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ABSTRACT Optical flows and video frame interpolation are considered as a chicken-egg problem such
that one problem affects the other and vice versa. This paper presents a stack of deep networks to estimate
intermediate optical flows from the very first intermediate synthesized frame and later generate the very
end interpolated frame by combining the very first one and two learned intermediate optical flows based
warped frames. The primary benefit is that it glues two problems into a single comprehensive framework
that learns altogether by using both an analysis-by-synthesis technique for optical flow estimation and
Convolutional Neural Networks (CNN) kernels-based frame synthesis. The proposed network is the first
attempt to merge two previous branches of previous approaches, optical flow-based synthesis and CNN
kernels-based synthesis into a comprehensive network. Experiments are carried out with various challenging
datasets, all showing that the proposed network outperforms the state-of-the-art methods with significant
margins for video frame interpolation and the estimated optical flows are more accurate for challenging
movements. Furthermore, the proposed Motion Estimation Motion Compensation (MEMC) network shows
its outstanding enhancement of the quality of compressed videos.

INDEX TERMS Frame rate up conversion, video frame interpolation, optical flow, HEVC, MEMC, CNN,
convolutional neural networks.

I. INTRODUCTION
Video frame interpolation is widely used in various applica-
tions from computer vision to visual display applications such
as frame rate up conversion (FRUC), slowmotion display and
animation. In order to increase the video frame rate, inter-
mediate frames are generated from two consecutive original
frames. Typically, a video frame interpolation algorithm is
composed of two distinct steps such that the first step is
a motion estimation (ME) [37]–[40] or optical flow (OF)
estimation that derives the motion trajectories between two
consecutive frames. The second step is motion compensated
frame interpolation (MCFI) that synthesizes the intermediate
frames by using estimated motion trajectories. The image
quality of an interpolated frame depends on the accuracy
of the motion trajectories and the performance of the MCFI
algorithm. A Block Matching Algorithm (BMA) is widely
used for FRUC in Liquid Crystal Displays (LCDs) [33]–[36].
In [34] a hybrid adaptive non-selective block-based MEMC
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approach is proposed for general cases in MCFI meanwhile a
specific semi-global ME method for repetition-like patterns
[35] and a hierarchical ME algorithm for small objects [36]
are applied independently for challenging cases in MCFI.
However, the motion vectors estimated by a BMA are not
always the true trajectories of objects because the objective
function of BMA is to minimize matching error but does not
cover the motion constraints of objects. Consequently, these
block-based methods inevitably generate ghost, blocking and
blurry artifacts, owing to the errors in estimated motion
vectors.

Recently, the break-through of Convolutional Neural Net-
works (CNN) in computer vision [9]–[12], [14], [15] allows
a formulation of video frame interpolation as an end-to-end
learning process without optical flow estimation. In those
methods, however, the objective function or loss function
focuses on only pixel differences. Consequently, it usually
fails in the synthesis at areas with fast and/or complex
movements which require a critical role of motion estima-
tion for high-quality frame interpolation. Phase-based frame
interpolations in [20] and [21] are another approaches to
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generate the intermediate frames without estimating optical
flow. However, similar to the above CNN based methods,
the phase-based approaches also fail in correct estimation of
fast movement.

This paper presents a comprehensive framework that glues
two of the above previous approaches into a single stacked
network such that an analysis-by-synthesis technique is used
to estimate bidirectional intermediate optical flows and later
a synthesis network glues intermediate results generated by
component branches (an optical flow-based branch and a
CNN kernel-based synthesis branch) to synthesize the very
end intermediate frame. The primary contributions of the
proposed method are summarized as follows.

Firstly, the proposed network is a combination of two
branches of approaches: optical flow-based frame interpo-
lation and CNN kernels-based frame synthesis. Secondly,
the paper introduces a method to derive directly Intermediate
optical flows that are the flows from the intermediate frame
to two original frames. This module contributes to learning
processes for both frame synthesis networks. It glues motion-
ness represented by a reconstruction loss into the pixel match-
ing loss for the first CNN kernels-based synthesis network
and it drives the second synthesis network with estimated
optical flows. Thirdly, the proposed network is a back-to-
back stack of two network layers such that the first network
layer generates three input components for the second net-
work layer that is an extended version of SepConv network
[15]. Lastly, the proposed method outperforms the previous
algorithms for various datasets. Figure 1 shows two examples
where the visual quality of the interpolated frames generated
by the proposed method is better than that of others obtained
by the previous methods, especially in regions with fast,
complex movements such as balls. In addition, the proposed
network is also applicable to quality enhancement of com-
pressed videos. The proposed method is competitive with
the state-of-art network trained specifically for video quality
enhancement.

The rest of the paper is organized as follows. Section II
reviews previous related works. The proposed network is
presented in Section IV. Section V concludes this paper.

II. PREVIOUS WORKS
A. VIDEO FRAME INTERPOLATION
Extensive research efforts have been made to handle the
challenges in video frame interpolation. A typical approach
in video frame interpolation estimates dense motion vector
fields, or optical flows, between two original input frames and
then interpolates intermediate frames guided by the estimated
motions [7], [8], [13], [19], [22]. To synthesize an output
image from the input frames, the estimated flows based warp-
ing operations using bilinear interpolation are done first, and
later the warped frames are blended together. Consequently,
the flow-based methods generate ghost or blurry artifacts
when the warped frames are not aligned well, owing to the
errors of the estimated optical flows. In order to replace

simple blending operations, Nikaus and Liu [16] propose
to use a context-based synthesis network to generate the
intermediate frames from the pre-warped frames. It is shown
that the frame synthesis network outperforms simple blending
algorithms.

