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ABSTRACT For agricultural disease image identification, obtained images are typically unclear, which can
lead to poor identification results in real production environments. The quality of an image has a significant
impact on the identification accuracy of pre-trained image classifiers. To address this problem, we propose
a generative adversarial network with dual-attention and topology-fusion mechanisms called DATFGAN.
This network can effectively transform unclear images into clear and high-resolution images. Additionally,
the weight sharing scheme in our proposed network can significantly reduce the number of parameters.
Experimental results demonstrate that DATFGAN yields more visually pleasing results than state-of-the-art
methods. Additionally, treated images are evaluated based on identification tasks. The results demonstrate
that the proposed method significantly outperforms other methods and is sufficiently robust for practical use.

INDEX TERMS Crop leaf disease, attention, generative adversarial networks, super-resolution,

identification.

I. INTRODUCTION

Crop disease is a major factor limiting crop cultivation. Crop
disease can lead to sharp drops in production, which can
lead to huge losses in the agricultural economy. Therefore,
early identification of crop disease is critical for the selection
of optimal treatments and is an important prerequisite for
reducing crop loss and pesticide use. All crops are suscep-
tible to diseases and crop diseases negatively affect yield
and quality. However, excessive chemical control can leave
drug residues and lead to environmental pollution. Based on
improved living standards, the demand for crop quality is
greater than ever. Therefore, the early diagnosis and treatment
of crop diseases are issues that must be resolved.

In recent years, agricultural disease identification is a
hot research topic. Cheng efal. [1] used the fine-tuning
method to classify and identify agricultural pests dis-
ease while using deep convolutional neural networks
(DCNN), which can achieve a satisfactory recognition effect.
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Yue et al. [2] developed a super-resolution method for agri-
cultural pests disease restoration and detection. A plant dis-
ease diagnosis system was proposed by Kawasaki et al. [3] to
identify two leaf diseases in cucumber plants by using a CNN.
Sun et al. [4] improved the traditional AlexNet [5] model
by implementing CNN models combining batch normaliza-
tion and global pooling to identify numerous leaf diseases.
These studies demonstrate the feasibility and effectiveness of
applying DCNNSs in the field of leaf disease identification.
However, images obtained from farms are typically unclear.
Poor image quality significantly reduces the identification
accuracy of pre-trained classifiers, which are typically trained
on clear high-resolution datasets.

To improve the accuracy of agricultural disease image clas-
sification, low-resolution images must be super-resolved to
increase spatial resolution and reconstruct the high-frequency
details of sharp edges. In this paper, we propose a gen-
erative adversarial network (GAN) with dual-attention and
topology-fusion mechanisms to transform low-resolution
images captured at farms. The proposed network is called
DATFGAN. To evaluate the proposed method, we compare
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it to state-of-the-art methods in terms of classification accu-
racy when images are transformed. We present experiments
using eight classic classification networks and crop leaf dis-
ease images with a total of 27 categories as a classification
dataset. An example of a crop leaf disease image that was
super-resolved using DATFGAN is presented in Figure 1.

Ground Truth Bicubic DATFGAN

FIGURE 1. Super-resolved image generated by DATFGAN (right).

Experimental results demonstrated that classification accu-
racy can be improved if images are transformed using
super-resolution methods. Compared to the state-of-the-art
methods considered in this research, DATFGAN provides
superior performance with an average accuracy improvement
of 3%. Our main contributions can be summarized as follows.

1) We propose a novel image super-resolution method for
agricultural disease images.

2) To the best of our knowledge, our method is the first to
introduce GANS into agricultural disease image processing.

3) According to benchmark tests, DATFGAN outperforms
state-of-the-art methods in terms of visual quality and classi-
fication accuracy.

