms
for mining static data and the algorithms for mining dynamic
data (incremental databases and data streams), and each tree
structure is described in detail in Figure 1. For example,
the name of the tree, the components of the tree, and the like
are listed.

3) In the projection-based methods of the third chapter, the
mapping methods used are the classification standard, which
are the algorithms using parallel projection, the algorithms

using prefix projection, and the algorithms using a combina-
tion of projection and transaction merging.

4) In the list-based methods of the third chapter, the algo-
rithms are divided into three categories, namely, the algo-
rithms using a utility list structure, the algorithms using an
extended utility list structure, the algorithms using other list
structures, and each list structure is performed in Figure 2.
The detailed description, for example, lists the names of the
lists, the components of the lists, and the like.

5) In the data-format-based methods of the third chapter,
the data format used by the algorithms is a classification
standard, which are the algorithms using horizontal represen-
tation, the algorithms using vertical representation, and the
algorithms using an index.

This paper briefly describes the key technologies for
HUMP in detail, outlines the high utility derivative patterns,
and summarizes the efficient use of HUPMs’ methods over
data streams. Therefore, the main contributions of this paper
are:

1) This paper provides a comprehensive and systematic
summary of developments in the field, according to the
knowledge level introduces the concept of HUPM, formulas
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FIGURE 2. List-based HUPM algorithms.

and application examples. And it compares important con-
cepts.

2) This paper has a deeper understanding and introduc-
tion of key technologies. And from different algorithms,
the Apriori-based, tree-based, list-based, projection-based,
vertical/horizontal-based and index-based methods are
described in detail from different perspectives.

3) Further summarizes the high utility derivative patterns,
and outlines the characteristics and advantages of derivative
patterns compared to traditional patterns.

4) This paper briefly analyzes the methods of high
utility patterns in incremental databases and on data
streams. It is mainly described from three aspects, namely
based on sliding window model methods, time decay
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model-based methods and landmark window model-based
methods.

The remainder of this paper is organized as follows:
Chapter II describes related concepts, such as transactional
utility and transaction-weighted utility, which are used in
the algorithms of the following chapters. Chapter III details
extended analysis of HUPM, chapter IV describes high utility
derivative patterns. Chapter V describes methods for HUPM
over data streams. Finally, chapter VI identifies the next
research directions related to HUPM and chapter VII sum-
marizes the full text.

II. BASIC CONCEPTS
Let I = {i1, i2,. . . , im} be a set of items, andD = {T1, T2, . . . ,
Tn} is a transaction database. The items in each transaction
Ti are a subset of I . The number of items ip (1 ≤ p ≤ m) in
the transaction Tq (1 ≤ q ≤ n) is represented by o(ip, Tq).
The external utility s(ip) is the unit value of the item ip in the
utility table (for example, per unit profit). The utility of the
item ip in transaction Tq, represented by u(ip, Tq), is defined
as o(ip,Tq)× s(ip). Let itemset X be a subset of I . The utility
of X in transaction Tq, represented by u(X , Tq), is defined
as:

u(X ,Tq) =
∑

ip∈X
u(ip,Tq) (1)

The utility of itemset X in the database, represented by
u(X ), is defined as:

u(X ) =
∑

Tq∈D∧X⊆Tq
u(X ,Tq) (2)

If the itemset’s utility is not less than the minutil, the item-
set is called a high utility itemset. Otherwise, it is called a low
utility itemset. The task of HUIM is to find all high utility
itemsets. Since the utility does not have an anti-monotonic
property, the concept of transaction utility [1] (TU) and
transaction weighted utility [1] (TWU) is used to prune the
search space of HUIs. The transaction utility of a transaction,
expressed as tu(Tq), is the sum of the utilities of all items
in Tq:

tu(Tq) =
∑
ip∈Tq

u(ip,Tq) (3)

The transaction weighted utility of itemset X , expressed as
the sum of the transaction utility of TWU(X ) for all transac-
tions containing X :

TWU (X ) =
∑

Tq∈D∧X⊆Tq

tu(Tq) (4)

Suppose there is a small transaction database, as shown
in Table 1. Table 2 shows the profit (external utility) for each
item. The value of each row in Table 1 represents the number
of each item purchased in a particular transaction (i.e., local
transaction utility). The last column shows the transaction
utility of each transaction. In transaction T2, three A, one C
are purchased, and a transaction utility of 60$ is generated.
The utility of item A is u(A,T2) = 3 × 10 = 30$. The

TABLE 1. Transaction database.

TABLE 2. Utility table.

utility of the item A in the entire database is u(A) = 1 ×
10 + 3 × 10 + 1 × 10 + 1 × 10 = 60$. In transactions T1
and T4, the itemset AD occurs two times. In transaction T1,
u(AD, T1) = 1 × 10 + 40 = 50$; in transaction T4, u(AD,
T4) = 1 × 10 + 40 = 50$; and in the entire database,
u(AD) = 50 + 50 = 100$. The TWU of item C is the sum of
the transactions T2, T3 and T5, TWU (B) = tu(T2)+ tu(T3)+
tu(T5) = 60 + 90 + 60 = 210$, and the TWU of the itemset
BC is the sum of the transactions T3 and T5, TWU (BC) =
tu(T3)+ tu(T5) = 90 + 60 = 150$.

III. KEY TECHNOLOGIES FOR HIGH UTILITY PATTERNS
MINING
In recent years, researchers have proposed a large number
of algorithms to mine HUIs from data. This chapter selects
some classic and representative HUPM algorithms, and clas-
sifies the key technologies used in the algorithm according to
different mining principles and data structures. Table 3 is a
summary table of the HUPM algorithms listed in chapter III
according to the release year. Specifically, for ease of dis-
cussion, this chapter divides these tasks into the following
categories:
• Apriori-based methods;
• Tree-based methods;
• Projection-based methods;
• List-based methods;
• Vertical/horizontal data and index-based methods.

A. APRIORI-BASED METHODS
The researchers propose a well-known downward closure
property, also known as the Apriori [38] property, which
specifies that all non-empty subsets of a frequent itemsetmust
be frequent, while any supersets of an infrequent itemset can’t
be frequent.
In addition to processing data, HUPM can also be used for

unstructured data, including text, images, and video. Taking
the image as an example, the analysis is performed as shown
in Table 4, which is a graphical representation of the entities
in different application fields.
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TABLE 3. Algorithms summary table by release year.