Recently, inspired by the success of applying deep learning
to optical flow estimation [6], [27], [29], [30], [32], CNNs are
used for video frame interpolation [42]–[45] with the objec-
tive function minimizing the pixel difference between the
synthesized one and its corresponding ground-truth. CNN-
based methods remove optical flow step and handle video
frame interpolation as a convolution process [12]–[15], [17],
[24]. In other words, the network can be trained to synthe-
size images without explicit motion estimation step. Con-
sequently, it usually fails at regions with fast and complex
moving objects where knowing motion information is crucial
for synthesis task. Starting from the work by Long et al.
in [12] which employs an auto-encoder) network, a number
of recently-proposed deep networks successfully improves
the quality of frame interpolation. The auto-encoder archi-
tecture or U-net architecture used in [15] and [17] extract
features that are given to the sub-nets for the synthesis of
the intermediate frame. SepConv network in [15] successfully
handles blurry artifacts thanks to estimate independently four
1D kernels which are then convolved with the input frames
to generate interpolated frames. However, SepConv network
does not consider the motion constraints among neighboring
kernels because the kernels for each pixel are trained inde-
pendently from those of neighboring pixels. A deep neural
network is also used to directly estimate the phase decomposi-
tion of the intermediate frame in [21] based on the application
of the phase-based frame interpolation which is originally
proposed by Meyer et al. in [20] to generate intermediate
frames by modifying a per-pixel phase.

B. A STACK OF NETWORKS
A stack of component networks is proved to improve the
performance of the whole network in various tasks including
pose estimation [5], object detection [1], document image
unwarping [2], optical flow [29] and so on. In [5], stacked
hourglass networks are proposed for human pose estima-
tion and they outperform long single hourglass networks as
claimed by authors. In [1], the stack of two hourglass net-
works roles as the backbone network of CornerNet in order to
generate features for two predictionmodules. In [2], a stacked
U-Net with intermediate supervision is used to directly pre-
dict the forward mapping between the warped images and
the refined version. For optical flow, Flownet 2.0 [29] also
employs a stack of several sub-networks and achieves an sig-
nificant improvement from the previous version. This paper
adopts the idea of a stack of sub-networks into video frame
interpolation. The proposed stacked network is not only a
simple stack of sub-components but it also narrows down
the distance between the input frames before feeding to the
second sub-network in the stack. In addition, the component
sub-networks are not exactly same but they still achieve the
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FIGURE 1. Visual comparisons of the interpolated frames by previous optical flow based methods, CNN-based interpolation, and the proposed method.
The proposed approach achieves the better quality in fast and complex motion of a small object.

same effect of stacked networks because they are very similar
in the form of auto-encoder architecture.

C. CNN KERNEL-BASED SYNTHESIS
SepConv network architecture is shown in Figure 2. The key
idea of SepConv and its predecessor, Adaptive [14] is to con-
sider an interpolation process as a convolutional operation.
The input frames are convoluted with learned kernels that
are final layers in the synthesis network, denoted as, Ker1v,
Ker1h, Ker2v, Ker2h in Figure 2 to generate the intermediate
frame as shown in equation (1).

I1.5 (x, y) = Kerv1 (x, y) ∗ Ker
h
1 (x, y) ∗ P1 (x, y)

+Kerv2 (x, y) ∗ Ker
h
2 (x, y) ∗ P2 (x, y) (1)

where I1.5 (x, y) is the intermediate frame to be synthesized,
P1 (x, y), P2 (x, y) respectively are the patches centered at
(x, y) position in first frame, and second frame. Kerv1 (x, y),
Kerh1 (x, y), Ker

v
2 (x, y), and Ker

h
2 (x, y) are the learned pixel-

dependent 1D kernels as shown in Figure 2. The advantage
of SepConv in comparison with a conventional auto-encoder
with direct synthesis [12] as claimed by authors is SepConv
alleviates blurry artifacts efficiently and interpolated frames
generated by SepConv is sharper than those obtained the
symmetric auto-encoder. This paper adopts SepConv as a
baseline for the proposed method.

III. THE PROPOSED NETWORK FOR VIDEO FRAME
INTERPOLATION
A. A STACK OF SYNTHESIS NETWORKS
Analysis-by-synthesis technique for optical flow estimation
and CNN kernels-based frame synthesis are the key com-
ponents of the proposed network that stacks two synthesis
networks together, a back-to-back stack to help each other in
learning operations. Consequently, it covers both the spatial
property of CNN kernels-based synthesis and the temporal
property of optical flow-based synthesis. In addition, it also
narrows down the displacement between input frames and the
final intermediate frame for accurate synthesis.

The proposed network shown in Figure 3, is a back-to-
back stack of two synthesis networks. In the front layer,
from two original input frames, denoted as I1 for the first
frame and I2 for the second frame, the first synthesis network

generates the very first intermediate frame, denoted as I31.5.
In addition, as a by-product of the first synthesis network, four
1D kernels, two corresponding to the vertical and horizontal
kernels convolutedwith the first input frame, denoted as Kerv1,
Kerh1, the other two kernels for convolution with the sec-
ond input frame, denoted as Kerv2 for vertical direction and
Kerh2 for horizontal direction, encode implicitly the motion
information and they are used to derive intermediate optical
flows byMotion Derivation module. Then, two original input
frames are warped to the intermediate time scale using the
estimated intermediate optical flows. Finally, three interme-
diate interpolated frames, the first warped frame, denoted as
I11.5, the second warped frame, denoted as I21.5 and the very
first intermediate frame, I31.5 are stacked together to feed into
the second synthesis network that is a variant of the first
one. In term of architecture, the first synthesis network is
the same as Sepconv network in [15] in which two inputs
are the original frames and outputs are four 1D kernels for
convolution with the original frames to generate the very
first intermediate frame. The second synthesis network is an
extended version of the first synthesis network with the inputs
are three intermediate interpolated frames therefore, six 1D
kernels are trained to generate the output pixel of the final
intermediate frame as the following equation.

