
Received February 28, 2020, accepted March 13, 2020, date of publication March 19, 2020, date of current version April 7, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2981789

A Crisis Situations Decision-Making Systems
Software Development Process With
Rescue Experiences
ALIREZA NOWROOZI1, PEYMAN TEYMOORI 2, TOKTAM RAMEZANIFARKHANI2,3,
MOHAMMAD REZA BESHARATI 4, AND MOHAMMAD IZADI 4
1Department of Media Engineering, IRIB University, Tehran 1995614317, Iran
2Department of Informatics, University of Oslo, 0373 Oslo, Norway
3Department of Technology Systems, University of Oslo, 0373 Oslo, Norway
4Department of Computer Engineering, Sharif University of Technology, Tehran 1458889694, Iran

Corresponding author: Peyman Teymoori (peymant@ifi.uio.no)

The work leading to these results, by Toktam Ramezanifarkhani, was supported in part by the SCOTT - Secure Connected Trustable
Things. SCOTT (www.scottproject.eu) was supported in part by the Electronic Component Systems for European Leadership Joint
Undertaking under Grant 737422. This Joint Undertaking receives support from the European Unions Horizon 2020 Research and
Innovation Programme and Austria, Spain, Finland, Ireland, Sweden, Germany, Poland, Portugal, The Netherlands, Belgium, and Norway.

ABSTRACT Previously, we have proposed a computational model for decision-making in crisis situations
called C-RPD (Computational Recognition Primed Decision). In this paper, a software development pro-
cess customized for Crisis Situations Decision-Making Systems (CSDMSs) is proposed. Agile processes
can skillfully manage uncertainty in software requirements and some of their features like incremental
development can solve some problems in developing CSDMSs. However, these processes do not provide
comprehensive solutions for issues like the lack of enough knowledge about CSDMSs, very rapid changes,
urgent need to overcome security challenges, high development unpredictability, and the performance
test. Extreme Programming (XP) is one of the best and most widely-used agile processes. In this article,
a customized version of XP called Crisis Situations Decision-Making Systems Software Development
Process (CSDP) is proposed. Standing first and second in five national and international RoboCup rescue
agent simulation tournaments from 2006 to 2010 bear witness to the efficiency of the developed software
using CSDP. Relying on its characteristics, CSDP has been able to practically tackle the challenges of
developing CSDMSs such as the lack of crisis-related knowledge and cumulative nature of crisis-related
knowledge, difficulty of extracting knowledge, long development cycle, and sudden and frequent changes
in system requirements.

INDEX TERMS Agile software development process, crisis management, crisis situations decision-making
system, naturalistic decision making, recognition primed decision model, RoboCup rescue simulation agent
benchmark.

I. INTRODUCTION
Although the term ‘‘crisis management’’ has been widely
used in the literature, the terminology is ambiguous. Crisis
management can be taken to refer either to managing a crisis
after it has arisen–that is, intervening in a crisis situation–
or managing in such a way that a crisis does not arise in
the first place [1]. Allinson believes it is best to avoid using
such a label since the word ‘‘management’’ implies that the
process so labeled is envisioned as a solution to the problem

The associate editor coordinating the review of this manuscript and

approving it for publication was Alba Amato .

of crises in general [1]. The term ‘‘crisismanagement’’ should
be used only for the crises that have already arisen. Having
studied different definitions of crisis in [1], we define the
crisis as a critical situation which may dramatically turn into
a more severe situation with lots of casualties and damages if
it is not handled in an appropriate manner in operational set-
tings (time and resource limitations) by emergency services
(police, fire service and ambulance service). Since crisis man-
agement is a new and non-mature science [1], research studies
have only focused on plans, rules, guidelines, procedures
and sociology of crisis [2]. Any crisis always involves com-
plex, uncertain, and unstable events and it is unpredictable

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 59599

https://orcid.org/0000-0002-9507-4373
https://orcid.org/0000-0003-3190-411X
https://orcid.org/0000-0003-3561-3942
https://orcid.org/0000-0002-5196-8148


A. Nowroozi et al.: Crisis Situations Decision-Making Systems Software Development Process With Rescue Experiences

and sudden. Moreover, crisis in complicated communities
such as smart infrastructures becomes an over-increasing
challenge [3]; one of the main challenges is an urgent need
to tackle critical situations such as security attacks and their
effects on the whole system. Existing products are generally
not homogeneous, and they are hardly able to make right
decisions in such situations [4].

Timely and proper decision making in dealing with com-
plex operational situations is a complicated task and depen-
dent upon different factors of which time pressure, changing
conditions, vague and shifting goals, vague and incomplete
information and uncertainty are of great importance [5].
These factors alone can render analytical decision making
approaches ineffectual [6]. Decision making in emergency
situations is totally different from decision making in normal
situations. In normal situations, a decision maker has got
enough time at hand to weigh the advantages and disadvan-
tages of different options which are fixed. Because of time
pressure and changing conditions, we need a proper approach
which can be effective in emergency situations. Unbounded
rationality-based approaches analyze various options in order
to come up with the most effective and appropriate ones [5].
Herbert Simon tackled this problem by introducing ‘‘satisfic-
ing’’ to the Bounded Rationality literature through blending
‘‘satisfy’’ and ‘‘suffice’’ [7], [8]. Generally, bounded ratio-
nality considers human decision making as an ability to find
a satisficing solution rather than an optimum one.

There are two main problems in developing efficient sys-
tems (agent-based or decision-support) for decision making
in crisis situations: how to decide in crisis situations and how
to develop a software which is able to make right decisions
in a crisis situation. To deal with the first problem which
is related to the artificial intelligence field, we proposed a
model called Computational Recognition-Primed Decision
(C-RPD) model in [9].

We address the second question by the software engineer-
ing field, part of processes and process models for software
development. To the best of our knowledge, there is not such a
development process tailored for Crisis Situations Decision-
Making Systems (CSDMSs). Effective software for these
systems, however, cannot be developed using traditional and
classic methods due to the lack of business-related knowledge
and its cumulative nature, difficulty of extracting knowledge,
dynamicity and extensibility of system, and highly frequent
changes in system requirements.

Agile processes, on the other hand, can be customized to
satisfy the development needs of CSDMSs. Extreme pro-
gramming (XP) which is a popular agile software devel-
opment process can respond more effectively to customer
requirements and tries to develop a high quality software at
the same time [10]. To use a process in a certain application,
it needs to be customized for that application. Since XP has
been the most widely used and the most successful process
in similar systems [11], it has been used as the basis for cus-
tomization in our project and particular needs in developing
CSDMSs have been added to it. The results of implementing

the customized process in rescue simulation environment are
presented here.

Our extensive experiences of developing such systems
reveals that developing complex operational software using
current approaches faces serious challenges and it is vital
to resort to newer and different approaches. In addition,
using our proposed computationalmodel, C-RPD, in software
development and our successful results in practice (see our
final results in RoboCop Rescue competitions as an example
of CSDMSs [12]–[16]), confirms that C-RPD can be effec-
tively utilized as a decision making engine in a software
development process to overcome challenges of developing
CSDMSs. It should be noted that in this article we are not
addressing the issue of how CSDMS should decide in crisis
situations; we are presenting a customized software process
to develop CSDMSs. To avoid misunderstandings, we use
the terms ‘‘development system’’ and ‘‘resulting system’’.
By development system we mean a system which is under
realization in a process and is not completed yet. Resulting
system is the final release of the system and can be run in
operational environments. About the operation of CSDMSs
is touched upon but our main concern is their software pro-
cess aspects. Because the proposed process depends on the
concepts of C-RPD, just a brief introduction of C-RPD and
its basis will be presented in the following Section. More
explanations are available at [9].

The reasons behind customizing agile processes to develop
CSDMSs are: lack of domain knowledge, cumulative nature
of domain knowledge, difficulty of extracting knowledge,
long development cycle, the vagueness of requirements, sud-
den and highly frequent changes in requirements. The vague-
ness of requirements and frequent changes are by-products
of the first two items. Owing to their incremental structure,
agile processes have great potential for developing adaptive
operational systems. The current methodologies and even
agile processes for developing CSDMSs suffer some draw-
backs which will be discussed in the following. In contrast to
traditional systems, in such systems customers are not aware
of Problem Scenarios (User Stories) as aware as they are
expected in current software processes, and they cannot help
determine CSDMS problems, challenges and requirements.
Instead of expecting customer to write about requirements,
user stories are an agile approach to requirements focus on
talking about them (extracting requirements in conversations
with customer). Therefore, extracting user/problem stories
and determining requirements is a complex process which
has not been delineated in agile systems. These drawbacks
are clearly felt when we find out that unbounded solutions
are not effective and we need to look for bounded rationality-
oriented satisficing approaches. Due to lack of real testing
situations, determining the truth of user stories is difficult and
without simulation, gaming meetings or mental simulation is
practically impossible. In such situations, it is necessary to
monitor events in order to find an appropriate simulator or
pattern catalog for any new problem and similar CSDMSs in
order to strengthen the evaluation of our CSDMS.

59600 VOLUME 8, 2020



A. Nowroozi et al.: Crisis Situations Decision-Making Systems Software Development Process With Rescue Experiences

System stability, which is defined as a system’s ability to
continuously function well in or above an acceptable period
is one of the key features of CSDMS and must be achieved
gradually during the development process. Using perfor-
mance test activity which effectively tests each system release
through simulating different problem scenarioswe ensure the
convergence of the process for developing a stable system
and protects us against being caught up in an unexpected
real problem situation. Performance activity test allows us
to correct these bugs before the real problem situations. The
efficiency of such a process needs to be assessed properly as
well. Our novelties in this paper are summarized as follow:
• We present a novel software development process to
develop Crisis Situations Decision-Making Systems
(CSDMSs); this overcomes the challenges of develop-
ing these systems including the high degree of unpre-
dictability and unknown/vague requirements.