TABLE 4. Graphical representation of entities in different application
area.

In the mining process, the graph can be transformed into
a similar transaction form, using an existing algorithm such
as Apriori. In this case, the edge and the corresponding
vertex combination are mapped to an item. The width of the
transaction is determined by the number of sides of the graph.
However, this method works only if each edge of the graph
has a unique combination of vertices and edges.

The Apriori-like algorithms for mining high utility sub-
graphs consists of the following steps.

1) Candidate generation: combine efficient (k − 1)-sub-
graph pairs to obtain candidate k-sub-graphs.
2) Candidate pruning: discard all candidate k-subgraphs of

the inefficient (k − 1)-sub-graph.
3) Support count: count the number of graphs for each

candidate.
4) Candidate delete: discard all candidate subgraphs that

are smaller than minutil.
In order to apply Apriori’s downward closure property to

the utility problem, based on the two-phase model, the Two-
Phase [1] was designed, and two attributes of TWDC and
TWU were introduced to discover HUIs. In the first phase,
the algorithm uses Apriori similar level candidate generation
and testing strategies to find all itemsets with TWUs that
are not less than the minutil. Then, in the second phase,

the algorithm scans the database to find the actual utility value
of the itemset found in the first phase. The TWU attribute not
only limits the search space, but also covers all HUIs.

With the continuous research of relevant researchers, other
HUPM can be explored based on the Apriori method, such as
high average utility patterns and high closed utility patterns.
FUP [16] uses the downward closure property to search the
high average utility itemsets step by step. With this attribute,
the number of candidate sets generated at each level is greatly
reduced and the search space is also reduced. PHUI-UP [67]
uses a horizontal method to mine potential high utility item-
sets (PHUIs) based on Apriori-like methods and designed
upper limit models. In an uncertain database, the algorithm
can be used by researchers as one of the most advanced
algorithms in future work. With the continuous advancement
of HUPM research, Apriori-based algorithms are also used
to mine closed itemsets. CHUD [30] is based on a two-phase
algorithm that extracts the set of possible high utility closed
itemsets in the first phase and calculates the actual utility
information of the set in the second phase.

In summary, all early HUPM methods have improved
Apriori-based algorithms. Apriori uses step-by-step candi-
date generation and testing methods. The advantage is that
using the Apriori method can delete a large number of candi-
dates, improve the efficiency of mining useful patterns, and
also have good performance in restoring all HUIs, such as the
algorithms Two-Phase [1] and CHUD [30]; also can reduce
the time to reprocess the entire update database, such as
algorithm FUP [16]. However, Apriori-based algorithms also
have many shortcomings, such as multiple database scans,
such as the algorithms Two-Phase [1] and PHUI-UP [67];
due to the generation of a large number of candidate sets
in Phase I, a large amount of memory is consumed, such
as the algorithms CHUD [30] and FUP [16]. The specific
algorithms are shown in Table 5.

B. TREE-BASED METHODS
Although the Apriori methods can effectively mine HUIs, but
there are problems such as generating a large number of can-
didates, repeatedly scanning the database, and running slowly
and so on. In order to avoid these shortcomings, tree-based
HUIM algorithms are proposed. These tree-based algorithms
consist of three steps: 1) building the tree; 2) generating
candidate HUIs from the tree using algorithms; 3) identifying
HUIs from the candidate set.

Tree-based methods are widely used in static databases.
UP-Growth [11] and UP-Growth+ [10] can reduce the num-
ber of candidates for extraction by an improved overesti-
mation method, they need two database scans to build their
own tree structure, named UP-Tree. CTU-PRO [31] mines
HUIs by traversing the compressed utility pattern (cup) tree
from bottom to top. The TWU concept is used to prune
the search space in CTU-PRO, but it avoids rescanning the
database to determine the actual utility of a high transaction-
weighted utility set. The algorithm adapts to larger data sets
by building parallel subdivisions that can be independently
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TABLE 5. Apriori-based HUPM algorithms.

mined on disk. Recently, many novel tree structures have
been developed to improve the performance of the excavating
HUPM. USpan [59] constructs a lexicographic quantitative
sequence tree (LQS-tree) structure using a sequenceweighted
utility (SWU) and a sequence weighted downward closure
(SWDC) attribute. Trim the sequence without the desired one
and extract the complete HUSP. dHAUIM [83] uses a new
structure called the IDUL prefix tree to quickly calculate the
average utility and the utility ceiling of the itemset using a
recursive process to maintain a high utility average itemset.
Based on the high utility average patterns, the researchers
proposed the MAUGrowth [44], which applied MAUTree to
mine the high-average utility rare patterns from the database.
The algorithm takes into account the length of the pattern in
order to effectively reduce the dependence of the pattern on
its own length in order to mine rare patterns that are more
meaningful than the patterns mined by previous algorithms.
In order to predict the exact number of patterns mined by
thresholds and accurately control the mining results, the top-k
mining is proposed. REPT [29] is an efficient algorithm to
mine the top-k HUIs with a greatly reduced number of candi-
dates. Reduce the search space by effectively increasing the
minimum threshold when building a global tree through three
strategies. The traditional HUIM algorithms only allow the
user to specify a minutil to evaluate the utility of all patterns.
But in real life, each item in the database is different, so using
a single minutil makes it difficult to measure the utility of an
item or itemset fairly. For example, in a retail store, if the
itemset {necklace} earns more than $1,000 per week, it may
consider as the HUI; and the itemset {bread, milk} eaens
more than $100 per week, it may consider as the HUI. Using
traditional HUIM algorithms, if the minutil is set to higher,
the user will miss useful patterns with lower utility, and if
the minutil is set to lower, the number of HUIs will be large.
Therefore, using a single minutil to evaluate the utility of an
item is insufficient because it does not take into account the

importance of each item. HIMU [20] uses multipleminutils to
mine HUIs. It proposes multiple item utility set-enumeration
(MIU-tree), and global and conditional downward closure
(GDC and CDC) properties of HUIs in MIU-tree. This algo-
rithm is more flexible and more realistic than using a single
minutil.