I1.5 (x, y) = K v
1 (x, y) ∗ K

h
1 (x, y) ∗ P

1
1.5 (x, y)

+K v
2 (x, y) ∗ K

h
2 (x, y) ∗ P

2
1.5 (x, y)

+K v
3 (x, y) ∗ K

h
3 (x, y) ∗ P

3
1.5 (x, y) (2)

where P11.5 ( x, y), P21.5 ( x, y), and P31.5 ( x, y) respectively
are the patches centered at ( x, y) position in intermediate
interpolated frames I11.5, I

2
1.5 and I31.5. K

v
1 ( x, y), K h

1 ( x, y),
K v
2 (x, y), K h

2 ( x, y), K v
3 (x, y), and K

h
3 ( x, y) are the learned

pixel-dependent 1D kernels of the second synthesis network.
The second synthesis network learns from the closest

frames to synthesize the final intermediate frame, and it
also embraces both optical flow-based results and a CNN
kernels-based synthesized frame. Consequently, it can cover
challenging motion scenarios, such as fast and complex
movements. In addition, the stack of networks is used to
narrow down the distance between input frames to estimate
condensed interpolation kernels.
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FIGURE 2. Architecture of SepConv [15]. Key idea of SepConv is to estimate four 1D pixel-dependent kernels (denoted as Kerv1,
Kerh1 , Kerv2, and Kerh2) at final layer that are then convoluted with the input frames to produce the output pixel in a dense
pixel-wise manner. The building block of the Convolution layer contains three consecutive convolutional operations followed by
a ReLU operation.

FIGURE 3. Architecture of the proposed network. The proposed
architecture is a stack of two Sepconv [15] based synthesis networks. In
between two synthesis networks are intermediate optical flow estimation
module and warp operations in order to glue two networks into a
comprehensive frameworks for both tasks, video frame interpolation and
optical flow estimation. Consequently, they help each other during
training.

As shown in Figure 4, among three intermediate interpo-
lated frames, in term of time scale, the output of the first syn-
thesis network, denoted as I31.5 is the nearest to the real output
target frame, denoted as I1.5. On the other hand, the frame,
denoted as I11.5 that is the warped frame from the first original
frame (I1), is a slight offset in the forward direction to the
real output target frame, and the frame, denoted as I21.5 that
is the warped frame from the second original frame, (I2), is a
slight offset in the backward direction to the real output target
frame.

B. ANALYSIS BASED SYNTHESIS INTERMEDIATE OPTICAL
FLOW ESTIMATIONS
In the first layer of the stack, the motion derivation module
is the glue between two branches of approaches, the optical
flow-based frame interpolation and the CNN kernels-based

FIGURE 4. The time order and structure of the second synthesis network.
The first input frame, denoted as I1 and the second input frame, denoted
as I2 are warped into intermediate timescale, the warped frames,
denoted as I11.5 and I21.5 together with the output of network 1, denoted
as I31.5 are fed to the synthesis network 2 with an auto-encoder-based
architecture. In term of time order, among in- between frames, I31.5 is
closest to the real output target frame, denoted as I1.5, I11.5 is slightly
front offset to I1.5, I21.5 is slightly back offset to I1.5. In other words,
the triple of intermediate results (I11.5, I31.5, I21.5) is a narrowed down
version of the triple of (I1, I1.5, I2) with the same time order.

frame synthesis. This solves a chicken-egg problem by train-
ing both blended tasks such that the intermediate optical
flows, as denoted in Figure 5, are estimated by the analysis-
by-synthesis technique through convolution kernels of the
first synthesis network. Meanwhile the estimated optical
flows role as motion-ness in the loss function of the first syn-
thesis network makes the network learn only pixel matching
also motion constraints and scenarios. In addition, estimating
the optical flows from the synthesized intermediate frame is
a target-based estimation that can fix estimation errors from
the previous methods [18], [27] when the intermediate frame
is unavailable to verify the accuracy of analysis. In other
direction, the estimated intermediate flows are derived from
1D kernels of the first synthesis network. Consequently,
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FIGURE 5. Bi-directional intermediate optical flows. Flows from the
intermediate frames to two original frames called as intermediate flows.

it glues the motion constraints into the first network. There-
fore, the first network learns not only pixel matching but also
motion information.

The coefficients of 1D kernels implicate motion informa-
tion and they are exploited to derive the flow information.
The motions are encoded as the offsets of the non-zero ker-
nel values to the kernel center. The motion vector is the
weighted sum of the offsets. Therefore, the values of the
coefficients and the offsets are used in order to compute the
motions. There are four 1D kernels, two corresponding to
the displacement of First frame, I1, to the interpolated frame,
and the others corresponding to the displacement of Second
frame, I2, to the interpolated frame. The optical flows for
both the forward and backward directions with a point of
view from the intermediate frame are computed directly. The
formulations of the motion derivation module are represented
by the set of equations (3), (4), (5) and (6).

u1.5→1 =

∑N
i=1 weight

h1
i ∗ offset

h1
i∑N

i=1 weight
h1
i

(3)

v1.5→1 =

∑N
i=1 weight

v1
i ∗ offset

v1
i∑N

i=1 weight
v1
i

(4)

u1.5→2 =

∑N
i=1 weight

h2
i ∗ offset

h2
i∑N

i=1 weight
h2
i

(5)

v1.5→2 =

∑N
i=1 weight

v
i ∗ offset

v2
i∑N

i=1 weight
v2
i

(6)

where u1.5→1 and v1.5→1 are the horizontal and vertical
components of the flow from the intermediate frame to First
frame, u1.5→2 and v1.5→2 are the horizontal and vertical
components of the flow from the intermediate frame to Sec-
ond frame. Offsetih1, offsetiv1, offsetih2, offsetiv2 are the
displacements of the coefficients to the center position in the
corresponding 1D kernels. N is a kernel size and the offset
value stands for the motion and the weighted average of offset
values is the estimated motion vector.