• We customize the XP process because it can offer
some useful practices in such situations, and we believe
CSDMSs can be best developed using an agile process.

• We adopt best practices of useful psychological and
computational decision-making methods in crisis situ-
ations such as C-RPD [9]. This indeed enhances our
proposed process beyond the state of the art.

• We present the lessons we learned of applying our pro-
cess. Our experiences confirm some of XP practices;
however, we discuss further the practices that should be
adopted carefully or need more discussion.

• We evaluate our proposed process under very com-
petitive software development situations: we apply the
process to develop software for several national and
international RoboCup rescue competitions, i.e. one of
the best examples of CSDMSs, and show how our pro-
cess succeeds in developing outstanding applications
with top rankings. We see this as a very useful method
of quantifying the quality of our developed software and
its development process.

The paper is organized as follow: Section II reviews the
related work and discusses C-RPD. In Section III, we present
our proposed process, CSDP, and in Section IV the bench-
mark of CSDP is presented. Section V summarizes the
lessons we learned. Finally, Section VI concludes the paper.

II. LITERATURE REVIEW
Agile software development is a member of current and
future trends of software business, platforms and ecosys-
tems (see [17] and [18]). Nowadays, there are a number of
agile software development methods such as Scrum, eXtreme
Programming (XP), Feature-Driven Development (FDD),
Adaptive Software Development (ASD), Dynamic Systems
Development Method (DSDM) [19]. In a study conducted
in 2008 by Dyba, it was found out that about 76 percent of
research studies were on studying XP [20]. In 2017, 30 per-
cent of reviews found in the agile software development liter-
ature were about XP and Scrum [21]. XP is a popular process
which is employed in many projects. However, it is utilized

mostly in small or medium-sized projects [22]. Investigating
the efficiency of XP due to its ever-increasing popularity is
one of the great challenges in software engineering research
studies [23].

A. REVIEW OF XP
XP is a lightweight software process, which deals with vague
or changing software requirements. In this process, the team
size is fewer than 10 people who are expected to be in the
same physical location [11]. It is organized as four framework
activities: planning, design, coding, and testing. XP allows
an agile team to create subsequent software releases deliver-
ing features and functionality that have been described and
then prioritized by the customer [24]. The XP development
paradigm is the object-oriented approach. Four important
characteristics of XP are as follows:
• Creating a spike solution: to find responses to the
technical and hard design.

• Release planning: in such sessions, a plan that shows
the general framework of the project is presented for
release. The detailed plan of each iteration is developed
just before that iteration.

• Iterative development: this can add agility to the devel-
opment process. In this phase, the development is
divided into 1 to 3 week phases.

• Acceptance test: these tests are constructed based on
User Stories. During each iteration, first, selected user
stories for that iteration are turned into the acceptance
test. Then, the customer specifies the scenarios which
can be used to determine the success of each User Story.

Fig. 1 shows how team members work with each other in XP.
To be brief, we do not explain XP further. For more informa-
tion see [20], [24], [25].

FIGURE 1. The XP Project (adopted from [25]).

B. NATURALISTIC DECISION MAKING (NDM)
Classical decision making strategies generally define a set of
principles and criteria to choose the best (i.e., optimal) from
a number of choices [5]. In other words, classical methods
usually base these criteria on Expected Utility Maximization
approach where options are chosen or removed based on pri-
ority and appropriateness. Despite the fact that these methods
have yielded good results [9], research has shown that in real-
world scenarios, they have not been very useful in providing
assistance for decision makers [9].

The subject of Naturalistic Decision Making (NDM), with
two decades of application, shows how people use their

VOLUME 8, 2020 59601



A. Nowroozi et al.: Crisis Situations Decision-Making Systems Software Development Process With Rescue Experiences

expertise to make choices in operating conditions and it has
led to the emphasis on specialization [9]. NDM paradigm
believes that instead of coming up with different options, rat-
ing them, and then choosing the most suitable one, the experts
should place emphasis on situation recognition and aware-
ness. There is no doubt that Herbert Simon’s works can
be considered as the beginning of these research studies
by introducing Bounded Rationality solutions. Some of the
well-developed theories of NDM paradigm are: Explanation
Based Reasoning Theory [26], Image Theory [26], and RPD
model [27]. See [9] for more information on NDM.

C. BRIEF DESCRIPTION OF RPD
The RPD model which was introduced by Klein and his
colleagues models the behavior of experts in operational
settings [27]. This cognitive psychological theory is based
on field studies of fire commanders while extinguishing fire.
RPD believes that professional decision makers using their
past experiences rely on situation assessment, and while
observing a situation recall the solution with no comparison
between different solutions [28]. In tough and complex situa-
tions, an experienced decision maker may evaluate the course
of action (CoA) by a mental simulation to ensure success. For
more information see [9], [28], [29]. RPD, beyond proposing
a model of expert decision making, introduces a novel psy-
chological approach which has been used to train US Naval
officers especially when facing stressful situations. The best
RPD models in computer science are: Fuzzy RPD [30] and
its applications [31], R-CAST [32] and its applications [33],
and C-RPD [9].

In [9], we have developed a computational form of RPD on
which our agents’ decision making method is based (Fig. 2).
Explaining C-RPD model and how agents make decisions is
beyond the scope of this article. For more information refer
to [9] which explains the implementation and assessment of
rescue simulation agents based on C-RPD. RPD and C-RPD
have been mentioned in this article only due to the great
impact of the NDM paradigm on our proposed model CSDP,
which will be introduced in the next section.

III. THE PROPOSED PROCESS: CSDP
In this section, a customized process called CSDP is pre-
sented for developing Crisis Situations Decision-Making
Systems (CSDMSs). Fig. 3 shows the highest level of the
process. Fig. 4 and Fig. 5 expand detailed actions of the CSDP
activities ‘User Story Extraction’ and ’Iteration’ presented
in Fig. 3. Fig. 6, ‘Development’, is a sub-activity of CSDP
Iteration procedure and Fig. 7, ‘Collective Code Ownership’
is a sub-activity of CSDP Development procedure. Actions
and activities with thick borders in the figures show our new
proposed items.

CSDP is a customized version of XP. The most important
change in CSDP compared to XP is the addition of a new
activity for extracting User Stories from the available sources
on decision-making in crisis situations. User stories are crisis
situations/scenarios in CSDMSs. Further in the following

FIGURE 2. The C-RPD model.

TABLE 1. CSDP Terms.

sections, first, a number of definitions are given, then CSDP
is presented through explaining its five components, namely
‘roles’, ‘artifacts’, ‘activities’, ‘phases’, and ‘iteration’. Each
respective section focuses only on new ideas or changes made
to XP. For more on other aspects of XP, visit [34]. Feedback
loops and simulation activities are two special components
of this process. These new proposed items help the process to
overcome difficulties and managing complexities which are
natural for Crisis Situations Decision-Making Systems.

A. THE DEFINITION OF NEW TERMS
Table 1 presents the definition of crucial crisis-related terms
in CSDP. Since CSDMSs cannot be tested in the real world

59602 VOLUME 8, 2020



A. Nowroozi et al.: Crisis Situations Decision-Making Systems Software Development Process With Rescue Experiences

FIGURE 3. Crisis situations decision-making systems software development process (CSDP).

situations, simulators play a key role in developing such
systems in two ways: first, they help to turn imagined crisis
solutions into satisficing solutions. Second, they assist con-
tinuously in assessing the efficiency and effectiveness of the
system in the course of its development by simulating it in
different crisis situations. Similar CSDMSs can be used in
two ways:
• The similar CSDMS merges itself with simulator and at
any moment receives the new crisis situation from the
simulator (gets feedback from simulator) and gives the
next step of crisis solution accordingly to be executed
and simulated by the simulator. This cycle continues up
to the end of the crisis. The initial and the middle status
of the crisis and their respective solutions make the crisis
scenario.

• The similar CSDMS receives initial crisis situation as
an input without resorting to the simulator and pro-
duces its own solution as an output. Since CSDMS
does not get feedback from the environment in this
method, CSDMS is not aware of the middle status
of the crisis and the quality of solution is lowered as
a result. After CSDMS produces the crisis solution,
a simulator needs to be used in order to assess the
solutions attained through this method. It goes without
saying that the first method is much more efficient and
effective.

B. ROLES
In this section, Business Expert, Technical Manager and
Expert Developer roles which play a vital role in CSDP are
explained. Other roles (Architect, Developer, and Tester) are
either exactly similar to the roles defined in XP or their
activity is a little different which will be explained in their
respective section.

1) BUSINESS EXPERT
In developing CSDMSs, the customer does not either know
what he actually needs or if he does so he does not know
whether what he needs is logical, useful and practical in com-
puting machines because crisis management knowledge is
non-mature and complex. The execution team does not know
what to do either. In such situations, the business expert or the
business expert team using their knowledge and experience
on crisis performs the crucial task of guiding the Customer
and the execution team appropriately. Business expert (crisis
expert) is expected to give an expert response to any crisis-
related questions or problems of the development-team.

Although a business expert is usually at the customer-side,
in CSDMSs because of lack of expertise knowledge, he can
also be a development team member who has gained ample
experience and expertise through working on CSDMSs.
A business expert can also be a third party who is involved
in the project.