With the advent of the big data era, researchers have
used tree-based methods to solve problems in incremental
databases and data streams. IHUP [2] is one of the most
advanced algorithms for HUPM. It constructs its own tree
structure, called IHUP-Tree, with a single channel, and
finds all HUIs based on traditional overestimation meth-
ods. However, it generates a large number of candidates.
MAHUSP [26] designs an efficient tree structure, MAS-Tree,
for storing potential HUSP on the data streams. The algorithm
can not only effectively discover the HUSP on the data
streams, but also adapt to the memory allocation in the
sacrifice of the discovered the quality. From the constant
discovery of researchers, existing algorithms require multiple
database scans to mine HUIs, which hinders their efficiency.
HUM-UT [33] is used to find HUIs from transactional data
streams and proposes a new data structure, UT-Tree (utility
on the tail tree). The structure is created by a database scan,
and utility information is only stored on the tail node to
maintain utility information for the transaction item set to
avoid multiple database scans.

In summary, the advantages of tree-based algorithms are
that the performance of larger data sets containing dense data
sets and sparse data of long patterns are better, such as the
algorithm CTU-PRO [31]; effectively reduce the quantity of
candidates, avoiding repeated scans of databases, such as the
algorithms UP-Growth [11], UP-Growth+ [10], REPT [29],
HIMU [20] and HUM-UT [33]; the number of tree nodes
in the tree structures used is small, and adapt to memory
allocation, such as the algorithm IHUP [2], MAHUSP [26].
Although these tree structures are usually compact, they may
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not be minimal and still take up a lot of storage space. The
mining performance of these methods is closely related to
the number of conditional trees constructed throughout the
mining process and the cost of building/traversing each con-
dition tree. Therefore, one of the performance bottlenecks of
these algorithms is to generate a large number of conditional
trees with high time and space costs. The disadvantages are
that a large number of candidates are generated, such as the
algorithms CTU-PRO [31] and IHUP [2]; it takes time and
memory to check and store the minimum node utility, such
as the algorithm UP-Growth [11]; the process of processing
the tree structure is consuming time, such as the algorithms
REPT [29], HIMU [20], HUM-UT [33] and MAHUSP [26].
The specific algorithm is shown in Figure 1.

C. PROJECTION-BASED METHODS
In order to overcome the shortcomings of the tree-based
approach, researchers have proposed some projection-based
methods to improve the mining performance, which have
been widely used in data mining. The general idea is to
recursively project the processed database to some smaller
mapping sub-databases. Then in each mapping sub-database,
grow the itemset or sub-sequence fragment [34].

When the main memory is not large enough to handle large
data sets, researchers use a parallel projection scheme to use
disk storage. CTU-PROL [31] creates a subdivision for a data
set that is too large to be saved in main memory, using parallel
projections that can then be independentlymined. The inverse
monotonic nature of TWU is used to trim the search space
subdivided in CTU-PROL.

Prefix-based projection method, the utility upper bound
can be effectively improved and the mining process can be
optimized. PHUS [60] extends the PrefixSpan [61] and uses a
projection-based pruning strategy to achieve a compact upper
bound on sequence utility. The concept of maximum utility
metric and sequence-utility upper-bound (SUUB) model is
proposed. Therefore, it can avoid considering too many can-
didates and use the SUUBmodel to improve the performance
of mining HUSP.

In actual research, researchers not only use mapping meth-
ods to mine HUIs, but also combine them with transac-
tion merging to further improve the mining performance.
EFIM [50] is an efficient algorithm based on one-phase
projection. In order to reduce the cost of database scanning,
EFIM further proposes database projection and transaction
merging methods, namely high database projection (HDP)
and high transaction merge (HTM). In order to process
all HUIs in the dynamic unit profit database, the extended
algorithm of EFIM, iMEFIM [84] is designed. It relies on
database projection and another novel compact database
format to efficiently discover the required itemsets. CHN [69]
also applies this method and references a sub-tree-based
pruning strategy, which reduces the pruning search space and
speeds up themining process.When studying a larger itemset,
projection and merging will reduce the size of the database.
EHNL [85] also applies the above methods, as well as

negative utility and length constraints to mine HUIs.
EHIN [78] uses dataset projection and merging techniques
to reduce memory requirements and speed up the execution
time of the mining process. Transaction consolidation is
performed two times before and after mapping the dataset.
These techniques reduce the search space.

Analyze the complexity of EFIM [50] and iMEFIM [84]
algorithms from the time perspective. The time complexity
of the EFIM [50] algorithm is O(lnw), where l, n and w
are the number of itemsets in the search space, the number
of transactions in the database, and the average transaction
time length. The iMEFIM [84] algorithm extends the EFIM
algorithm to handle dynamic profit databases and reduces the
cost of database scanning by using the P-set data structure.
In addition, it takes a lot of time to attach and access elements
inside the P-set. If the P-set is implemented using an array, it is
O(l) time. The value of l is the total number of transactions
contained in the P-set data structure, that is, l = |P − Set|.
In order to reduce the scanning time of the database more

efficiently, the researchers propose the SPHUI-Miner [70],
which is a new HUIs mining algorithm based on selective
database projection. The selective projection of the database
creates unique data instances and newmappings for data with
smaller dimensions, enabling faster HUIs mining.

In summary, the projection-based algorithms have the
advantages of avoiding rescanning the database and reduc-
ing scanning costs, such as the algorithms CTU-PROL [31],
EFIM [50], CHN [69], and EHNL [85]; in projection-based
pruning strategies, a more accurate sequence utility upper
limit of the subsequence can be obtained, and therefore,
the pruning effect and the execution efficiency are excellent,
such as the algorithm PHUS [60]. The disadvantage is that a
large number of redundant candidates are generated, such as
the algorithms CTU-PROL [31], PHUS [60], CHN [69] and
EHNL [85]. Specific algorithms are shown in Table 6.

D. LIST-BASED METHODS
In HUPM, in addition to the tree-based approach, researchers
have also explored another list-based approach. The mining
steps are as follows: 1) perform a scan on the database to
construct a utility list for each itemset; 2) scan the database
again, modify the transaction in the utility list; 3) delete the
itemset smaller than minutil, and reduce the search space.
A list-based approach clearly maintains information about
itemsets in a transaction, quickly calculates the utility of the
itemset, and shortens the search space time.

HUI-Miner [12] uses a novel structure called utility-list
to store utility information about the itemset and heuristic
information for pruning search space. HUI-Miner effectively
mines HUIs from the built-in utility list, avoiding expensive
generation and utility calculations for a large number of
candidate sets. According to Table 1 and Table 2, during
the second database scan, the algorithm constructs the utility
list for Table 7: itemset {AB} and Table 8: itemset {BC}.