In order to illustrate for equation (4) (similar for others),
let see a toy example in Figure 6. In this example, in order
to synthesize a pixel in the intermediate frame, denoted as
a tiny circle, an image patch with size of 5 × 5 in the first
frame is convoluted with a learned 2D kernel size with size
of 5 × 5 that is decomposed into two 1D kernels with size
of 5 × 1 for vertical kernel and 1 × 5 for horizontal kernel,

FIGURE 6. A toy example of the derivation of intermediate optical flows.

which means the motion vector is limited from −2 to 2 in
both directions. The elements of an offset vector are calcu-
lated as the displacements between the position of the weight
coefficients and the center position of the vector, as shown
in Figure 6. Finally, the motion vector (in this toy example,
only vertical direction) is computed as the weighted sum of
offset elements where the weights are learned during training
process.

C. WARPING OPERATIONS
Guided by the estimated intermediate optical flows, the pro-
posed method warps the input frames into the intermedi-
ate timescale. Backward warping operations, which can be
implemented using bilinear interpolation are differentiable.
Specifically, the proposed method employs backward warp-
ing that uses the estimated backward intermediate optical
flow, as denoted as flow1.5→1 in Figure 5, to warp the first
input frame, denoted as I1 to the target locations in the inter-
mediate frame and obtains a warped frame, denoted as I11.5.
Likewise, the proposedmethodwarps the second input frame,
denoted as I2 and generates the other warped frame, denoted
as I21.5 by using the estimated forward intermediate optical
flow, denoted as flow1.5→2 in Figure 5. Two warped frames
are very close to the true interpolated frame. Therefore, they
are very suitable for the inputs of the second synthesis net-
work that works as a frame refinement to generate the final
intermediate frame. This step narrows down the distances
between two consecutive input frames and the intermediate
one. In addition, it is easier for the network to learn kernels
when two inputs are closer.

D. LOSS FUNCTIONS AND TRAINING
The proposed network is a stack of component subnets,
as suggested by [5], [29], in order to avoid over-fitting,
the proposed network should be trained end-to-endwith a loss
function that contains a Final loss, denoted as ||I1.5− Igt||1 in
equation (7) and an Intermediate loss, denoted as ||I31.5−Igt||1
in equation (8), where Igt is the ground truth intermediate
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TABLE 1. Objective comparisons on middebury benchmark.

frame. The loss function represented in equation (9) is a sum
of the final loss and the intermediate loss, it is called as
Pixel matching loss. However, as its name, this function only
contains the pixel matching losses for synthesis networks,
there is no component to represent for the optical flow loss.
To glue the optical flow loss into the total loss function,
we propose to add a Reconstruction loss that represents for
optical flow components in the proposed comprehensive net-
work into the total loss. This reconstruction loss is computed
as equation (10)

Final loss = ||I1.5 − Igt||1 (7)

Intermediate loss = ||I31.5 − Igt||1 (8)

Pixel matching loss = ||I1.5 − Igt||1 + ||I31.5 − Igt||1 (9)

Reconstruction loss = ||Iw1.5 − Igt||1 (10)

where Iw1.5 = (I11.5 + I21.5)/ 2.0 represents for both the warped
intermediate frames, I11.5 and I

2
1.5 obtained by warping opera-

tions. Consequently, the total loss of the proposed network is
trained as equation (11)

Total loss = pixel matching loss+ Reconstruction loss

= ||I1.5 − Igt||1 + ||I31.5 − Igt||1 + ||Iw1.5 − Igt||1
(11)

Following [15], [25] the proposed neural network param-
eters are initialized by a convolution aware initialization
[31] and trained by using AdaMax [26] with β1 = 0.9,
β2 = 0.999, a learning rate of 0.001 and a mini-batch
size of 12 samples. Because the motion derivation module
derives the intermediate optical flows from four 1D learned
kernels from the first synthesis network, if the kernels are
estimated wrongly, it results in the wrong motion vectors.
Consequently, the learning process takes more time to con-
verge. Therefore, in order to speed up the training process,
in the very first epochs of the training, the total loss function
is assigned equally to the loss function of the first synthesis
network. In other words, the total loss function in the very first
epochs is equal to Intermediate loss, ||I31.5 − Igt||1. After five
epochs, the whole proposed network is trained with the total
loss described by equation (11). The training dataset provided
by [23] is used to train the proposed network because this
dataset contains high-quality frames extracted from high-
resolution videos downloaded from vimeo.com. The resolu-
tion of training videos is 448 × 256. For data augmentation
during the training process, the trainer randomly swaps the
temporal order between input frames, First frame becomes

TABLE 2. Objective comparisons on Vimeo90K dataset among
CNN-based methods.

TABLE 3. Objective comparison on UCF101 dataset.

Second frame and vice versa. This makes dataset larger and
eliminates potential priors. Pytorch library is used to train the
proposed network with two NVIDIA GTX 1080 GPUs. For
inference stage, in a single graphic card, it takes 0.86 sec-
onds to generate an interpolated frame with the resolution of
1280 × 720 and 0.55 seconds to interpolate an intermediate
frame with the resolution of 640× 480.

IV. EXPERIMENTAL RESULTS
A. FRAME INTERPOLATION EVALUATIONS
To evaluate the proposed network, quantitative and quali-
tative comparisons with several representative state-of-the-
art video frame interpolation and optical flow methods are
made. Firstly, evaluations are carried out with the interpo-
lation category of Middlebury optical flow benchmark that
is typically used for assessing frame interpolation methods
[13]. The proposed approach is compared with the methods
that rank high with this interpolation benchmark. The first
one is MDP-Flow2 [19], an accurate optical flow method, as
it still remains the highest rank among all classic optical flow
methods with the Middlebury benchmark. In addition, PWC
method [27] that is a state-of-the-art CNN-based optical flow
algorithm that performs the top among CNN-based methods
ranked with well-known Sintel optical flow benchmark [3].
To synthesize interpolated frames from the computed optical
flows, the same algorithm in [13] is used. For a CNN-based
frame synthesis algorithm without optical flow estimation,
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FIGURE 7. Visual comparisons on Backyard sequence on Middlebury benchmark.