VOLUME 8, 2020 59603



A. Nowroozi et al.: Crisis Situations Decision-Making Systems Software Development Process With Rescue Experiences

FIGURE 4. CSDP user story extraction procedure.

FIGURE 5. CSDP iteration procedure.

2) TECHNICAL MANAGER
The technical manager role is in fact a more complete form
of the planner role discussed in XP. In addition to planner

activities, a technical manager plays another activity role as
well in order to be fully aware of the project’s technical issues
and team’s moment-by-moment status and their problems.

59604 VOLUME 8, 2020



A. Nowroozi et al.: Crisis Situations Decision-Making Systems Software Development Process With Rescue Experiences

FIGURE 6. CSDP development procedure.

FIGURE 7. CSDP collective code ownership procedure.

He is expected to be the first person who becomes informed
of the problems facing the team and rapidly comes up with
a solution to prevent the project from being halted or slowed
down. To perform this cooperative activity properly, the tech-
nical manager not only needs to have a constant contact
with team leaders and members but he must hold regular
sessions with all development teams as well. This is similar
to the Scrum meetings. He must hold on-demand sessions in
order to find solutions when they arise. Moreover, a technical
manager is required to keep the set of all User Stories com-
patible in order to prevent system divergence. In a nutshell,
a technical manager ensures that the project moves toward
project goals.

3) EXPERT DEVELOPER
An expert developer is a professional developer who has
both enough experience in programming and software

development and is an expert in dealing with crises as well.
He understands what the business expert states. An expert
developer who is recommended to be the leader of his own
team adopts two different roles, namely crisis expert and
developer.

C. ARTIFACTS
XP artifacts which have been either changed or presented in
a new framework in CSDP are explained in the following.
These artifacts are: user stories and documents.

1) USER STORIES
Due to the importance of crisis situation seriousness, severity
has been added to user stories. When the system is under
stress and the sources are limited as a result, severity enables
developers to prioritize their tasks appropriately. Severity is

VOLUME 8, 2020 59605



A. Nowroozi et al.: Crisis Situations Decision-Making Systems Software Development Process With Rescue Experiences

a great help in prioritizing user stories for development, too.
The more sever the user story (crisis scenario) is, the better it
is implemented from the beginning.

The representation used in the RPD model for stories has
been proposed and used as a framework for stories. This
representation has been designed in a way that is compat-
ible with human abilities and recognition. Reference [27]
supports this claim. Following this representation, we define
user stories as consisting of severity, situation and solution
(Table 2). Severity and situation refer to its seriousness and
state, respectively. Solution which consists of goals, cues,
expectation and Course of Action (CoA) refers to the solu-
tion of this state. CoA is defined as a story consisting of
5 plus/minus 2 scenes along with the reason for transition
from the previous scene to the next one (Table 3). The reasons
for presenting this representation for modeling experience
have been given by Klein and his colleagues in [27].

TABLE 2. User story structure.

2) DOCUMENTS
The trace of changes and decisions made in the course of con-
ducting the project might be lost in the absence of proper doc-
umentation and the project can be slowed down. Inability to
test CSDMSs in real-world situations necessitates reliance on
simulation results. In addition, since crisis management and
modeling knowledge is a new evolutionary and cumulative
science with lots of improvements and new findings, the com-
pletion of current simulators and the emergence of new ones
in future can improve or even contradict our knowledge on
which we based our development. In this condition, feeding
new improved knowledge to the system can be achieved more
effectively by having thorough knowledge about the traces
of previous increments. Although abundant documentation is
not possible due to the agility of XP, the brevity of documen-
tation itself is a merit if it can be used to meet the system
needs. The proposed system frees the developers from the
need for traditional-style documentation which has always
annoyed them. The proposed documentation can be done by
inserting comments into the code and filling specific tables.
Tables used in CSDP are of three types: versions table, per-
formance test table and charts for the efficiency of versions.
• Versions table: upon adding a user story which results
in a new version, the developer is expected to fill one of
the rows of the table with the Table 4 header. Having
this table, the development team with little documen-
tation exactly knows what it has done in each version
and what the results have been. It should be noted
that pseudo-code column is filled only with the link
for pseudo-code or the link for implemented code file
related to this particular story so that the developer
can easily recall the implementation of this story in

future references. In future references, the developer can
manipulate previously-developed codes on condition
that he remembers the condition for which the code was
scripted. Since the recall process is a time-consuming
one, anything like the mentioned column from the below
table which can expedite this recall process can be of
great help. It is highly recommended that a version be
developed for each story. However, if the development
team decides to include a few stories in a version, it can
change the table to suit its needs.

• Performance test table: results of the performance test
activity must be recorded for each release. Although
performance test results are an estimated assessment of
the development job, keeping them provides a great help
with analyzing the process and revealing the mistakes
made in user stories. To achieve this, the development
team must prepare a system-assessment-parameters
table and for each release fill one of its rows.

• Versions efficiency chart: a tester is required to draw a
chart using performance test results and update it for
each release. Since performance test results table is a
table full of numbers, it is difficult to understand it
at a glance. Therefore, this chart is drawn to make it
easy to observe the system efficiency. This chart facil-
itates understanding the impact of user stories and the
amount of development process progress. In addition,
it helps monitor the efficiency improvement rates and
see whether it has decreased or increased.Moreover, this
chart immediately reveals wrong strategies or contradic-
tions in user stories and corrects them.

D. ACTIVITIES
The new activities which have been proposed in CSDP and
the altered XP activities are explained in this section. First,
new tasks are briefly explained in Table 5. Next, more com-
plex tasks which need more explanation are presented. Major
and complex activities include user story extraction activity,
context events monitoring activity, performance test activity
and observing bugs of other development teams’ activity.

1) USER STORIES EXTRACTION ACTIVITY
In traditional systems, the customer can easily express his
stories and requirements, or even document them. But this
is not the case in CSDMSs. In agile development, it is
usually assumed by most processes that the customer can
express his stories to some extent, which can be completed
through talking with the developer and holding some ses-
sions. In developing systems that are supposed to operate in
complex operational situations, it is not possible to extract
requirements easily. Familiarity with domain, its characteris-
tics, and factors involvedwith it is an expertise and needs to be
learned academically. Therefore, the extraction of user stories
requires a procedure which is dependent on business expert
role. In other words, user stories for CSDMSs are not just
customer-dependent but they depend on other roles such as
business expert and the tester. These issues will be discussed

59606 VOLUME 8, 2020



A. Nowroozi et al.: Crisis Situations Decision-Making Systems Software Development Process With Rescue Experiences

TABLE 3. Course of action structure.

TABLE 4. Framework of versions Table.

TABLE 5. CSDP new tasks.

in the following. Another problem is the fact that the expert
knowledge extraction is a difficult task.

The procedure for extracting user stories has been pre-
sented in Fig. 4. Before explaining the actions defined in
this activity, it is necessary to define a new concept: coop-
erative activity. In performing three actions, namely, ‘‘study-
ing major requirements’’, ‘‘writing system situations’’, and
‘‘specifying stories’’ the user stories extraction activity needs
the cooperation of customer and business expert. To perform
these activities, business expert, and customer temporarily
join forces in order to complete the cooperative activity.
Unfortunately, UML currently does not have a symbol to
represent this type of activities. In order to demonstrate these
activities, we produced activities which cover two lanes.
Input is guided to both roles. Then, the action is performed

simultaneously in both roles, and finally the outputs are
joined. This does not mean that performing this activity is
parallel in both roles.

The following explains the procedure for extracting user
stories shown in Fig. 4. The procedure starts with the
cooperation of customer and business expert to study major
requirements in order for the project manager to identify
the customer’s basic requirements. After this action, busi-
ness expert or a team of business experts collects problem
situations and problem scenarios and finds similar CSDMSs
and useful domain problem simulators simultaneously. Prob-
lem situations indicate the situations that the resulting sys-
tem will face. The problem situations help us to specify
user stories (problem stories) as follows. Similar CSDMSs
introduce us different solutions for each problem situation.

VOLUME 8, 2020 59607



A. Nowroozi et al.: Crisis Situations Decision-Making Systems Software Development Process With Rescue Experiences

Problem simulators allow us to simulate and test various
problem solutions for each problem situation in order to find a
satisficing problem scenario. Parallel with this activity, tester
independently performs problem scenarios collection action.
Similar CSDMSs and problem simulators which have been
found by business expert are delivered to expert developer to
test and save them for future uses. It should be noted that first,
business expert and customer extract user stories as problem
scenarios, and then all the functionalities which must be pro-
vided by the system are extracted from problem scenarios as
problem scenarios requirements. In fact, working on problem
scenarios results in the extraction and the identification of
system requirements.

After these three parallel actions, customer and business
expert in a cooperative activity using the collected problem
situations determine the situations that the system might
encounter at run-time. Later, tester finds various solutions to
each problem situation through operational decision-makers.
To determine the efficiency of the problem scenarios, they are
simulated on various simulators which were found and tested
in the previous phase. In this phase, different solutions to each
problem situation are extracted and the simulation results are
collected and recorded in the respective database for future
uses. It should be noted that finding solutions to a problem
situation in such systems is not as easy as finding solutions to
a classic problem. Moreover, since executing an ineffective
solution in operational settings involves a high risk, it is
vital to study the solutions to each situation to come up with
the satisficing solution. Due to the fact that solutions are
studied by simulators, it is obvious that possessing more and
better simulators can provide us with more precise solutions.
Therefore, it is clear to see the importance of finding different
simulators.