Each element in the utility list of itemset X contains three
fields: tid, iutil, and rutil [12]. Tid represents the transaction
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TABLE 6. Projection-based HUPM algorithms.

TABLE 7. Utility list for itemset {AB}.

TABLE 8. Utility list for itemset {BC}.

T containing X ; iutil is the utility of X in T , i.e. iutil(X , T );
rutil is the remaining utility of X in T , i.e. rutil(X , T ).
Due to the introduction of utility-list, many algorithms use

this structure to mine HUIs, thereby improving the mining
performance. HUI-list-INS [15] inherits the HUI-Miner [12]
and builds a utility list structure for mining HUIs in an
incremental database for maintaining and updating discov-
ered HUIs and for transaction insertion. HUI-list-DEL [54]
is an algorithm for discovering HUIs by maintaining the
built-in utility list structure of records deleted in the dynamic
database. In this algorithm, new HUIs can be generated
directly without the candidate generation and a large number
of database scans.

With the continuous development of HUPM, the utility
list can no longer meet the needs of the algorithm. The
researchers have proposed a number of extension struc-
tures based on the utility list to further improve perfor-
mance. The partition utility list data structure introduced by
HUP-Miner [46] borrows the basic idea expressed by the tid-
list [40]. It is also an extension of the utility list. The partition
utility list of the item set Rxy is calculated by performing an
intersection of the tid-lists of the itemsets Rx and Ry. This
process is very similar to HUI-Miner [12]. The LA-Prune
(based on forward pruning concept) strategy used by this

algorithm provides a tighter utility ceiling for k-itemsets, so a
large number of undesired k-items (k ≥ 2) can be pruned,
limiting the search space of HUIs. CHUI-Miner [57] uses a
new structure of extended utility list (EU-List) to maintain the
utility information of the itemsets in the transaction, which
allows the original database not to be scanned and effec-
tively computes in-memory itemsets utility and utility unit
arrays. The algorithm uses a divide-and-conquer approach
to mine the complete set of CHUIs in the database with-
out generating candidates. CHUM [32] proposes a generic
utility list (gutility-list) that stores utility information and
heuristic information about search space pruning, which is
different from the utility list proposed in HUI-Miner [12]
because gutility-list can calculate closed itemsets quickly
and instantly. ULB-Miner [64] uses the designed utility list
buffer structure to efficiently store and retrieve utility lists
and reuse the memory during the mining process. A linear
time method is also used to construct a utility list segment in
the utility list buffer. LHUI-Miner [39] aims to discover local
high utility itemsets (LHUI), depending on the local utility
table (LU-list). Since the utility of itemsets changes over
time, it is desirable to find a point in time at which the utility
of the itemsets change significantly (increases or decreases).
Hence, this algorithm can find useful patterns, for example,
the product set {schoolbag, pen and notebook} makes high
profits during the back-to-school shopping season, and is not
HUIs during other time periods (such as summer or autumn).
Therefore, the extended PHUI [39]mines the peak high utility
itemsets. It includes a time period in which the lookup itemset
has a very high utility. In addition, since the collection of
PHUIs can be large and some items in the PHUI do not
contribute much to their peaks, NPHUI-Miner [39] is used
to mine a set of non-redundant peak efficient itemsets. The
complexity of the proposed algorithms are as follows. The
time and space complexity required by LHUI-Miner to pro-
cess each itemset is linear. The number of itemsets depends
on how the parameters are set. The steps performed by the
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PHUI-Miner algorithm are similar to the LHUI-Miner, so the
complexity is similar. The complexity of the post-processing
steps performed by NPHUI-Miner is O(n × 2n) in the worst
case (n: n individual terms). However, it can be seen from the
experiments that the execution time of NPHUI-Miner and the
execution time of PHUI-Miner are similar.

A major limitation of the utility list-based algorithm is
that creating and maintaining a utility list is time consuming
and can consume a lot of memory. The reason is that many
utility lists are built, and the intersection/join operation of the
utility list is costly. Therefore, researchers have developed a
number of novel and special list structures to improve the
mining performance. HAUI-Miner [72] algorithm based on
the average utility list (AU-list) structure, which is used to
store the information needed to discover the HAUI, thus
a very large database compresses into a compressed struc-
ture to speed up the mining process. MHAI [9] proposes
a new list structure, which is a high average utility set list
(HAI-List). This structure can capture the necessary infor-
mation compactly, which allows the algorithm to generate
HAUI from a given transaction database without generating
a candidate set. HUOPM [55] considers user preferences in
terms of frequency, utility, and occupancy. The algorithm uses
the utility occupation list (UO-list) and the frequency utility
table (FU-table) to store the information needed about the
database to mine the high utility occupied pattern (HUOP).
The proposed method can effectively discover a complete
set of HUIs without the candidate generation. For exam-
ple, considering travel route suggestions for tourists visiting,
eating, and spending time/money, HUOPM can successfully
utilize the frequency and utility contribution rate of a partic-
ular travel route. DMHUPS [56] utilizes the data structure
of the IUData-List, which stores information of a 1-itemset
and their position in the transaction to efficiently obtain the
initial database. In addition, the algorithm simultaneously
calculates the utility of multiple promising candidates and
the stricter upper limit of expansion, avoiding the generation
of redundant items, and finding multiple efficient patterns.
CRUSP [66] applies a removed-utilities list (RUL) and a
removed-utility-positions list (RUPL). This list specifies the
only items that need to be considered, as possible candidates
for concatenation of sequential patterns in question, or any
future sequential patterns that appear as descendants in the
search tree. MUHUI [74] is based on a probability-utility
list (PU-list) structure, which can directly mine PHUI in an
uncertain database(Such as wireless sensor networks, RFID,
GPS and WiFi systems) without generating candidates, and
through the effective pruning strategy to avoid building a
PU-list for many undesired itemsets, which greatly improves
performance. Although traditional HUIM algorithms con-
sider both profit and quantity of items, they usually assume
that the profit value of items in the database is positive.
However, in practical applications, the profit value of the
goods in the store may be negative. For example, when a
supermarket wants to attract customers’ attention to a par-
ticular product, a common sales strategy is to offer free or

unpackaged products along with other products. Therefore,
researchers have proposed HUIM algorithms for negative
utility. FHN [75] relies on a novel list structure, positive
and negative utility list (PNU), while considering positive
and negative unit profit. The structure is designed to main-
tain all the information about HUIs, allowing the algorithm
to directly mine HUIs without generating candidates and
without having to performmultiple time-consuming database
scans. HUPNU [52]minesHUIs for positive and negative unit
profits based on a probability-utility list with positive-and-
negative profits (PU±-list). Further effective pruning strate-
gies are proposed. When constructing the PU±-list, many
early items that do not have pre-sets can be trimmed to
reduce the search space. IMHUP [49] uses an index utility-list
(IU-list) to discover HUIs more efficiently through newly
proposed item join operations without any comparison.