TABLE 4. Objective comparison on HCD dataset.

recent SepConv [15] method is chosen owing to its high
performance among CNN-based algorithms. The optical flow
that is a by-product of the proposed network is also compared
to state-of-the-art methods.

Table 1 shows the average interpolation error (AIE) used
in [13] where the interpolation error is the root-mean-square
(RMS) difference between the ground-truth image and the
estimated interpolated image. The proposed network outper-
forms state-of-art methods and improves the best previous
method by a significant margin (9.5%) in term of average
AIE among eight test images. Especially with Backyard,
Basketball, Dumptruck and Evergreen datasets which show
real-world scenes, captured with a real camera and containing
real sources of noise, the proposed network achieves the
best result consistently by notable margins. The proposed
interpolation method, denoted as FRUCnet, is ranked the
3rd in Interpolation Error among over 150 algorithms in
the benchmark website at the submission time. For visual
evaluation, Figure 7 shows the proposed interpolated frame
that generates a clear image alleviating ghost and distorted
artifacts whereas the previous algorithms still have those
artifacts in the interpolated frames.

The next well-known dataset for evaluating video frame
interpolation algorithms is Vimeo90K dataset provided by
[23]. It contains 3,782 triplets of frames with the image
resolution of 448× 256 pixels. As shown in Table 2, the pro-
posed method outperforms previous CNN-based networks,

FIGURE 8. Visual comparison between SepConv and the first network.

FIGURE 9. Architecture of our MEMC network.

SepConv, ToFlow and its variant, ToFlow with a mask by
significant margins in terms of both peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) [4].

UCF101 dataset [28] consists of videos with the size of
256 × 256. This dataset is initially used to evaluate activity
recognition and later it is used to evaluate the frame interpo-
lation originated from [17]. UCF101 dataset includes videos
with small motion. Therefore, even with a simple interpola-
tion algorithm such as frame average, the video quality of an
interpolated frame is sufficiently high as shown in Table 3.
In this dataset, the proposed network also outperforms other
previous methods. Visual comparison on UCF101 results are
shown in Figure 12.

The last one is a new dataset proposed in this paper to
cover the difficult cases for frame interpolation. These cases
include the movement of text objects, occlusion, reveal, and
complexmovements of small and fast-moving objects.Move-
ment of text objects as a subtitle and logos is difficult for
interpolation because the movement often takes place in a
background while its motion is in a different direction from
the background. Object occlusion and reveal are difficult in
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FIGURE 10. An example of frame by frame comparison.

TABLE 5. Effect of the reconstruction loss.

a classical computer vision problem such as optical flow
and they are also difficult in frame interpolation. A small
object is difficult to estimate its motion and so is fast and
complex movement. This new dataset is used to measure
the performance of frame interpolation algorithms that focus
on enhancement of visual quality. For explanation, this new
data set is called Hard Cases for Display (HCD) which
consists of four video sequences, each contains 60 frames
with the resolution of 864 × 480, except the Basketball
sequence that contains 90 frames with the resolution of
416 × 240. The dataset covers hard and challenging cases
for frame interpolations such as scenes with sub-title, occlu-
sion and reveals, fast complex motions, and the movement
of small objects. Table 4 shows quantitative comparisons
between the proposed methods with representative state-of-
the-art methods on HCD dataset. In both PSNR and SSIM,
the proposed method outperforms state-of-art methods with
notable margins. Figure 13 shows the interpolated frames for
visual quality comparisons. In a fast and complex motion
sequence, as shown in the top row of Figure 13, the move-
ment of the leg of the soccer player and that of the hand of
the goalkeeper is fast and complex. The proposed method
improves significantly visual quality in comparison with the
previous methods. The middle rows show the interpolated
frames for the subtitle sequence where the text objects in
the subtitle region include artifacts. The previous methods
based on optical flow estimations, and CNN kernel based
SepConv, suffer from these artifacts whereas the proposed

TABLE 6. Comparison between SepConv and the first synthesis network.

FIGURE 11. Visual comparison between reconstructed frames.

method successfully removes them. For small objects such
as balls in the basketball sequence shown in the bottom row,
the proposed network alleviates ghost artifacts significantly
when compared with the previous methods.

B. PERFORMANCE ANALYSIS
1) OFTICAL FLOW EVALUATION
Figure 14 shows comparisons between the estimated optical
flow by the proposed method and the results obtained by
state-of-the-art optical flow methods including MDP-Flow2
[19] (the top-ranked in the Middlebury benchmark) and
recent CNN based flow networks, SPyNet [30] and PWC-Net
[27]. The top row shows the estimated optical flow results,
and the bottom row is the corresponding interpolated frame
generated by the above flows by using the same frame inter-
polation algorithm [13]. The proposed analysis-by-synthesis
based motion derivation module estimates the movement of
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FIGURE 12. Visual comparison of interpolated frames on the UCF101 dataset.

FIGURE 13. Visual comparison of interpolated frames on the HCD dataset.

the rotating and moving balls accurately. The results prove
that the proposed method preserves the motion of small
objects such as balls meanwhile others fail to estimate the
movement of the ball. Consequently, either two balls or a
distorted ball artifact appears in the interpolated frames gen-
erated by the previous methods.