After simulations, different solutions for each situation are
judged by customer and business experts in a cooperative
activity in order to come up with a satisficing solution and
its alternatives. It must be pointed out that we do not look for
an optimal solution in a problem situation. In other words,
an optimal solution refers to a solution which can solve
the problem rapidly and appropriately in operational settings
considering the time pressure, changing conditions, incom-
plete information, resource limitations, and work pressure.
Next, technical manager studies the consistency and practi-
cality of different solutions gained from the previous activity
and confirms the user stories which are now called require-
ments. If there are no inconsistencies and impracticality, this
process finishes by producing requirements. In case there are
such problems, technical manager holds a negotiation session
with business expert and expert developer of the development
team and the current ill-prepared solutions are turned into a
collection of consistent and practical solutions. Due to the
operational settings limitations and different constraints that
influence the functionality of the system, such conditions
are common in developing CSDMSs. In other words, there
are a lot of trade-offs which prevent the implementation of
solutions and user stories in their original form. In such cases,

we need to find solutions which are compatible. In the end,
customer confirms the determined requirements. The frame-
work for knowledge representation is the same as the one
presented in ‘‘artifacts section’’.

2) MONITORING CONTEXT EVENTS ACTIVITY
Each business domain knowledge is progressing competi-
tively and from time to time a new and influential open-source
or commercial advancement in simulation and business logic
is released and these advancements can reveal new aspects
of the domain and can be a great help in developing such
systems. For this reason, it can be seen in Fig. 3 that a new
process for tester has been defined through which tester con-
stantly monitors context events in order to find new systems
and simulators and new scenarios as well. Upon facing a
new problem scenario, tester records it and stimulates it on
existing simulators to check its functioning and then saves
the solutions to this situation. In addition, whenever a new
simulator is found, it is necessary to simulate all the existing
problem scenarios on that simulator, to record the simulation
results and on tester’s request to hold a negotiation session
headed by technical manager in presence of expert developers
and tester. Due to the complexity of the complete simulation,
no simulator is capable of fully modeling domain and each
simulator can reveal new aspects of the problem which are
expected to be carefully studied in the negotiation session
when a new simulator is found. When simulator or similar
system is not available, other light form of them can be
used: doing simulation by gaming or mental simulation, and
initiate meetings and using problem catalogs instead of using
similar systems. Moreover, owing to the fact that the system
functionality is dependent upon the completeness of possible
scenarios which are added to it during system development,
a new action called ‘‘producing problem scenario’’ has been
defined for the business expert so that he can produce new
problem scenarios in addition to the current scenarios through
utilizing its expertise and delivering them to the development
team to be implemented. The advantage of the system you
develop over other existing systems lies in the very problem
scenarios produced by business experts.

3) PERFORMANCE TEST ACTIVITY
The ability of the system to continue functioning in opera-
tional conditions is the greatest challenge. Due to the unpre-
dictable nature of the real-world operations, it is impossible to
fully ensure the flawless functioning of the system. However,
it is essential to constantly do our best in simulating problem
situations in order to design a robust system. Robustness is
insured by adding an activity called ‘performance test’ to
the iteration procedure. The performance test activity is a
semi-automatic activity which for each small release fully
tests efficiency of released version through both machine and
expert human assessment. The results of this assessment are
saved in order to have a system performance record during
its development, and to be able to refer to it when it is
needed. After each performance test activity, if the need for an

59608 VOLUME 8, 2020



A. Nowroozi et al.: Crisis Situations Decision-Making Systems Software Development Process With Rescue Experiences

improvement is felt in the system, it is delivered to technical
manager to produce release plan for that improvement.

It must be noted that each performance test activity and
acceptance test activity is conducted for every single release
and version, respectively. Performance test activity automat-
ically exposes the system to a comprehensive collection of
problem scenarios which have been collected previously
and are updated continuously by tester. As a result, system
behavior is simulated and assessed automatically. Besides the
automatic assessments, the domain expert also assesses the
system behavior by observing and analyzing the simulations
in order to reveal what has been overlooked by the automatic
assessment so that a precise system evaluation is ensured.
Human assessment of the system, which is unavoidable,
boosts the project costs and slows down the development pro-
cess. Therefore, any attempt which facilitates this assessment
like providing assessment charts or pinpointing the sensitive
simulation times to guide the observer directly to those points
and to eliminate the need for a complete search will be of
great help.

4) OBSERVING BUGS OF THE OTHER DEVELOPMENT TEAMS
In the Collective Code Ownership process presented in Fig. 7,
programming teams are required to report the bugs belonging
to other system development teams to the tester so that he
is able to record the exact information about the bugs and
report them to the respective development team. This helps to
achieve stability rapidly in the developed version by prevent-
ing the teams fromwasting their time due to an unknown bug.
CSDMSs, especially agent-based ones, have a complicated
structure which are generally tackled with parallel designs.
Therefore, in such systems various modules are executed in
parallel. Programmers are well aware of this programming
nightmare that how a bug in a module can have an adverse
effect on the functioning of other modules in a parallel system
and even can cause whole system failure. However, finding
that bug is very difficult due to the cascading effect and find-
ing it needs an exhaustive trace. In such cases, the activities
of all teams can come to a halt due to such bugs. The teams
cannot resume work until the bugs are found and corrected.
As a result, a lot of time is wasted from all development
teams.

E. PHASES
The only change made to XP phases was dividing ‘‘iter-
ation to release’’ phase into two parts. The first phase is
called framework development and the second phase is called
software increments [9]. The first phase release (developed
framework) is called ‘‘core product’’ in Software Engineer-
ing and it is known as ‘‘system shell’’ in knowledge-based
systems in AI with a little different view. The two proposed
phases follow the same cycle with the only difference that
in the framework development phase, it is expected that a
version be rapidly developed, which contains the framework
and the template of the whole project. The output of this phase
is a functioning code but it might not have any intelligent

mechanism to respond to any of the problem situations.
It might not be able to comprehend problem situations either.
This phase which like the next phase needs the user stories
and other activities is just designed to inform and guide the
thinking and the implementation of the code by developers
to prevent them from becoming confused and slowing down
the system development process as a result. To develop such
a framework, expert developers or domain expert(s) need to
possess experience in developing such systems or to have
worked with available similar CSDMSs, if any. If the project
is developers or domain expert’s first experience, the devel-
opment is performed without the framework development
phase, but in the following projects this phase is placed at
the start of the project. This phase has been proposed to
overcome XP’s problem with big projects and to expedite
performance test. This phase should not be longer than two
weeks. Software increments phase is the same as XP ‘‘itera-
tion to release phase’’.

F. ITERATION
Iteration procedure of this process is the same as iteration
procedure in XP. However, it is necessary to explain con-
cepts like ‘basis code’ and its impact on merging the codes.
XP wishes to be able to add each code to project immediately
after development so that other development teams can work
on this new version. In other words, development teams work
on a version which is updated at any moment. This is not
recommended for CSDMSs.

In CSDMSs, there might be many conflicts between sys-
tem components. As a result, adding any code and compo-
nents can influence the system functionality and efficiency,
make it more difficult to find bugs, and slow down the devel-
opment process. Therefore, we have introduced performing
performance test activity (see Fig. 5) on the releases (a release
is issued for a few iterations) to make sure the release func-
tions well in the first place and then use it as a basis code in
the ensuing iterations of the development and to the following
developments on this platform. This helps programmers who
always attribute the bugs to other teams to be certain that
their platform has been tested well and look for the problem
in their own codes and correct it. The authors of this article
experienced many of these sorts of bugs which belonged to
other teams’ codes and faced slowing down or even the halt
of the development.

IV. RESCUE AGENT SIMULATION BENCHMARK
This section is allotted to studying the effect of using CSDP
in developing fire brigade agents which will decide in res-
cue agent simulation environment. Rescue is a league of
RoboCup competitions explained in Section IV-A. The equiv-
alents of CSDP terms (introduced in Table 1) in rescue sim-
ulation are presented in Table 6. In this section, first, rescue
agent simulation environment is introduced and then in four
sections which are titled strategic principles, user stories,
documentation, and results of the competitions, our activities
in this environment are explained within CSDP framework.

VOLUME 8, 2020 59609



A. Nowroozi et al.: Crisis Situations Decision-Making Systems Software Development Process With Rescue Experiences

TABLE 6. Rescue terms definition.

Statistics related to development process, if mentioned with-
out the competition name, are related to our last experience
(SOS team in world championship 2009 in Graz, Austria).

A. BRIEF DESCRIPTION OF RESCUE
SIMULATION ENVIRONMENT
The stimulus for the RoboCup-Rescue project was the
great Hanshin-Awaji earthquake which struck Kobe on
January 17th, 1995 causing more than 6500 casualties,
destroying more than 80,000 wooden houses and directly
or indirectly affecting more than 1 million people [9], [12].
Rescue agent simulation environment which is the platform
of the rescue agent simulation league, one of RoboCup tour-
naments, is a popular and suitable evaluation benchmark for
rescue strategies in crisis situations. It is a large scale multi-
agent test-bed which consists of five components: Kernel,
Agents, Simulators, GIS and Viewers. The environment sim-
ulates an urban earthquake on a designed city map, and then
three types of agents, firefighters, search and rescue units and
the police try to handle the crisis. Each city map has the fol-
lowing entities: roads, buildings, civilians, cars, refuge, fire
brigades, fire stations, ambulance teams, ambulance centers,
the police forces and the police stations.

In this environment, agents can make decisions on their
own. By sending appropriate command to the kernel, agents
can perform a variety of actions like sendingmessages to each
other, shouting, moving, searching, rescuing people from
rubble, treating the injured, extinguishing fire or performing
any other task which is within their ability and responsibility.
Competitors should program agents properly so that they can
send suitable commands in operational settings (time limita-
tions and resources failures) to the kernel in each simulation
cycle. The team with the highest score is announced as a
winner. For additional information see [12].