In summary, the advantages of list-based algorithms are
that HUI-Miner [12] first introduced the concept of remain-
ing utility and the utility list of vertical data structures.
Subsequently, many algorithms use utility list structures,
such as HUI-list-INS [15] and HUI-list-DEL [54], which can
reduce memory consumption and avoid multiple database
scans. Expanded utility list structures and other list structures
can reduce memory consumption and connection operations
between utility lists, such as ULB-Miner [64], IMHUP [49],
HUP-Miner [46] and MUHUI [74]. Some novel algorithms
that consider both HUIs for a specific period of time can
be used to mine patterns that cannot be found by traditional
HUIM, thereby reducing runtime and memory consumption,
such as LHUI-Miner [39]; and expanding the occupancy
rate to evaluate the transaction database, to a certain extent,
providing a new research perspective for utility mining, such
as HUOPM [55]. Therefore, although most list-based meth-
ods can speed up mining and have a good performance on
sparse and dense databases, disadvantages are that the con-
nection between lists requires high costs, time-consuming
time, and excessive memory usage and so on. For example,
in HUI-Miner [12], the connection between the utility list
of the (k + 1)-itemset and the utility list of the k-itemset
is very time consuming, resulting in a long running time.
Based on the expanded structure of the utility list or other list
structure, there are problems such as complicated construc-
tion process. It is necessary to display the number of data set
partitions that occupy a large amount of memory; the process
of constructing the list is more complicated, and dynamically
adjusting parameters is challenging, such as HUP-Miner [46],
ULB-Miner [64] and LHUI-Miner [39]. The specific algo-
rithms are shown in Figure 2.

E. DATA FORMAT-BASED METHODS
In order to overcome the shortcomings of the above methods,
researchers have recently proposed horizontal and vertical
data structures and index structures to mine HUIs. On the one
hand, it can speed up the progress of the data mining, on the
other hand, it can improve the performance of mining.
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The horizontal data structure is the most basic data struc-
ture. It is used in many algorithms. UtilityLevel [58] uses a
horizontal candidate generation and the testing mechanism
to mine the HUSP. Therefore, it generates a large number
of candidate sequences and requires multiple database scans.
SPHUITP [63] mines short-term high utility patterns in a
horizontal manner. These patterns appear regularly, profitable
and also efficient for use during periods of constraints.

Like the Eclat [40] mining frequent itemsets, HUI-
Miner [12] proposes a table structure with a vertical data
structure. The algorithm first checks all 1-extension sets by
constructing a utility list, then, after identifying and out-
putting HUIs from the extended set, recursively processes
the promising set of extensions one by one and discards the
other sets of extensions. FHM [13] is an enhanced version of
the HUI-Miner [12] that uses the same vertical data struc-
ture to speed up the mining process. CHUM [32] uses a
database vertical representation to speed up the generation
of the itemsets closure and calculates the execution time of
its utility information without accessing the database, and
efficiently generates an order retention generator. MHUI [65]
is used to efficiently mine HUIs with multiple minutils. The
proposed algorithm utilizes a vertical database representation
to efficiently store itemsets information and introduces a
new concept of suffix minimum utility (SMU) to efficiently
mine HUIs.

ISR-MOEA [73] is a multi-objective evolutionary algo-
rithm based on index set representation for mining diverse
top-k HUIs. In the algorithm, it is recommended to use an
index set individual representation scheme to quickly encode
and decode the top-k pattern set. IHUI-Mine [47] uses the
subsume index [48] to enumerate the required HUIs and
trim the search space. HUI-MMU [77] is used to mine HUIs
with multiple minutils. The improved HUI-MMUTID [77] is
based on the TID indexing strategy, HUIMMUTID, to speed
up the mining process.

In summary, data format-based algorithms have the
advantages that algorithms based on horizontal or verti-
cal representation can greatly reduce the number of pat-
terns found, effectively identify HUIs in the database,
and avoid ‘‘rare item problems’’, such as SPHUTTP [63],
HUI-MMUTID [77]. An index-based novel algorithm can
achieve multi-objective evolution, and explore a variety of
top-k high utility patterns to further improve user satisfaction,
such as ISR-MOEA [73]. Disadvantages are that it is neces-
sary to scan the database multiple times to mine HUIs, and
the memory consumption is large, such as UtilityLevel [58],
SPHUTTP [63], CHUM [32], HUI-MMUTID [77]; the algo-
rithm of mining HUIs with multiple minimum utility thresh-
olds may be insensitive to the selection of the minutil, such
as MHUI [65]. Specific algorithms are shown in Table 9.

IV. HIGH UTILITY DERIVATIVE PATTERNS
With the increasing use of data mining, HUIM has become a
key issue in recent decades. Traditional HUIM can no longer
meet the needs of users. In order to return the representative
HUIs to the user, some derived HUIs representations are
proposed, such as high average utility pattern, high utility
sequential pattern, and high utility compact pattern and so on.

A. HIGH AVERAGE UTILITY PATTERNS
One of the main challenges of HUIM is that HUIM’s search
space is very large when the number of different items or the
size of the database is too large. Another challenge is that
the existing HUIM approaches ignore the fact that a longer
itemset leads to a higher utility. A large itemset may have an
unreasonable estimated profit, not its actual value. Therefore,
the concept of high average utility itemset mining (HAUIM)
is proposed. HAUIM introduces an average utility metric that
finds more useful patterns by considering both the utility and
length of the itemsets, so it is more appropriate in the real
world.