2) CONTRIBUTION OF THE LOSS TERMS
Table 5 shows the contribution of each loss term, the recon-
struction loss and the intermediate loss on the performance

of the whole network. When the network is trained with
appearance of the optical flow components, it glues two syn-
thesis networks more coherently for learning. As a result, the
quality of the interpolated frame is enhanced by integrating
the reconstruction loss into the total loss during training. In
addition, when the intermediate loss is removed from the fully
total loss function, the performance of the network is reduced
significantly, this re-affirms that the network with stack archi-
tecture is over-fitting when learning without intermediate loss
function.
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FIGURE 14. Visual optical flow results on basketball sequence. Top row is the overlaid frames, color encoded optical flow images of methods.
Bottom row is the ground-truth frame and interpolated frames generated by respectively above flows with the same frame interpolation algorithm
in [13].

3) COMPARISON BETWEEN THE FIRST SYNTHESIS
NETWORK AND SepConv
The effect of the motion-ness on the performance of the
first synthesis network is also evaluated. The motion guided
warping operations and the first synthesis network are glued
together bymotion derivationmodule that adds amotion-ness
into the pixel matching loss, this makes the first synthesis
network learn not only pixel matching but also motion con-
strains and scenarios, meanwhile the Sepconv network [15]
is similar to a pixel or patch matching that only learns for a
pixel loss. Table 6 and Figure 8 show that the first synthesis
network outperforms SepConv in both objective comparisons
and subjective visual evaluations.

C. EXTENSION FOR THE QUALITY ENHANCEMENT OF
COMPRESSED VIDEO TASK
Interestingly, the proposed video frame interpolation network
is designed for video frame interpolation or frame rate up
conversion problem, but it can apply for post-processing task
of compressed videos in order to improve quality of the com-
pressed videos. One more time, it shows the generalization
of the proposed network. In this section, the proposed video
frame interpolation network described Section III is called as
a MEMC network that composes of two synthesis networks,
motion derivation and warp operations modules. The input of
the proposedMEMC network are three reconstructed frames,
the current reconstructed frame that to be enhanced and two
nearest neighbor reconstructed frames, one is the previous
frame, the other is the next frame. The first synthesis network
and motion derivation module role as a motion estimation
network that will derive motion vectors between the current
frame and two nearest neighbor frames. On the other hand,
the warp operations and the second synthesis network role as
a motion compensation network that generates the enhanced
current frame from three inputs, the current frame, the motion
compensated previous frame, and the motion compensated
next frame. As described in Section III, the proposed motion
estimation network is an analysis-by-synthesis technique that
estimates motion more accurate than conventional analy-
sis based approaches. In addition, unlike MF-Net [41] for
this task, that only work well for low delay configuration,

TABLE 7. Comparison on the quality of recontructed frames.

the proposed MEMC network can be applied for both low
delay configuration and random access configuration. The
proposed MEMC network, shown in Figure 9 is compared
to the previous state-of-art MF-Net [41] that is designed
specifically for this task. Video sequences are compressed by
the same HEVC reference software (HM 16.0) with Quanti-
zation Parameter (QP) = 37. Table 7 shows comparison on
the quality of reconstructed sequence, among the baseline
HEVC, the enhanced sequence by the previous MF-Net and
the enhanced sequence obtained by the proposed MEMC
network. Both MF-Net and the proposed network improve
quality of reconstructed frames significantly, 0.41 dB and
0.35 dB respectively.

In order to have an insight analysis on how each frame is
improved by each method, Figure 10 shows the examples of
frame by frame comparison between methods. The blue line
denotes the PSNR of reconstructed frames obtained by base
line HEVC (or decoded by HEVC), the orange line denotes
the PSNR of enhanced frames by applying MF-Net, and the
grey line denotes the PSNR of enhanced frames obtained by
the proposed MEMC network. The period of each anchor
frame is four, that means frames 0, 4, 8, 12, 16 and so on
are anchor frames. Lowest quality reconstructed frames are
frames just before the corresponding anchor frames, such
as frame 3, 7, 11, 15 and enhanced significantly by both
post-processing networks, MF-Net and the proposed MEMC
network, which show 0.68 and 0.57 dB increase from baseline
HEVC, respectively. The proposed method outperforms the
MF-Net at frames next right after anchor frames such as frame
1, 5, 9, 13, 17 and so on. Because in MF-Net approach, dis-
tance from those frames to corresponding anchor frames are
asymmetric. For middle frames between anchor frames, such
as frame 2, 6, 10, 14, and so on, the MF-Net improves better
than the proposed MEMC network, 0.36 dB improvement,
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compare to 0.22 dB improvement obtained by the proposed
MEMC network.

Figure 11 shows a visual comparison between enhanced
reconstructed frame obtained by MF-Net and that obtained
the proposed MEMC network. Both enhanced frames allevi-
ate blocking artifacts significantly in comparison to the raw
reconstructed frame decoded by HEVC baseline, especially
at regions around the ball.

V. CONCLUSION
This paper proposes a back-to-back stack of synthesis net-
works by bridging the gap between two branches, optical flow
based synthesis and learned CNN kernels-based interpola-
tion together into a comprehensive joint framework. Inter-
mediate optical flows are introduced and estimated directly
from learned CNN kernels by using analysis-by-synthesis
technique and the first synthesis network learns not only a
pixel matching loss but also motion-ness criterion. Conse-
quently, the proposed method handles fast, complex motions
of small objects effectively. The proposed network is also the
first attempt to bridge two branches of previous approaches,
optical flow based synthesis andCNNkernels based synthesis
into a comprehensive network. The proposedmethod is evalu-
ated with various datasets and outperforms previous methods
in both objective metrics and subjective visual evaluations.
When it is applied for the quality enhancement of compressed
videos, it completes with the state-of-the-art network that is
trained specifically for this task.