B. THE STRATEGIC PRINCIPLES OF THE DESIGN
AND ANALYSIS OF CSDMS
There are two strategic principles in CSDP: ‘loose coupling’
and ‘satisficing’. The whole development team (including
customer) should understand these fundamental principles
perfectly, practice them frequently and obey them automat-
ically. These are as follows.

The ability of the entities to avoid halting due to lack of
information tomake decisions in operational settings is called
Loose coupling. When there is lack of new information,

they should be able to use the available information and
response quickly instead of wasting time by waiting for new
updated information. The entities like firefighters, rescue
units, and special teams which are involved in crisis man-
agement are well aware of this fact and do not wait for
orders or confirmations as far as possible and try to solve
the problem by using the available information and making
decisions. It should be noted that such teams have been pre-
pared through giving necessary permissions and practicing.
That is why their work style is different from other services.
The most noticeable difference between crisis management
and traditional management is the instability of the system
resources and the necessity for instant decision-making. Not
receiving information is very common in crisis situations.
Traditional systems are generally designed by assuming that
there is no failure or at best the systems will report the
failures. However, in any of the cases, when there is a failure
the system does not work and the support team is needed
to solve the problem. We definitely cannot rely on the sup-
port team in a crisis situation, and in most cases, lack of
instant decision-making will cause irreversible damages and
make the crisis unmanageable. A loosely coupled system
does not postpone decision-making until the arrival of the
new information and makes decisions based on the available
information. In a crises situation usually it is not possible to
gather all the data so we should do our best with whatever we
have right now. It is true that the decision might not be the
best one but as pointed out in [27] the crisis control through
instant decision-making is satisfactory. The optimization-
oriented thinking leads to tightly coupled system. As an
experience of this principle we should say that most rescue
teams develop tightly coupled systems. These teams usually
experience agent inaction in competitions. Agent inaction
brings the team a zero score. This can have a very detrimental
effect on the team’s morale. A team facing agent inaction
can overcome the problem to some extent through managing
agent decision-making time in alreadymet situations in rather
a long time. However, a determined map designer can cause
agent inaction for even experienced traditional teams through
complicating the maps like Kobe 4 or Random Large by
adding more fires with greater extent, more blocks, and more
citizens.

All development teammembers from technical and project
managers to designers and developers must strive to find and
implement satisficing solutions in a loosely coupled manner.
Our experiences show that teams make attempts to stand
first in competitions through optimizing small components
while they must look for satisficing solutions and make sure
to achieve the highest efficiency level through satisficing
thinking. The short-sightedness of trying to optimize all deci-
sions and elements will annoy the team and prevent it from
achieving its main goal. The most important problem which
results from such optimum-oriented thinking is agent inaction
in a rescue competition. Act local, think global thinking aims
at correcting such viewpoints. All such problems are rooted
in developers’ optimization mentality. Since predictions do

59610 VOLUME 8, 2020



A. Nowroozi et al.: Crisis Situations Decision-Making Systems Software Development Process With Rescue Experiences

TABLE 7. Rescue framework of versions Table.

TABLE 8. Rescue framework of performance test results.

not come true in operating conditions and calculations take
more than expected time, no order is sent from agent to kernel
in 500 milliseconds time he had.

As it was explained in ‘artifacts section’, what we call
documentation in the project is recording the trace of the
actions done and the decisions made in the course of develop-
ing the project so that it becomes possible to track changes.
Documentations are generally done in the form of table notes
and code comments. Three templates used in rescue docu-
mentation are as follows:

• Versions table: for each version, the developer is
expected to add a row to the table similar to the Table 7
which is a customized version of Table 4 for rescue
simulation environment.

• Performance test results table: upon each performance
test which is conducted for each release a row is added
to the Table 8which is a performance test table for rescue
simulation environment. The full forms of abbreviations
in the Table 8 are as follows:
- BAP: Burnt Area Proportion
- FMAT: Fire agents Mission Accomplishment
(Quenching all fires without the possibility of catch-
ing fire again) Time

- FDT: Fire Death Toll
- AAMT: Ambulance Agents Mission accomplish-
ment Time

- TC: Total Casualties
- HR: Civilians’ Average Health Ratio
- PAMT: Police Agents Mission accomplishment
Time

- FS: Final Score
• Versions efficiency chart: to facilitate understanding the
data presented in the Table 8, it is necessary to draw
a chart. The chart helps us to understand efficiency
changes easily. Average efficiency of versions produced
in this project has been presented in Fig. 8 in chrono-
logical order. The horizontal axis in each point shows a
selected version of a group of increments and the vertical
axis indicates the efficiency of that version which has
been normalized in the range of [0, 1]. Efficiency is a
measure which is calculated using (1). To normalize the
efficiency, (2) was used. As it can be seen, the efficiency
is on the rise, especially in the beginning and in the end.
In themiddle of the chart where the increase in efficiency

FIGURE 8. Average performance of 8 sets of increments during the
development process.

is slow, the user stories of the crises for the specified
cities were being developed.

Score=
1
37

(
10(1−BAP)+5(1−FMAT)+6(1−FDT)

+ 8(1− AAMT)+ 3(1− PAMT)

+ 2(1− TC)+ 2FS+ HR
)

(1)

xnormalized =
1

max(x)−min(x)

(
x −min(x)

)
(2)

A brief point about system training and system bias must
be pointed out here. Test teams usually classify the crises
and then use them for training the system. For instance,
in rescue competitions, first we developed the system using
the crisis scenarios to an unclassified collection of cities
(versions 1.xx collection has been released), then the system
was developed using the maps of certain cities (versions 2.xx
to 5.xx were developed using the maps of Kobe, Random
Foligno, and VC, respectively). Finally, versions 6.xx, 7.xx
and 8.xx were developed using an unclassified collection of
maps. Except for the first special collection, other develop-
ments using the special collections do not show a consider-
able increase in efficiency. Some developments even show a
little decrease in efficiency. Two points must be mentioned
regarding efficiency.

First, assessment criteria are not very exact and flawless
and finding a suitable assessment criterion for rescue agent
simulation environment is an open problem. Assessment cri-
teria are expected to indicate the rises or declines and not just
provide exact assessment. Due to this fact, finalists in compe-
titions compete against each other using different maps. The
most exact assessment can be done using an expert who can
analyze competitor’s code behavior. However, because of the
personal nature of such assessments it is not viable in formal
competitions.

VOLUME 8, 2020 59611



A. Nowroozi et al.: Crisis Situations Decision-Making Systems Software Development Process With Rescue Experiences

Second, training, the system using certain maps biases the
system toward those crises. Although new crisis scenarios
are added to the system and it is expected that the system
efficiency increase, system bias toward these scenarios causes
the general system settings to become unadjusted and the
efficiency of the system will decrease when it faces the map
of other cities. It should be noted that the comprehensive set
of test maps is fixed for all of the tests. In these conditions,
previous experiences must be put together appropriately to
achieve an acceptable efficiency. This has been done in the
last phase (version 8.xx collection) which contains new and
unmet cities. For version 8.xx collections, in most cases, new
experiences were not added to the system. Instead, previ-
ous experiences were well adjusted with each other, which
boosted system efficiency rapidly. In other words, system has
gained enough knowledge from the previous versions.

C. ACHIEVEMENTS
CSDP has been developed and customized using our expe-
rience in rescue agent simulation competitions in the five
years from 2006 to 2010. Our major achievements are as
follows: Standing second with Sharif University’s Impos-
sibles in 2007 US competitions in Atlanta [13]. The time
between the formation of the team and gaining the success-
ful result was just nine months. Standing first with Amirk-
abir University’s SOS team in the Graz world championship
in 2009 [14]. In addition, we stood first in the national
Khwarizmi RoboCup tournament 2009 and 2010 and inter-
national Iran Open 2010 with SOS team. For Khwarizmi
tournament see [15]. Iran Open 2010 tournament results are
available at [16].

V. LESSONS LEARNED
In this section, the lessons learned from our experiences
of applying CSDP will be presented. First, we will look at
these lessons from an XP perspective and later our other
experiences will be presented. It should be noted that we use
RoboCup rescue as an example of CSDMSs, and our results
and achievements apply to the wide range of CSDMSs.

A. LESSONS IN APPLYING XP PRACTICES
In the following, we discuss our success or failure experiences
in the RoboCup rescue simulation for those XP practices that
were challenging in the new context.

1) THE PLANNING GAME (SUCCESSFUL AND
UNSUCCESSFUL EXPERIENCES)
The main player here is the technical manager who is present
in all key points in system development and studies all user
stories to check their compatibility and priority. The technical
manager is responsible for reaching tradeoffs when dealing
teams’ needs. He reaches the best solution through negotia-
tion sessions. He also makes risky decisions in competitions
using his experience and expertise. These decisions range
from working on code stability in round intervals to imple-
menting a novel user story. The success or failure of such

vital decisions completely depends on technical manager’s
expertise and experiences.

2) METAPHOR (SUCCESSFUL DIFFICULT EXPERIENCE)
Explaining how the system works through using just one
story and sharing it in order to create an appropriate under-
standing of the project among team members is impossible
at least in complicated systems like CSDMSs. What we did
to achieve this goal was adding the framework development
phase (version 0.xx) to the system. This release is developed
using a few (not just one) expert stories in a short time.
By providing workflow of the whole system, classes’ tem-
plate, properties and functions, the available code is the same
as metaphor. To keep its efficiency, this metaphor needs to be
updated along with the system development. The metaphor
can be kept updated during system development through
using meaningful names and Scrum meetings. We gained
useful experiences regarding metaphor in the new definition
(framework development).