TABLE 9. Data format-based HUPM algorithms.
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HAUI-Miner [72] is based on an efficient average-utility
(AU) list structure that preserves only the information needed
in the mining process, thereby compressing very large
databases into compressed structures for more efficiently
discovering high average-utility itemsets (HAUIs). FUP [16]
is a two-phase average utility mining algorithm that can grad-
ually maintain HAUIs as the database grows. EHAUPM [80]
proposes two new and more rigorous upper bound models
as an alternative to the traditional auub model using HAUI.
The looser upper-bound model (lub) considers the maximum
utility remaining in the transaction to reduce the upper limit
of the utility of the itemset. The second rtub model ignores
irrelevant items in the transaction to further tighten the utility.
TUB-HAUPM [81] applied two new, more restrictive upper-
bounds, greatly reducing the search space for mining HAUI.
The maximum following utility upper-bound (mfuub) model
is first designed to take into account the arithmetic mean
of the current set of items and the following terms in the
search path. The second is the revised top-k average util-
ity upper-bound (krtmuub) model, which is an extension of
the rtub model. It gets a tighter limit than the rtub model.
IHAUPM [82] processes incremental databases with trans-
action insertions. An efficient HAUP tree structure is used to
maintain the information needed for future mining progress.
The itemset for each case can be properly maintained and
processed. Compared to existing state-of-the-art algorithms
that run in batch mode, design algorithms sometimes do not
need to rescan the original database to update the discovered
HAUI. dHAUIM [83] uses four tight average utility ceil-
ings based on vertical database representation, three effec-
tive pruning strategies, and a new generic framework for
comparing average utility bounds to efficiently mine HAUIs.
MEMU [51] uses a plurality of minimum high average utility
thresholds based on the average utility list to discover all
HAUIs. Each item can be associated with a user-defined min-
imum high average utility threshold, which is more realistic
than the original HAUIM task.

B. HIGH UTILITY SEQUENTIAL PATTERNS
Another major challenge for HUIM is the possibility of dis-
covering that a certain itemset has a higher utility and ignores
its continuity. In practical applications, each user’s histor-
ical transaction record is listed as a long-term transaction
sequence, and a time-regular purchase pattern can be found
from the time series data. Therefore, high utility sequential
pattern (HUSP) refers to identifying patterns in the database
that the sum of all their events exceeds the minimum utility.

UtilityLevel [58] uses the horizontal generation candidate
generation method, while UtilitySpan [58] uses the pattern
growth method. They are all used to mine HUSPs to extract
more realistic utility information from the sequence database.

Since the upper limit of the algorithms before sequence
utility is not compact enough, HuspExt [62] extracts HUSP
based on accumulated rest of match (CRoM) and pruning
techniques. CRUSP [66] uses RUL and RUPL, specifying
the only items that need to be considered, as a possible

candidate for the sequence pattern being considered, or any
future sequential pattern that appears as a descendant in the
search tree.

In HUSPM, some methods use a utility matrix to store a
sequence database in memory. However, the utility matrix
consumes a large amount of mainmemory. To solve this prob-
lem, the AHUS [45] and AHUS-P [45] introduce a pure array
structure that reduces memory consumption compared to the
utility matrix. AHUS-P uses shared memory to parallelize the
mining process and identify HUSP based on the advantages
of multi-core processor architecture.

With the continuous improvement of the methods,
the researchers proposed algorithms over the data streams.
MAHUSP [26] uses a memory adaptive mechanism to use
the bounded portion of the memory and proposes a MAS-
Tree tree structure to efficiently discover the HUSP on the
data streams. MAHUSP guarantees that all HUSPs are found
under certain circumstances.

C. HIGH UTILITY COMPACT PATTERNS
The high utility compact patterns have high utility closed
pattern and high utility maximum pattern. One limitation of
HUIM is that it may present a large amount of redundant
HUIs to the user, resulting in excessive memory consumption
or lack of storage space or not operate. In order to achieve
high efficiency of mining tasks and provide users with simple
mining results, high utility closed itemset mining (CHUI) is
used to mine compact and lossless HUIS, and high utility
maximum pattern is used to mine the largest HUIs.

CHUD [30], by using a new structure called an array
of utility units, allows efficient recovery of all HUIs and
their utility to mine CHUI. This is the first algorithm to
study the compact and lossless representation of HUIs.
CHUI-Miner [57] directly calculates the utility of itemsets
without generating candidates. This is the first job to solve the
problem of mining CHUIs without the candidate generation.
CHUM [32], which is scalable and efficient. This algorithm
uses a vertical representation of the database to speed up the
generation of the itemsets closure and calculate the execution
time of its utility information without accessing the database.
CHN [69] mines CHUI based on negative utility and the
depth-first search, and uses the transaction consolidation
and dataset projection techniques to reduce dataset scanning
costs. In addition, two-phase extension techniques are used
to examine closures and trim search space. CLS-Miner [68]
utilizes a utility list structure and integrates three proposed
pruning strategies and a fast pre-check method. This method
is useful for mining CHUI issues.

The complexity of the CHUD [30], CHUI-Miner [57]
and CLS-Miner [68] algorithms are briefly discussed here.
CHUD [30] uses depth-first search to find closed high utility
candidate sets. In the worst case, CHUD [30] dose not trim
any itemsets, and accessse all itemsets in the search space,
with the time complexity of approximately O(2|I |) (I : the
length of the list used in the algorithm). Similarly, the worst
time complexity of CHUI-Miner [26] is also about O(2|I |).
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Similarly, in the worst case, CLS-Miner’s [68] pruning strat-
egy does not trim any itemsets, so the time complexity is
also O(2|I |). Although the worst-case time complexity of the
three algorithms is roughly the same, CLS-Miner [68] has the
advantage of processing fewer itemsets in the search space,
and it combines a novel fast pre-check method to avoid the
disadvantages of two-phase algorithms.

Existing CHUImining algorithms assume that the database
is static, making them very expensive in the case of incremen-
tal data because the entire data set must be processed for each
new batch of transactions. IncCHUI [37] effectively mines
CHUI from an incremental database. The algorithm proposes
an incremental utility list structure that can be built and
updated using only one database scan. In addition, an efficient
hash-based approach is used to update or insert a new closed
set.

For data streams, the CHUI may still be too large,
so GUIDE [19] finds maximum HUIs from data streams with
different models (i.e., landmarks, sliding windows, and time
fading models). The algorithm is based on the maximum
utility itemset (MUI-Tree) to maintain the basic information
of the mining process. But restoring all HUIs from the max-
imum HUIs collection is very inefficient, as many subsets of
maximumHUIsmay be inefficient. In GUIDE [19], the effec-
tiveness of the algorithm is analyzed from two aspects,
namely the accuracy and pattern reduction ratio (abbreviated
as PRR). Assume that HUI is a high utility itemset,MaxHUI
is the maximum HUI, and Actual maximal HUI is the actual
maximum HUI.