Il. RELATED WORKS

The reliable identification and detection of crop diseases
and crop stress are a significant challenge in the agricul-
tural industry [6], [7]. Zhang et al. proposed an apple leaf
disease recognition method [8] based on image process-
ing techniques and pattern recognition methods. In their
experiments, an image dataset of diseased apple leaves con-
taining 90 disease images was considered. Their approach
achieved a recognition accuracy greater than 90%. In [9],
Waghmare et al. focused on a grape plant leaf disease detec-
tion system. Their system takes a single leaf as an input
and performs segmentation following background removal.
Their work focused on major diseases that are commonly
observed in grape plants, namely downy mildew and black
rot. Their proposed approach achieved an accuracy of 96.6%.
Bashish et al. developed a fast, automatic, cheap, and accu-
rate image-based method [10] for the identification of leaf
diseases. Their method consists of four main phases: a
color transformation structure, image segmentation using the
K-means clustering technique, calculation of texture fea-
tures, and a pre-trained neural network. Experimental results
demonstrated that their method could successfully detect and
classify diseases with an accuracy of approximately 93%.
In [11], Arivazhagan et al. proposed a software solution for
the automatic detection and classification of plant leaf dis-
eases. Their method consists of four main steps. First, a color
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transformation structure for an input RGB image is created.
Second, green pixels are masked and removed using a spe-
cific threshold value followed by a segmentation process.
Third, texture statistics are computed for useful segments.
Fourth, extracted features are passed through a classifier.
Their method successfully classified the examined diseases
with an accuracy of 94%. However, traditional machine learn-
ing methods [12]-[14], [14]-[16] require complicated image
preprocessing and classification steps, and cannot match the
accuracy provided by deep learning methods based on CNNs.

Over the past few years, to improve crop management and
health, many researchers have studied crop disease identifi-
cation based on deep learning methods. Sladojevic et al. [17]
proposed a novel approach to the development of plant
disease recognition models based on leaf image classifica-
tion using deep convolutional networks. Their model could
recognize 13 different types of plant diseases and had the
ability to distinguish plant leaves from their surroundings.
Experimental results for their developed model demonstrated
precision values between 91% and 98% for separate class
tests with an average value of 96.3%. Amara et al. devel-
oped a deep-learning-based approach [18] that automates the
process of classifying banana leaf diseases. They made use
of the LeNet [19] architecture as a CNN to classify image
datasets. Their preliminary results demonstrated the effec-
tiveness of deep learning approaches, even under challenging
conditions, such as illumination variation, complex back-
grounds, and different resolutions, sizes, poses, and orienta-
tions of real images. Mohanty et al. [20] used a public dataset
of 54,306 images of diseased and healthy plant leaves col-
lected under controlled conditions to train a DCNN to identify
14 crop species and 26 diseases (or the absence thereof). Their
trained model achieved an accuracy of 99.35% on a held-out
test set. Using a dataset of cassava disease images captured in
the field in Tanzania, Ramcharan et al. [21] applied transfer
learning to train a DCNN to identify three diseases and two
types of pest damage (or the lack thereof). Their best-trained
model accuracies were 98% for brown leaf spot, 96% for
red mite damage, 95% for green mite damage, 98% for cas-
sava brown streak disease, and 96% for cassava mosaic dis-
ease. Ferentinos [22] trained models using an open database
of 87,848 images containing 58 combinations of plants or
diseases. Several model architectures were trained, including
an AlexNet [5], VGG [23] and GoogLeNet [24], and the
greatest accuracy achieved for plant disease identification
was 99.53%.

According to these studies, CNNs are useful tools in the
field of crop disease identification and satisfactory results
have been obtained. However, the crop disease images
obtained from farms are typically unclear low-resolution
images, which have a significant impact on the improvement
of crop disease image identification accuracy. Therefore, it is
crucial to improve crop disease images using super-resolution
methods. We propose a GAN with dual-attention and
topology-fusion mechanisms to transform low-resolution
images obtained from farms.
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FIGURE 2. Generator network.
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FIGURE 3. Discriminator network.

Ill. PROPOSED METHOD

We detail our network architecture in Section III-A. We then
introduce two attention mechanisms called channel attention
and texture attention in Section III-B. Finally, we define
adversarial training in Section III-C.

A. NETWORK ARCHITECTURE

We divide this section into three parts to describe the over-
all network architecture (Section III-A1), parameter sharing
(Section III-A2), and topology fusion (Section III-A3). First,
we describe the overall architecture of DATFGAN. Second,
we introduce parameter sharing operations that are used in
the generator network. Third, discuss how to take advantage
of both residual and dense connections.

1) OVERALL ARCHITECTURE

DATFGAN can be divided into a generator and discrimina-
tor. Figure 2 presents the generator network of DATFGAN,
which contains three basic components: a shallow feature
extraction network, parameter-sharing attention-enhanced
topology-fusion network, and reconstruction network. The
shallow feature extraction network used for topology fusion
contains two convolutional layers for extracting shallow fea-
tures from the generator network. Low-resolution images are
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used as inputs for the generator network and divided into two
branches. One branch feeds into an upscaling module after
the first convolutional layer in the generator network. The
other branch feeds into the topology fusion network to predict
details following the second convolutional layer. The recon-
struction network exploits global residual learning [25] and
combines upscaled images with predicted details to generate
high-resolution images.