3) SIMPLE DESIGN (SUCCESSFUL EXPERIENCE)
The four finalist teams’ codes are released in rescue agent
simulation competitions. However, rarely can a team’s code
be studied and developed. This is because their codes are
complicated, disorganized, andmonolithic. The RPD strategy
helped us develop a simple, organized and modular code
despite being sizable. Due to this feature, code’s functions
can be easily found and altered.

4) TESTING (SUCCESSFUL EXPERIENCES)
Without designing a method for testing the code, developers
and the technical manager cannot become aware of the status
of development and bugs cannot be detected. Furthermore,
the divergence of CSDMSs is quite possible due to the com-
plexity of the knowledge involved in such systems. Therefore,
development teams must be fully aware of this fact. This
awareness cannot be gained without having a procedure for
testing the code. All RoboCup teams are aware of this fact
and have plans to test the code. However, developers do not
usually welcome such plans. We ensured this convergence
through using automatic and the human testing together.

5) PAIR PROGRAMMING (SUCCESSFUL AND
UNSUCCESSFUL EXPERIENCES)
Our five-year experiences taught us that pair programming is
dependent on programmers, their characters, and the degree
of their matching with each other and cannot be forced on
them. Both programmers must be interested in pair program-
ming and suggest it themselves. Adding a new member to
the team is very time-consuming and rescue teams usually
avoid this despite the fact that they greatly need it. New
member’s pair programming with an expert programmer can
expedite the newmember’s mastery of the code so that he can
independently play a vital role in developing the code.We had
both successful and unsuccessful experiences in this regard.
In our successful experience, the programmers themselves

59612 VOLUME 8, 2020



A. Nowroozi et al.: Crisis Situations Decision-Making Systems Software Development Process With Rescue Experiences

were eager to do pair programming as a result we were able
to add a new programmer to our team even a short time before
the competition.

6) COLLECTIVE OWNERSHIP (SUCCESSFUL EXPERIENCES)
We were able to achieve this ambitious goal through utilizing
a concept called basis code. Each developer could make any
changes to the code any time he wished. However, these
changes were available to other developers after they were
approved for each release through conducting the perfor-
mance test. Before each release, all developers worked with
the older version of basis code whose stability had been
approved completely.

7) ON-SITE CUSTOMERS (SUCCESSFUL AND
UNSUCCESSFUL EXPERIENCE)
We believe that on-site customer is a bit exaggerated.
Although there must be a close relationship between the cus-
tomer and the developer and the customer must be available
to respond to all questions and vague issues, the relationship
between the customer and the development team is a trade-
off, which can boost the quality and agility on the one hand,
but can have a negative effect on the development team’s
peace of mind on the other hand. Therefore, based on our
experiences there is no doubt that theremust be a relationship,
but the way this relationship is formed must be dealt with
carefully and appropriately.

8) SIT-TOGETHER (VERY SUCCESSFUL EXPERIENCES)
Sitting together is very important and effective. However,
more than enough presence of manager and the technical
manager among programming team members like on-site
customer can disturb the team and decrease efficiency. There-
fore, based on our experiences avoiding the over-use and
under-use of sit-together can make it effective.

9) ENERGIZED WORK (SUCCESSFUL EXPERIENCE)
Since money plays a key role in energizing people in profit-
centered projects, project managers might wrongly think
that this is the case in such projects. What drives the team
ahead is the satisfaction the team members derive from
feeling effective and useful. Since we worked on a nonprofit-
centered project, we understand the importance of such feel-
ing. Therefore, a successful manager is the one who always
satisfies the team mentally and makes them feel useful.
This factor does not have a financial cost, but it is very
influential.

10) STORIES (VERY SUCCESSFUL EXPERIENCES)
We are well aware of this concept and have been able to
form a good relationship with it. This concept is one of the
key concepts in RPD. Agent requirements were identified
in rescue simulation environment through these user stories
(problem scenarios).

11) WEEKLY CYCLE (SUCCESSFUL AND
UNSUCCESSFUL EXPERIENCES)
Our team members were still university students whose aca-
demic studies took precedence over the RoboCup activities.
Therefore, their working hours could not be regular and
continuous, so we could not issue weekly releases. However,
intervals between our releases were considerably shorter than
other teams’ intervals. In other words, in case we could have
worked on the project full-time, we could have had releases
every weeks. In our recent experience which was a four-
month full time activity for Graz world championship we
issued two releases each week.

12) TEST-FIRST PROGRAMMING (SUCCESSFUL
EXPERIENCES)
In CSDP, user stories can be viewed as system tests. For this
reason, tests are determined while extracting system require-
ments so that the system can be tested automatically and
then the results can be delivered to the human observer to be
analyzed. Complete automation of these tests is not possible
due to the fact that rescue simulation is a complex system.
We definitely need an expert human observer to analyze the
results and system behavior. What can be done for the human
observer to reduce his workload and facilitate the analysis is
processing the results. The design and implementation of a
fully automatic tester subsystem especially because of great
changes in kernel and simulators in rescue environment is a
giant and costly task which was not within our cost-benefit
criterion. We have achieved good results through combining
automatic testing and human observer analysis, which had a
lower cost.

13) INCREMENTAL DESIGN (VERY
SUCCESSFUL EXPERIENCES)
As mentioned before, our process model is completely based
on incremental development. In developing rescue simulation
environment agents, we have designed and developed ‘new
functionalities’ and ‘performance improvements’ increment
by increment. The statistics regarding these increments have
been presented in Section IV-B. This kind of development has
been introduced in [9] as an approach for developing expert
systems.

14) MOVE PEOPLE AROUND (SUCCESSFUL AND
UNSUCCESSFUL EXPERIENCES)
Moving people can increase their concentration because they
will face new environments. However, this can reduce effi-
ciency due to their lack of expertise in the new environment.
What is annoying in moving people is the fact that a team
of experts is by no means equal to an expert team. A team
consisting of semi-expert members can be more expert than a
team consisting of fully expert members. Forming an expert
team rests on the manager’s and technical manager’s shoul-
ders. Qualities like friendship among members and being

VOLUME 8, 2020 59613



A. Nowroozi et al.: Crisis Situations Decision-Making Systems Software Development Process With Rescue Experiences

a perfect match play a vital role in this regard. Considering the
above issues and our failures, it is highly recommended that
movements be done, if necessary, with the members’ consent
and with care. It is also suggested that the new member start
as a pair programmer in order to adapt more rapidly and
efficiently with the new environment.

B. OTHER LEARNED LESSONS
The other learned lessons are: a functioning version, member
self-reliance, new member entry, swift changes, key roles,
unpredictability, keeping the atmosphere friendly, keeping
the team members motivated. These are explained in the
following.

1) A FUNCTIONING VERSION
In multi-agent systems, due to the effect of different compo-
nents on each other, it is not of much use to assess them indi-
vidually and the whole system needs to be assessed in order
to find out the functionality of each component. To achieve
this, the development team as soon as possible must come
up with a basis version of the software which works with
minimum requirements. Through doing this, the team will
be able to assess well each of the following increments and
ensure the convergence and efficiency of the system. For this
reason, we divided the development process into two phases:
‘basis version development phase’ and ‘training and increas-
ing experiences phase’. While other teams remain unaware of
the effectiveness of their activities for a considerable period
of time and have to make major changes in their codes, our
development time will be expedited through this method.

2) MEMBER SELF-RELIANCE
The authors believe that an agile method cannot achieve its
goals unless expert members are included in the team and are
given a free hand in forming their tasks. Although we believe
in a hierarchical structure of the system, we also have a firm
belief in giving freedom to members to solve problems on
their own so that their needs for referring to higher levels are
kept to a minimum. This is also supported by [35]. However,
this method can cause system divergencewhich can be guided
toward an acceptable trade-off by the technical manager’s
expertise.

3) NEW MEMBER ENTRY
RoboCup teams usually need to add new members due to
various reasons, especially the instability of the team struc-
ture and the highs and lows which lie in this kind of activity.
However, teams prefer to continue work with the existing
team because adding new members is time-consuming and
difficult. In CSDP, it is highly recommended that the new
member start as a pair programmer and cooperate with one
of the expert members of the team. Our experience with pair
programming was a successful one so that a new member
could have an effective role in code development through
receiving just a short training.

4) SWIFT CHANGES
Sudden major changes in RoboCup competitions are com-
mon. The following two examples bear witness to this fact.
First, less than a month before 2007 Atlanta competition
the organizing technical committee decided that a third of
crisis situations be designed and run in a communication-less
manner. Even experienced teams could not handle this sud-
den change. However, we turned this threat into opportunity
using our flexible development methods and stood second.
Second, in Iran Open 2009, it was revealed that crisis situa-
tions included citizens surrounded by fire. Our team, which
was capable of handling such situations, could have gained
more-than-expected results if the technical committee had not
given in to teams’ pressure to change the presented scenarios.
Therefore, the capability to respond quickly and appropri-
ately to swift changes gives a team the ability to overtake the
experienced teams and achieve more-than-expected results.
The capacity of CSDP for providing such capability has been
proven in practice.

5) KEY ROLES
In our experiences, we have witnessed the vital role of busi-
ness expert and technical manager in the failure and the suc-
cess of the teams. Owing to the fact that domain knowledge
science is new and immature, the customer usually does not
know what he needs. In such cases, it is the responsibility
of the business expert to guide and to inform the customer
of these needs using his expertise and experience. In other
words, the business expert and the customer jointly deter-
mine customer needs. One of the most import reasons that
the customers are not satisfied at the end of the project is
ignoring the role of business expert in this regard. We have
experienced such problems in projects other than RoboCup
rescue simulation.