V. METHODS FOR HIGH UTILITY PATTERNS OVER
DATASTREAMS
Most of the algorithms proposed in the previous paper
are applied to static data. With the rapid development of
technologies such as Internet of Things, cloud comput-
ing and big data, data streams are widely used in many
fields such as network, trade management, and medical data
analysis. Compared to static data, data stream has some
unique attributes, such as fast arrival rates, unknowns, unre-
stricted, and the inability to backtrack previous transactions.
Therefore, for different purposes of use, there are four com-
monly used models in data streams: incremental methods,
sliding window models, time decay models and landmark
models [3]–[5].

A. INCREMENTAL METHODS
In recent years, more and more data have been produced
in various application fields, and the characteristics and
quantity of data have been constantly changing with the
passage of time. Because static methods must start their
own mining operations from scratching every time they
enter new data, they suffer from fatal computational over-
head. Therefore, in order to better handle incremental data,
the researchers proposed utility mining methods based on
incremental data, which only process new input data without

additional database scans and reflect them into previous
processing without any errors.

FUP-HU [36] is an incremental and HUPM algorithm
based on Apriori, which is the result of applying the concept
of FUP (incremental frequent pattern mining method) to two-
phase. When a new transaction is inserted into the original
database, this algorithm divides the itemset into four parts
based on whether they are high transaction weighted utility
sets in the original database or in the new transaction. Each
part is then processed to maintain the set of efficient items
found in its own way. PRE-HUI [8] is a variant of FUP-HU
that uses two types of thresholds, the upper and lower thresh-
olds, and uses a new concept to predict changes in mode state
on incremental data, called pre-large concept. The PRE-HUI
algorithm guarantees better performance than the FUP-HU,
but it is not an accurate method because the mode loss may be
due to the way the lower threshold is set. HUIPRED [7] effec-
tively performs pattern extraction using a pre-large method.
In other words, the proposed method reduces the rescan of
the entire database by using two thresholds. Meanwhile, the
method efficiently processes the database by utilizing the
proposed data structure. Therefore, it is more effective than
the latest techniques.

Because Apriori-based algorithms generate a large number
of candidates, with long running time and large memory
consumption. Researchers have developed tree-based, list-
based incremental HUPM algorithms. IHUP [2] builds its
own tree structure in a single database scan and extracts can-
didates for high utility patterns. The algorithm then identifies
the actual high utility patterns of the candidate through an
additional database scan. Whenever new incremental data is
entered, the method processes them, updates the previously
constructed tree structure, and performs its own mining oper-
ations. IMHAUI [43] proposes a new tree structure of the
incremental high-average utility itemset tree (IHAUI-Tree)
to maintain the information of the incremental database so
that the HAUI can be mined without multiple database scans.
This algorithm uses a path adjustment method as one of
the reconstruction techniques to maintain the compactness
of IHAUI-Tree. LIHUP [41] constructs a global data struc-
ture through a single scan, reconstructs the data structure
according to the optimal sort order, and updates the utility
information in the reorganization step to effectively mine the
HUIs from the incremental databases. IIHUM [42] mines
the HUIs from incremental databases based on index lists
without any candidate generation, and designs reorganization
and pruning techniques to process incremental data more
efficiently.

B. METHODS BASED ON LANDMARK MODELS
In some applications, users may wish to process all data
equally from past points in time (landmarks) and discover
long-term patterns from the data streams. Landmark models
are used for this purpose.

MAHUSP [26] is based on the landmark window
mining HUIs. It is a new method based on the data streams

55810 VOLUME 8, 2020



C. Zhang et al.: Survey of Key Technologies for HUPM

incremental mining shell, which not only recognizes the
nearest shell, but also recognizes the shell for a long time.
The algorithm uses a novel and compact data structure,
MAS-Tree, for storing potential shells on the data streams.
At the same time, two effective memory self-use mechanisms
are used to solve the problem that the existing memory is not
enough to add a new potential shell to MAS-Tree. Therefore,
the algorithm MAHUSP can efficiently find the shell on the
data streams, with high recall and accuracy.

C. METHODS BASED ON SLIDING WINDOW MODELS
In the sliding window model, the data stream is divided into
batches. These batches consist of many transactions. The
pattern uses a window containing a limited number of batches
to maintain the latest batch in the data structure. The window
size is specified by the user. When entering new data, the
most previous data in the old batch will be excluded from the
window, and the new data will be entered into the window as
the latest batch. Next, solve the problem of mining HUPM in
the sliding window on the data stream. Let data stream DS =
(T1, T2,. . . , Tn) be a set of transactions, I = {i1, i2,. . . , im}
is a group of items, and pattern P is a group of items in I .
The length of P is expressed as k , 1 ≤ k ≤ m, and the set
of k-items indicates that the itemset is a pattern of length k .
Each transaction Ti (where 1 ≤ i ≤ n) in the data stream DS
represents the ith arriving transaction. In the sliding window
model, each window Wk consists of a fixed number of equal
size and non-overlapping batches.

Figure. 3 is an example of a data stream divided into three
batches {B1, B2, B3}, where each sliding window consists of
two batches. In this example, there are two sliding windows,
W1 = {B1, B2} and W2 = {B2, B3}. Here, W1 is the initial
sliding window. In addition, W2 is the result of sliding W1
when the first window is full and the new batch is reached by
removing the oldest batch and inserting a new batch. That is,
in the sliding window model, the algorithm uses only a fixed
number of recent batches in the current window.

Therefore, the mining algorithms based on this model
can always keep the latest information in the window.
THUIMine [6] is the first algorithm in the field to exploit
HUPM on data streams in resource-constrained environ-
ments, but it has many drawbacks in terms of runtime and
memory usage because it is a similar to Apriori’s algorithm.
The window in the GUIDESW [19] is a time sensitive window

FIGURE 3. Example of stream data.

that is used to fix the size of the transaction. The algorithm
mining this model not only has high utility values, but also
maximizes the conceptual data flow, further improving accu-
racy and runtime. SHUGrow [35] uses the tree structure SHU-
Tree, which has a node utility counter in the global tree. Each
utility value of the counter is associated with each batch in
the current window, i.e., if there are n batches in the current
window, the number of node utilities is n in the counter.