REFERENCES
[1] H. Law and J. Deng, ‘‘CornerNet: Detecting objects as paired keypoints,’’

Int. J. Comput. Vis., vol. 128, no. 3, pp. 642–656, Mar. 2020.
[2] K. Ma, Z. Shu, X. Bai, J. Wang, and D. Samaras, ‘‘DocUNet: Document

image unwarping via a stacked U-Net,’’ in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., Jun. 2018, pp. 4700–4709.

[3] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, ‘‘A naturalistic open
sourcemovie for optical flow evaluation,’’ inProc. Eur. Conf. Comput. Vis.,
Oct. 2012, pp. 611–625.

[4] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ‘‘Image quality
assessment: From error visibility to structural similarity,’’ IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[5] A. Newell, K. Yang, and J. Deng, ‘‘Stacked hourglass networks for
human pose estimation,’’ in Proc. Eur. Conf. Comput. Vis., Oct. 2016,
pp. 483–499.

[6] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
P. V. D. Smagt, D. Cremers, and T. Brox, ‘‘FlowNet: Learning optical
flow with convolutional networks,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Dec. 2015, pp. 2758–2766.

[7] L. L. Raket, L. Roholm, A. Bruhn, and J. Weickert, ‘‘Motion compensated
frame interpolation with a symmetric optical flow constraint,’’ Adv. Vis.
Comput., vol. 7431, pp. 447–457, Jul. 2012.

[8] Z. Yu, H. Li, Z. Wang, Z. Hu, and C. W. Chen, ‘‘Multi-level video
frame interpolation: Exploiting the interaction among different levels,’’
IEEE Trans. Circuits Syst. Video Technol., vol. 23, no. 7, pp. 1235–1248,
Jul. 2013.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ‘‘Imagenet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1097–1105.

[10] R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature hierarchies
for accurate object detection and semantic segmentation,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 580–587.

[11] J. Long, E. Shelhamer, and T. Darrell, ‘‘Fully convolutional networks
for semantic segmentation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 3431–3440.

[12] G. Long, L. Kneip, J. M. Alvarez, H. Li, X. Zhang, and Q. Yu, ‘‘Learning
image matching by simply watching video,’’ in Proc. Eur. Conf. Comput.
Vis., vol. 9910, Oct. 2016, pp. 434–450.

[13] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski,
‘‘A database and evaluation methodology for optical flow,’’ Int. J. Comput.
Vis., vol. 92, no. 1, pp. 1–31, Mar. 2011.

[14] S. Niklaus, L. Mai, and F. Liu, ‘‘Video frame interpolation via adaptive
convolution,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 670–679.

[15] S. Niklaus, L. Mai, and F. Liu, ‘‘Video frame interpolation via adaptive
separable convolution,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 261–270.

[16] S. Niklaus and F. Liu, ‘‘Context-aware synthesis for video frame interpola-
tion,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 1701–1710.

[17] Z. Liu, R. A. Yeh, X. Tang, Y. Liu, and A. Agarwala, ‘‘Video frame
synthesis using deep voxel flow,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 4463–4471.

[18] H. Jiang, D. Sun, V. Jampani, M.-H. Yang, E. Learned-Miller, and J. Kautz,
‘‘Super SloMo: High quality estimation of multiple intermediate frames
for video interpolation,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 9000–9008.

[19] L. Xu, J. Jia, and Y. Matsushita, ‘‘Motion detail preserving optical flow
estimation,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 9,
pp. 1744–1757, Sep. 2012.

[20] S. Meyer, O. Wang, H. Zimmer, M. Grosse, and A. Sorkine-Hornung,
‘‘Phase-based frame interpolation for video,’’ in Proc. IEEEConf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 1410–1418.

[21] S. Meyer, A. Djelouah, B. McWilliams, A. Sorkine-Hornung, M. Gross,
and C. Schroers, ‘‘PhaseNet for video frame interpolation,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 498–507.

[22] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid, ‘‘DeepFlow:
Large displacement optical flow with deep matching,’’ in Proc. IEEE Int.
Conf. Comput. Vis., Dec. 2013, pp. 1385–1392.

[23] T. Xue, B. Chen, J. Wu, D. Wei, and W. T. Freeman, ‘‘Video enhancement
with task-oriented flow,’’ 2017, arXiv:1711.09078. [Online]. Available:
http://arxiv.org/abs/1711.09078

[24] T. Xue, J. Wu, K. L. Bouman, and B. Freeman, ‘‘Visual dynamics: Proba-
bilistic future frame synthesis via cross convolutional networks,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2016, pp. 91–99.

[25] A. Bansal, X. Chen, B. Russell, A. Gupta, and D. Ramanan, ‘‘PixelNet:
Representation of the pixels, by the pixels, and for the pixels,’’ 2017,
arXiv:1702.06506. [Online]. Available: http://arxiv.org/abs/1702.06506

[26] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic opti-
mization,’’ 2014, arXiv:1412.6980. [Online]. Available: http://arxiv.org/
abs/1412.6980

[27] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz, ‘‘PWC-net: CNNs for optical
flow using pyramid, warping, and cost volume,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 8934–8943.

[28] K. Soomro, A. Roshan Zamir, and M. Shah, ‘‘UCF101: A dataset of 101
human actions classes from videos in the wild,’’ in Proc. CRCV, 2012,
pp. 1–7.

[29] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox.
‘‘Flownet 2.0: Evolution of optical flow estimation with deep net-
works,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jul. 2017,
pp. 2462–2470.

[30] A. Ranjan and M. J. Black, ‘‘Optical flow estimation using a spatial
pyramid network,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jul. 2017, pp. 4161–4170.