The following reveals the importance of technical man-
ager’s role. Although the difficulty of forming a rescue team
from scratch is by no means comparable to receiving a strong
and already-formed team, the team which we had formed in
just a year and had achieved success in world championships
could not gain any noticeable success even after two years
from the time we left despite all the efforts put into the team
by the new technical manager. The technical manager is the
one who is fully aware of the team’s technical issues and
moment-by-moment status of the teams. He is the first person
who becomes informed of the obstacles and immediately
comes up with solutions to prevent slowing down or the
halt of the whole project. These decisions are made in on-
demand negotiation sessions held by the technical manager.
The technical manager is expected to hold regular weekly
Scrum meetings with all development team members. There
is no doubt that the technical manager creates and ensures
project’s convergence. Therefore, a project must be started
and its feasibility be checked with the close cooperation of
business expert, technical manager, and customer and it must
be guided to an end by the full supervision of technical
manager.

59614 VOLUME 8, 2020



A. Nowroozi et al.: Crisis Situations Decision-Making Systems Software Development Process With Rescue Experiences

6) UNPREDICTABILITY
Developing CSDMSs, like problematic situations, is unpre-
dictable and does not proceed as planned due to lack of
domain knowledge, its vagueness and cumulative nature.
‘Approve consistency and possibility issues activity’ has been
added to CSDP due to the importance of paying attention
to this issue. This issue makes a big difference between
CSDMSs and all other systems.

7) KEEPING THE ATMOSPHERE FRIENDLY
As it has been mentioned in agile process-related papers,
we must make sure that the atmosphere is not unfriendly.
In our experiences, all team members were friends and class-
mates who were familiar with each other’s temperament.
However, offences and improper behavior and their adverse
impact on the team should not be overlooked especially when
a new member enters the team. The new member might
be unaware of atmosphere among team members and their
jargons. Keeping the atmosphere friendly is the responsibility
of the business and technical manager who must identify
factors which have a bad effect on the friendly atmosphere
while avoiding the interference with the relationship among
team members.

8) KEEPING THE TEAM MEMBERS MOTIVATED
Although motivation is crucial in the project success and
new business/non-commercial projects usually start with high
individual and team motivation, little by little the motivation
diminishes. Manager and technical manager are responsible
for preserving the individual and team motivation which will
boost efficiency and expedite reaching the goals. We have
experienced the job satisfaction as the best motivator in our
non-commercial project. Moreover, a systematic literature
review on motivations in software engineering at [36] says
that the most commonly cited motivator is the job itself.
We have found that the following factors play a key role in
keeping the team motivated: clear goals and tasks, personal
interest, good management, technically challenging which
cannot be done by team members’ classmates, autonomy,
trust, respect, experiencing and achieving professional capa-
bilities, andmanager attempts to provide appropriate working
conditions. For a list of what motivates software engineers
and a model of motivation take a look at [37].

VI. CONCLUSION
An agile process customized for developing crisis situa-
tions decision-making systems was introduced in this article.
We chose Extreme Programming (XP) as the basis process
because it is a well-developed agile process and it was com-
patible with our needs as well. The proposed process called
CSDP is the customized version of XP. Performance test
activity, cooperative activity, and user story extraction activity
have been added to this process for the first time in this article.

The customer alone cannot extract user stories, which
are called crisis scenarios in this article, as he does in

common systems. That is why a new activity called coop-
erative activity and different roles for extracting user stories
have been proposed. To perform the cooperative activity, two
roles must become a team and do the tasks cooperatively.
We suggest that a new symbol or stereotype be added to
UML for this role. The existing systems either can do their
tasks or cannot whereas intelligent systems provide a range
of responses. Since CSDMSs deal with human life, we have
introduced a new task called performance test to make sure
the system works properly in operational settings. This test
monitors system development and helps the development
team to detect the errors and problems and correct them.

CSDP is the result of the authors’ experiences from taking
part in rescue agent simulation division of RoboCup competi-
tions from 2006 to 2010. CSDP is an agile and swift process
which makes the development team capable of responding
to sudden changes in the shortest possible time. In addition,
CSDP could dominate the vagueness of requirements which
is the result of crisis-related knowledge vagueness and its
cumulative nature. Form our CSDP code-development case
study, the most important lessons we learned are as fol-
lows: small releases, stories, incremental design, sit-together,
understanding the importance of two roles: business expert
and technical manager, gaining the ability to give immedi-
ate responses to sudden changes, learning how to add and
adapt new members, developing simple designs, and test first
programming.

As future directions, CSDP could be improved by prepar-
ing a scenario-simulation facility toolbox. Such a toolbox
must contain a sort of service-components which support sys-
tematic, formal and rigorous scenario-simulations. For exam-
ple, it is a choice to use Reo Coordination Language [38] and
its facilities [39] for specification, modeling, verification [40]
and simulation of agent coordination protocols. Additionally,
to overcome security-critical situations that are one of the
most challenging areas today, we aim to customize and extend
CSDP to mitigate the attacks impact on the system, for exam-
ple, by considering access control violation in the underly-
ing modeling language [41]. Moreover, to prevent security
vulnerabilities in software systems, we intend to investigate
the CSDP effectiveness in secure software development to
provide security by design to practically enforce GDPR [42].

ACKNOWLEDGMENT
The authors would like to give special thanks to late Professor
Caro Lucas for his useful suggestions in writing this article,
and acknowledge our appreciation to AramikMarkari, Babak
Hashemi, Faraz Falsafi and Ehsan Soleimani of faculty of
Mathematics and Computer Science at Amirkabir University
of Technology as the development team of the PolyteCS
team (2008-2009) and S.O.S. team (2009-2010). They are
deeply grateful to Ahmad Bourghani Farahany, Mohammad
Salehe, Hassan Nikain, Seyyed Hossein Mortazavi, Mostafa
Vafadoost and Moslem Habibi of faculty of Computer Engi-
neering at Sharif University of Technology as the develop-
ment team of the Impossibles 2007 team. They also wish to

VOLUME 8, 2020 59615



A. Nowroozi et al.: Crisis Situations Decision-Making Systems Software Development Process With Rescue Experiences

thank Pouya Esfandiar of faculty of Computer Engineering
at Sharif University of Technology as a developer of the
Impossibles 2006 team.

REFERENCES
[1] B. W. Blanchard, ‘‘Guide to emergency management and related terms,

definitions, concepts, acronyms, organizations, programs, guidance, exec-
utive orders & legislation: A tutorial on emergency management, broadly
defined, past and present,’’ U.S. Federal Emergency Manage. Agency,
United States. Federal Emergency Manage. Agency, Washington, DC,
USA, 2008.

[2] E. L. Quarantelli, What is a Disaster? A Dozen Perspectives on the Ques-
tion. Abingdon, U.K.: Routledge, 2005.

[3] T. Ramezanifarkhani and P. Teymoori, ‘‘Securing the Internet of Things
with recursive InterNetwork architecture (RINA),’’ in Proc. Int. Conf.
Comput., Netw. Commun. (ICNC), Mar. 2018, pp. 188–194.

[4] T. Ramezanifarkhani and J. Noll. Assessment of Technology.
(2019). SCOTT:D22. v2.0, 2018-07-11, Secure COnnected
Trustable Things (SCOTT) Public Deliverable. [Online]. Available:
https//:www.scottproject.eu

[5] C. E. Zsambok, L. R. Beach, and G. Klein, ‘‘A literature review of ana-
lytical and naturalistic decision making,’’ Contract N66001-90-C-6023 for
the Naval Command, Control Ocean Surveillance Center, San Diego, CA,
USA, 1992.

[6] G. Klein, Decision Making in Complex Military Environments. Fairborn,
OH, USA: Klein Associates Inc, 1992.

[7] H. A. Simon, ‘‘A behavioral model of rational choice,’’ Quart. J. Econ.,
vol. 69, no. 1, p. 99–118, Feb. 1955.

[8] G. Barros, ‘‘Herbert A. Simon and the concept of rationality: Bound-
aries and procedures,’’ Brazilian J. Political Economy, vol. 30, no. 3,
pp. 455–472, 2010.

[9] A. Nowroozi, M. E. Shiri, A. Aslanian, and C. Lucas, ‘‘A general com-
putational recognition primed decision model with multi-agent rescue
simulation benchmark,’’ Inf. Sci., vol. 187, pp. 52–71, Mar. 2012.

[10] M. Fritzsche and P. Keil, ‘‘Agile methods and CMMI: Compatibility or
conflict?’’ e-Inform. Softw. Eng. J., vol. 1, no. 1, pp. 1–8, 2007.

[11] S.W. Lee, H.K.Kim, andR.Y. Lee, ‘‘Enterprise processmodel for extreme
programming with CMMI framework,’’ in Computer and Information
Science. Berlin, Germany: Springer, 2008, pp. 169–180.

[12] RoboCup Official Website. (2011). RoboCup Rescue Agent
Simulation League. [Online]. Available: http://www.robocuprescue.
org/documentation.html.