The discriminator network is presented in Figure 3. The
discriminator network is trained to solve a maximization
problem. It contains seven convolutional layers with an
increasing number of filter kernels (increasing by factors
of 2 from 64 to 512 kernels, similar to the VGGNet [23]).
Striding convolutions are used to reduce the image resolution
each time the number of features is doubled. The resulting
512 feature maps are fed into a final LeakyReLu activation
function and two linear layers to increase the probability of
sample classification.

2) PARAMETER SHARING

A convolution operation extracts local information and some
statistical characteristics of local information may be the
same as those of other local information, meaning the features
learned through convolution operations can also be used for
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other information. Therefore, the same learning features can
be reused for multiple positions in the image. In a CNN,
a convolution kernel (filter) is used to extract a feature (one
dimension of input data). If the input data have multiple fea-
tures (dimensions), there will be many convolution kernels,
leading to parameter explosion in the convolution layer. Addi-
tionally, each convolution kernel in a layer that extracts spe-
cific features while ignoring the local correlations between
data.

In parameter sharing, each feature has translation invari-
ance, meaning the same feature can appear in different posi-
tions in different data and the same convolution kernel can be
used to extract this feature from multiple positions. Further-
more, based on the local correlations between data, by per-
forming weight sharing, a convolutional layer can share its
convolution kernel, which reduces the number of parame-
ters in the convolutional layer. By increasing the number of
layers in a deep neural network, each convolutional layer
can use a different convolution kernel to extract as many
features as possible. Therefore, we use parameter-sharing
attention-enhanced topology-fusion networks in the genera-
tor network of DATFGAN to reduce the number of network
parameters and probability of overfitting, and to make a
deeper structure trainable.

3) TOPOLOGY FUSION

ResNet [25] was proposed to solve the problem of degrada-
tion in deep learning. When the number of layers in a model
increases, the error rate decreases. The degradation problem
is closely related to optimization. When the structure of a
model becomes increasingly complex, optimization becomes
increasingly difficult, resulting in unsatisfactory learning
results. The residual block in ResNet [25] was implemented
using residual connections. The input and output of the block
were added element-wise through the residual connections.
This simple form of addition does not add any extra param-
eters or calculations to the network, but it can significantly
increase the training speed of the model, thereby improving
the overall effectiveness of training. When the number of
layers in the model increases, this structure can also solve the
degradation problem.

ResNet [25] can train deep CNNs by establishing residual
connections between front and back layers, which aids with
the back-propagation of gradients during training. The basic
idea of DenseNet [26] is the same as ResNet [25], but dense
connections are established between all previous layers and
latter layers. DenseNet [26] achieves better performance than
ResNet [25] with fewer parameters and lower computational
cost. Compared to ResNet [25], DenseNet [26] uses a more
aggressive and dense connection mechanism of connecting
all layers, meaning DenseNet [26] performs direct concatena-
tion of feature maps from different layers, which can improve
feature reuse.

To take advantage of both residual and dense connec-
tions, we combined both connections types in a single layer.
Compared to residual networks, our proposed generator can
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preserve more information from previous states, providing
our network with contiguous memory. Compared to dense
networks, our proposed structure can reduce the channel
growth rate by half. This significantly reduces the number
of network parameters and makes deeper structures trainable.
Additionally, this topology can enhance the flow of informa-
tion and gradients. Figure 4 presents the inner structure of the
proposed mixed-link connections. The operator M in Figure 4
denotes a mixed-link operation, which yields a fusion of
residual and dense connections between the current layer and
previous layer. Mixed-link operations can be calculated using
Formulas 1-3.

Fl |, F? | = Slice(F;_1), (1

In Formula 1, the input channels are sliced into two equal
part. Slice(.) denotes a slice operation in Formula (2). Assum-
ing that the feature map of an input F;_; has N channels,
the output feature maps F’ Ll and F 12— | Will contain N/2 chan-
nels after the slicing operation.

Fl, F? = Slice(W(F;_1) + b), )

In Formula 2, the output of one layer or unit is sliced into
two equal parts in the channel dimension. In this formula,
W denotes the weight of a convolutional layer and b denotes
the bias.

Fiy1 = C(C(F! + F2 |, F}),Fl ) (3)

In Formula 3, C(.) denotes a concatenation operation,
F ILI and F 1'2—1 are the sliced parts of the features from the
previous layer, and F l.l and F' 1.2 are the sliced parts from the
current layer. The addition of F’ l.l and F’ 1.2_1 makes the topology
residual and the concatenation of F l.l + F 12_ 0 F 1.2, and F il_l
makes the topology dense. These formulas make our network
partially residual [25] and partially dense [26].