Based on the Top-k patterns, Vert-top-k-DS [21] proposes
a new data structure, iList, a batch of FIFOs that can quickly
insert and delete batches from the window. T-HUDS [22]
uses a compact data structure similar to FP-Tree, HUDS-Tree,
which is used to dynamically maintain a compressed version
of a transaction in a sliding window. Based on this structure,
the algorithm looks up the Top-k HUIs in the data streams
without specifying minutil.
Based on the sequential patterns, HUSP-Stream [23] uses

the vertical representation item utility list (ItemUtilLists)
and the outer utility tree to model the basic information of
the shell in the current window, incrementally representing
complete HUSP in the data streams. HUSP-UT [24] improves
the above algorithm and uses a new data structure UT-Tree.
This algorithm is superior to the most advanced shell flow
algorithm. HUPMS [25] is based on an efficient flow tree.
By capturing the important information of the data stream
into a shell tree, using the pattern growth method to mine
all the HUIs in the current window is very effective for
incremental and interactive mining on the data stream.

D. METHODS BASED ON TIME DECAY MODELS
The time decay model was designed to find the latest rele-
vant information from the data streams by distinguishing the
importance of recent transactions from old transactions. The
model uses a user-specified attenuation factor f to reduce the
importance of transactions over time. With this model,
if the frequency of the old transaction item set is high, it can
be considered in the recent mining process. Therefore, this
model is more reliable and efficient than the sliding window
model, because the information of the old transaction is not
completely excluded from the mining process. This method
can be applied to HUPM, and the utility of the transaction
is reduced according to the arrival time of the transaction to
mine the latest HUIs.

The frequent itemset mining method based on this model
reduces the occurrence count of the itemset in the old trans-
action, that is, the frequency, by multiplying them by the
attenuation factor. Let S = {T1, T2,. . . , Tn} be a data stream
composed of multiple transactions, and X is a set of items
generated from S. When the frequency Tk of X in each
transaction is expressed as freq(Tk , X ), based on the time
decay model, the attenuation frequency of X in S is expressed
as dfreq(X ) and is calculated as follows:

dfrep(X ) =
n∑

k=1

frep(Tk ,X )×f n−k (5)
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GENHUI [27], based on the time decay model, reduces
the utility of the transaction based on the arrival time of
the transaction in order to assign more weight to the most
recent data than the old data. At the same time, its tree data
structure is updated regularly to reflect the most recent utility
information into the tree structure. Whenever an update pro-
cess is performed, the algorithm prunes outdated nodes from
the tree so that only information that has a high impact on
the mining results is retained. HAUPM [28] mines the most
recent HUIs by considering the time factor of a given data
to discover important, recent pattern information. In order to
facilitate the efficient mining process, the algorithm designs
and uses a new data structure, damped average tree (DAT)
and transaction utility list (TUL) to mine HAUP.

VI. NEXT DIRECTION
Although the solution to the high utility patterns mining
problems has been developed, the existing methods still
have shortcomings, which provides researchers with the next
research direction:

1) The high utility patterns store a large amount of valid
information, but there are still many redundant patterns. The
research and analysis of the compact high utility patterns for
reducing the redundancy patterns, the author of the project
team will next study the one-phase algorithm of the Top-k
closed high utility patterns. The algorithm uses the improved
uList structure, the real and remaining utility of the pattern
are used to pruning the traversal space, and the content of the
Top-k buffer area stored in the result sets are updated in real
time, and the closed high utility patterns are generated.

2) High utility patterns consume a lot of memory and time
due to the large number of candidate sets generated. In order
to reduce these two aspects of analysis, the author’s project
team will next study the incremental algorithm based on the
improved utility list. The algorithm applies the utility list
buffer structure in the ULB-Miner [46] algorithm to greatly
reduce the memory occupied by the generated candidate
sets. This algorithm mines the itemsets from an incremental
perspective, which is more suitable for practical applications.

3) Scalability is an important research issue in HUPM.
Scalability is the processing of more data in a certain dimen-
sion. The following measures can be taken to address the
scalability issues in HUPM: (1) collocation: by collocated
data and code, reducing the necessary overhead for obtaining
the required data; (2) caching: if the data and code cannot
be concatenated, the data is cached to reduce the overhead
associated with its use; (3) by dividing the processing code,
concatenating the relevant partitions, and associating the rele-
vant processing processes as much as possible, the processing
time of a single work unit can be reduced.

4) HUPM is mainly applied to a single data stream at this
stage, without multiple data streams. Multiple data streams
can be processed simultaneously in a parallel manner. First,
the program needs to be parallelized, that is, the work parts
are allocated to different processing processes (threads).
In theory, the execution speed of n parallel processing may
be n times faster than that performed on a single processor.

5) With the widespread use of big data, cloud computing
and other technologies in real life, in HUPM, static data
mining can no longer meet people’s needs. In HUPM in a big
data environment, you can use the Spark tool to store data
and implement a single-to-distribute transformation; you can
use the Storm tool to process large data streams in real time;
you can also use the Scrapy framework in Python to crawl
website data, extracting structured data, and this is a very
good web framework for grabbing data from the Internet.
These tools and frameworks can be used to solve problems
such as computation, storage resources, fault tolerance, and
optimization of load balancing in HUPM.

VII. SUMMARY
High utility patterns mining (HUPM) is a vital task in utility
mining. So far, many techniques and methods have been
proposed for HUIM’s tasks. This paper introduces the basic
concepts, examples and related concepts of HUPM, and
expounds the key technologies of HUPM, from Apriori-
based, tree-based, projection-based, data format-based, and
list-based methods. The workflow, use, datasets, advantages
and disadvantages of the algorithms are analyzed. It outlines
the advantages and disadvantages of efficient use of deriva-
tive models compared to traditional high utility models. With
the advent of the era of big data, static data can no longer
meet the actual needs. Therefore, it is imperative to study the
methods of HUPM on data streams. In this paper, incremental
methods, based on the sliding window model methods, based
on the time decay mode methods, based on the landmark
models and other methods, the HUIs are extracted from the
data streams. Finally, the next research direction is proposed.
Most of the algorithms mentioned in this paper are still
applied to static data, so the application of data flow is the
focus of future work.
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