[13] RoboCup Rescue Results. (2007). Atlanta World Championship
Competitions. Atlanta, United States. [Online]. Available:
http://wiki.robocup.org/wiki/Rescue_Simulation_League and http://www.
robocuprescue.org/wiki/index.php?title=Agent2007results

[14] RoboCup Rescue Results. (2009). World Championship Competitions.
Graz, Austria. [Online]. Available: http://wiki.robocup.org/wiki/
Rescue_Simulation_League and http://www.robocup2009.org/165-0-
results

[15] RoboCup Rescue Results. (2010). Khwarizmi RoboCup Competitions.
Tehran, Iran, [Online]. Available: http://robotic.irost.org

[16] RoboCup Rescue Results. (2010). Iran Open RoboCup Competitions.
Tehran, Iran, [Online]. Available: http://www.iranopen2010.ir/Default.
aspx?tuabid=141&language=en-GB

[17] P. Abrahamsson, J. Bosch, S. Brinkkemper, and A. Mädche, ‘‘Software
business, platforms, and ecosystems: Fundamentals of software production
research (Dagstuhl seminar 18182),’’ Schloss Dagstuhl-Leibniz-Zentrum
fuer Inform., Wadern, Germany, Dagstuhl Rep. 18182, 2018, vol. 8, no. 4,
pp. 164–198.

[18] M. Schaffnit, ‘‘Digital ecosystems,’’ in Digital Business Development.
Berlin, Germany: Springer, 2020, pp. 53–71.

[19] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, ‘‘Agile software
development methods: Review and analysis,’’ 2017, arXiv:1709.08439.
[Online]. Available: http://arxiv.org/abs/1709.08439

[20] T. Dybå and T. Dingsøyr, ‘‘Empirical studies of agile software devel-
opment: A systematic review,’’ Inf. Softw. Technol., vol. 50, nos. 9–10,
pp. 833–859, Aug. 2008.

[21] R. Hoda, N. Salleh, J. Grundy, and H. M. Tee, ‘‘Systematic literature
reviews in agile software development: A tertiary study,’’ Inf. Softw. Tech-
nol., vol. 85, pp. 60–70, May 2017.

[22] H. Altarawneh and A. E. Shiekh, ‘‘A theoretical agile process framework
for Web applications development in small software firms,’’ in Proc. 6th
Int. Conf. Softw. Eng. Res., Manage. Appl., Aug. 2008, pp. 125–132.

[23] R. Mordinyi, E. Kühn, and A. Schatten, ‘‘Towards an architectural frame-
work for agile software development,’’ in Proc. 17th IEEE Int. Conf.
Workshops Eng. Comput. Based Syst., Mar. 2010, pp. 276–280.

[24] R. S. Pressman, Software Engineering: A Practitioner’s Approach.
London, U.K.: Palgrave Macmillan, 2005.

[25] (2019). Extreme Programming, A Gentle Introduction. [Online]. Available:
http://www.extremeprogramming.org.

[26] R. Hastie and N. Pennington, ‘‘Explanation-based decision making,’’ in
Judgment and Decision Making: An Interdisciplinary Reader, T. Connolly,
H. R. Arkes, and K. R. Hammond, Eds. New York, NY, USA: Cambridge
Univ. Press, 2000, pp. 212–228.

[27] G. Klein, Sources of Power Cambridge: How People Make Decisions.
Boston, MA, USA: MIT Press, 1998.

[28] G. A. Klein and R. Calderwood, ‘‘Decision models: Some lessons from the
field,’’ IEEE Trans. Syst., Man, Cybern., vol. 21, no. 5, pp. 1018–1026,
1991.

[29] G.Klein, R. Calderwood, andA. Clinton-Cirocco, ‘‘Rapid decisionmaking
on the fire ground: The original study plus a postscript,’’ J. Cognit. Eng.
Decis. Making, vol. 4, no. 3, pp. 186–209, Sep. 2010.

[30] Y. Ji, R. M. Massanari, J. Ager, J. Yen, R. E. Miller, and H. Ying, ‘‘A fuzzy
logic-based computational recognition-primed decision model,’’ Inf. Sci.,
vol. 177, no. 20, pp. 4338–4353, Oct. 2007.

[31] Y. Ji, H. Ying, P. Dews, A. Mansour, J. Tran, R. E. Miller, and
R. M. Massanari, ‘‘A potential causal association mining algorithm for
screening adverse drug reactions in postmarketing surveillance,’’ IEEE
Trans. Inf. Technol. Biomed., vol. 15, no. 3, pp. 428–437, May 2011.

[32] X. Fan, S. Sun, M. McNeese, and J. Yen, ‘‘Extending the recognition-
primed decisionmodel to support human-agent collaboration,’’ inProc. 4th
Int. joint Conf. Auto. Agents multiagent Syst. (AAMAS), 2005, pp. 945–952.

[33] X. Fan, M. McNeese, B. Sun, T. Hanratty, L. Allender, and J. Yen,
‘‘Human–agent collaboration for time-stressed multicontext decision mak-
ing,’’ IEEE Trans. Syst., Man, Cybern.-A, Syst. Hum., vol. 40, no. 2,
pp. 306–320, Mar. 2010.

[34] K. Beck, Programming Explained: Embrace Change. Reading, MA, USA:
Addison-Wesley, 2000.

[35] T. Dybå, ‘‘Special section on best papers from XP2010,’’ Inf. Softw. Tech-
nol., vol. 53, no. 5, pp. 507–508, May 2011.

[36] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp, ‘‘Motiva-
tion in software engineering: A systematic literature review,’’ Inf. Softw.
Technol., vol. 50, nos. 9–10, pp. 860–878, Aug. 2008.

[37] H. Sharp, N. Baddoo, S. Beecham, T. Hall, and H. Robinson, ‘‘Models of
motivation in software engineering,’’ Inf. Softw. Technol., vol. 51, no. 1,
pp. 219–233, Jan. 2009.

[38] F. Arbab, ‘‘Reo: A channel-based coordination model for component
composition,’’ Math. Struct. Comput. Sci., vol. 14, no. 3, pp. 329–366,
Jun. 2004.

[39] S.-S.-T. Q. Jongmans and F. Arbab, ‘‘Centralized coordination vs.
partially-distributed coordination with reo and constraint automata,’’ Sci.
Comput. Program., vol. 160, pp. 48–77, Aug. 2018.

[40] M. Izadi, A.Movaghar, and F. Arbab, ‘‘Model checking of component con-
nectors,’’ in Proc. 31st Annu. Int. Comput. Softw. Appl. Conf. (COMPSAC),
vol. 1, Jul. 2007, pp. 673–675.

[41] T. R. Farkhani and M. R. Razzazi, ‘‘UML-based representation of
provision-based access control,’’ in Proc. 2nd Int. Conf. Inf. Commun.
Technol., Apr. 2006, pp. 3605–3610.

[42] S. Tokas, O. Owe, and T. Ramezanifarkhani, ‘‘Language-based mecha-
nisms for privacy-by-design,’’ in Privacy and Identity Management. Data
for Better Living: AI and Privacy, F. Friedewald, M. Önen, E. Lievens,
S. Krenn, and S. Fricker, Eds. Cham, Switzerland: Springer, 2020, doi:
10.1007/978-3-030-42504-3_10.

ALIREZA NOWROOZI held a postdoctoral posi-
tion at the Sharif University of Technology, and is
a co-founder of four IT startups. He is currently
an Assistant Professor of computer engineering
with the Media Engineering Department, IRIB
University. He is also a Consultant, advising gov-
ernment and private sector-related industries on
innovative information technologies. He is a spe-
cialist in artificial intelligence, cognitive science,
software engineering, IT security, and blockchain.

Also, he is a recipient of some national and international rewards.

59616 VOLUME 8, 2020

https://doi.org/10.1007/978-3-030-42504-3_10


A. Nowroozi et al.: Crisis Situations Decision-Making Systems Software Development Process With Rescue Experiences

PEYMAN TEYMOORI received the B.S. and
M.S. degrees in computer engineering from the
Ferdowsi University of Mashhad and Amirk-
abir University of Technology, Iran, in 2001 and
2004, respectively, and the Ph.D. degree in com-
puter engineering from the University of Tehran,
in 2013. He was a Visiting Researcher at the
Gwangju Institute of Science and Technology,
South Korea. He is currently a Research Fellow
at the Network and Distributed Systems Group,

Department of Informatics, University of Oslo, Norway. His research inter-
ests include computer networks and software development processes.

TOKTAM RAMEZANIFARKHANI received the
M.Sc. and Ph.D. degrees in information security
from Polytechnic Tehran (Amirkabir University
of Technology). She is currently a Postdoctoral
Research Fellow at the Department of Informatics,
University of Oslo. Her research interests include
thewide area of information security, including but
not limited to software and language-based secu-
rity, network security, security mechanisms and
protocols, formal methods, security measurement

and assurance. She is involved in several projects working with industrial
and academic partners.

MOHAMMAD REZA BESHARATI received the
B.Sc. degree in software engineering from the
Sharif University of Technology, Tehran, Iran.
He is currently pursuing the Ph.D. degree in soft-
ware engineering with the Sharif University of
Technology, where he is also a member of the Dis-
tributed and Multiagent Systems Lab, Department
of Computer Engineering. His main research areas
of interest are logic in computer science, seman-
tics, software engineering, software development

and evolution, distributed systems, and theory of computation.

MOHAMMAD IZADI received the B.Sc., M.Sc.,
and Ph.D. degrees in computer engineering and
another M.Sc. degree in philosophy of science, all
from the Sharif University of Technology, Tehran,
Iran, and the Ph.D. degree in computer science
from Leiden University, The Netherlands. He is
currently an Assistant Professor and the Head
of the Distributed and Multiagent Systems Lab,
Department of Computer Engineering, Sharif Uni-
versity of Technology. His main research areas of

interest are logic in computer science, semantics, game theory, distributed
algorithms, and theory of computation.

VOLUME 8, 2020 59617