[31] A. Aghajanyan, ‘‘Convolution aware initialization,’’ 2017,
arXiv:1702.06295. [Online]. Available: https://arxiv.org/abs/1702.06295

[32] Y. Lu, J. Valmadre, H. Wang, J. Kannala, M. Harandi, and P. H. S. Torr,
‘‘Devon: Deformable volume network for learning optical flow,’’ 2018,
arXiv:1802.07351. [Online]. Available: http://arxiv.org/abs/1802.07351

[33] D. Wang, L. Zhang, and A. Vincent, ‘‘Motion-compensated frame rate
up-Conversion—Part I: Fast multi-frame motion estimation,’’ IEEE Trans.
Broadcast., vol. 56, no. 2, pp. 133–141, Jun. 2010.

[34] N. Van Thang and H.-J. Lee, ‘‘An efficient non-selective adaptive motion
compensated frame rate up conversion,’’ in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), May 2017, pp. 1–4.

[35] N. Van Thang and H.-J. Lee, ‘‘A semi-global motion estimation of a
repetition pattern region for frame interpolation,’’ in Proc. IEEE Int. Conf.
Image Process. (ICIP), Sep. 2017, pp. 2563–2566.

58320 VOLUME 8, 2020



N. V. Thang et al.: Stacked Deep MEMC Network for FRUC and Its Application to HEVC

[36] N. Van Thang, J. Choi, J.-H. Hong, J.-S. Kim, and H.-J. Lee, ‘‘Hierarchical
motion estimation for small objects in frame-rate up-conversion,’’ IEEE
Access, vol. 6, pp. 60353–60360, 2018.

[37] C. Bartels and G. de Haan, ‘‘Smoothness constraints in recursive search
motion estimation for picture rate conversion,’’ IEEE Trans. Circuits Syst.
Video Technol., vol. 20, no. 10, pp. 1310–1319, Oct. 2010.

[38] H. Liu, R. Xiong, D. Zhao, S. Ma, and W. Gao, ‘‘Multiple hypothe-
ses Bayesian frame rate up-conversion by adaptive fusion of motion-
compensated interpolations,’’ IEEE Trans. Circuits Syst. Video Technol.,
vol. 22, no. 8, pp. 1188–1198, Aug. 2012.

[39] D. Choi, W. Song, H. Choi, and T. Kim, ‘‘MAP-based motion refine-
ment algorithm for block-basedmotion-compensated frame interpolation,’’
IEEE Trans. Circuits Syst. Video Technol., vol. 26, no. 10, pp. 1789–1804,
Oct. 2016.

[40] T. Tsai and H. Lin, ‘‘Hybrid frame rate up conversion method based
on motion vector mapping,’’ IEEE Trans. Circuits Syst. Video Technol.,
vol. 23, no. 11, pp. 1901–1910, Jun. 2013.

[41] R. Yang, M. Xu, Z. Wang, and T. Li, ‘‘Multi-frame quality enhancement
for compressed video,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 6664–6673.

[42] W. Bao, W.-S. Lai, C. Ma, X. Zhang, Z. Gao, and M.-H. Yang, ‘‘Depth-
aware video frame interpolation,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 3703–3712.

[43] Y.-L. Liu, Y.-T. Liao, Y.-Y. Lin, and Y.-Y. Chuang, ‘‘Deep video frame
interpolation using cyclic frame generation,’’ in Proc. AAAI Conf. Artif.
Intell., vol. 33, Jul. 2019, pp. 8794–8802.

[44] F. Reda, D. Sun, A. Dundar, M. Shoeybi, G. Liu, K. Shih, A. Tao, J. Kautz,
and B. Catanzaro, ‘‘Unsupervised video interpolation using cycle consis-
tency,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 892–900.

[45] T. Peleg, P. Szekely, D. Sabo, and O. Sendik, ‘‘IM-net for high resolution
video frame interpolation,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 2398–2407.

NGUYEN VAN THANG received the B.S. degree
in electrical engineering from the Hanoi Uni-
versity of Science and Technology, Hanoi, Viet-
nam, in 2010, and the M.S. and Ph.D. degrees in
electrical engineering and computer science from
Seoul National University, Seoul, South Korea,
in 2012 and 2019, respectively. His research inter-
ests are in the areas of image/video processing,
focus on motion analysis and video frame rate
up conversion and deep learning for image/video

processing applications.

KYUJOONG LEE received the B.S. degree in
electrical engineering from Seoul National Uni-
versity, Seoul, South Korea, in 2002, the M.S.
degree in electrical engineering from the Univer-
sity of Southern California, Los Angeles, CA,
USA, in 2008, and the Ph.D. degree in electri-
cal engineering and computer science from Seoul
National University, in 2013. From 2002 to 2005,
he was with Com2us Corporation, Seoul, as a
Developer. From 2013 to 2017, he worked for

S.LSI division of Samsung Electronics Corporation. In 2017, he was
appointed as an Assistant Professor with the Department of Electronic
Engineering, Sun Moon University, Asan, South Korea. His major research
interests include the algorithms and architectures of deep learning and
image/video processing.

HYUK-JAE LEE received the B.S. and M.S.
degrees in electronics engineering from Seoul
National University, South Korea, in 1987 and
1989, respectively, and the Ph.D. degree in elec-
trical and computer engineering from Purdue Uni-
versity, West Lafayette, IN, USA, in 1996. From
1998 to 2001, he worked with the Server and
Workstation Chipset Division, Intel Corporation,
Hillsboro, OR, USA, as a Senior Component
Design Engineer. From 1996 to 1998, he was on

the faculty of the Department of Computer Science, Louisiana Tech Uni-
versity, Ruston, LA, USA. In 2001, he joined the School of Electrical
Engineering and Computer Science, Seoul National University, where he
is currently working as a Professor. He is also a Founder of Mamurian
Design, Inc., a fabless SoC design house for multimedia applications. His
research interests are in the areas of computer architecture and SoC design
for multimedia applications.

VOLUME 8, 2020 58321