At the end of each block, we use a transition convo-
lution to reshape features to their original size, as shown
in Formula 4, where W; denotes the weight of a 1 x 1
convolution for block-feature fusion, which can reduce the
number of channels. F;_; denotes the features of the pre-
ceding mixed-link block and F; denotes the output features
of the current mixed-link block. Based on this mixed-link
mechanism, our network can synchronously generate both
residual and dense connections, which decreases parameter
growth and improves network performance.

Fj = W,(Fj_) + b, (4)

B. DUAL ATTENTION

We propose channel attention in Section III-B1 and texture
attention in Section III-B2. Both of these mechanisms are
used for improving the effectiveness of transforming images.

1) CHANNEL ATTENTION
Channel attention is used in our topology fusion network to
model the interdependencies of convolution channels, which
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FIGURE 4. Topology fusion.

Channel Attention

FIGURE 5. Channel attention.

can be learned autonomously to boost important channels and
suppress useless channels. This mechanism behaves like a
filter to recalibrate the information and gradient flow among
networks. As shown in Figure 5, the channel attention module
consists of a global average pooling layer, which squeezes
features spatially to extract global information from channels.
Next, two 1 x 1 convolutions generate a bottleneck. Finally,
a Sigmoid layer is used to normalize information and the
outputs are used to reweight the original outputs to generate
self-trained channel-wise attention. Channel attention oper-
ates according to Formulas 5 and 6:

1 H W
SF) =2 DD FG)), (5)
i

where S(.) is a squeeze operation that pools the features in
each channel into a global mean, and H and W denote the
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height and width of the input feature map, respectively.
A(F) = 8(Wyo (WaS(F))) x F, (6

where A(.) denotes the channel attention function, o denotes
the ReLLU function, and W, and W, denote two 1 x 1 con-
volutions. W, first reduces the channels to 1/16th of their
original size, then W, expands the tensor to the original shape,
which forms a bottleneck. § denotes the sigmoid function,
which normalizes the weights for each channel to values
between zero and one. We use these weights to boost useful
information and suppress useless information.

T

Texture
Texture Attention

FIGURE 6. Texture attention.

2) TEXTURE ATTENTION

As shown in Figure 6, texture is a very important feature in
plant images and is very useful for image super-resolution
tasks. Additionally, the high-frequency details of an image
are typically located around edges, meaning it is important to
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assign attention with guidance from edges. Therefore, we use
texture attention in our reconstruction network.

We utilize edges as global spatial attention components for
image reconstruction according to Formula 7-8, where Wy,
represents expanding the original number of channels. In this
process, the number of global features is doubled. Half of the
channels are weighted using global information and the other
half retains local information. The two halves are summed
and averaged to fuse global and local information.

Fl,F}
Fip1

Slice(Wexp(Fi—l))v N
Up(Canny(Fo)) * F! + F?, (8)

As shown in Formula 8, Up denotes an up-sampling oper-
ation and Canny denotes an operator for extracting edge
features. Fp denotes the initial input features. The resulting
edge features following up-sampling are multiplied by half of
the initial input features using large-scale pixel maps to guide
smaller maps. The result of this operation is then added to the
other half of the initial input features to perform fusion.

Figure 7 presents edge features obtained from an RGB
image processed by the Canny operator. We also present
colored edge features for the sake of clarity.

Edge Features Colored Edge Features

RGB Image

FIGURE 7. Edge features.

C. ADVERSARIAL TRAINING

Adpversarial training is based on the concept of confrontation.
Two modules can achieve similar teaching and learning goals
through confrontational learning. Adversarial training is a
method for smoothing the loss function of a landscape and
is designed to make the output of a model smoother. We did
not expect this method to improve the generalization ability
of our model, but there are potential simplifications that can
be applied to real data to make prediction functions operate
more smoothly and simply.

This method operates based on the premise that similar
inputs should yield similar outputs. If a small perturbation
is introduced into an input, the corresponding output should
also change very little. Therefore, the most effective way for
implementing this type of regularization is to force different
inputs to yield the same output. One can then attempt to
identify the disturbance that generates the greatest loss to
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construct a confrontation sample and minimize the cross
entropy between the output and ground truth.

Instead of directly optimizing the mean squared error
between input images and targets, we introduced adversarial
training to generate more visually pleasing images. Adversar-
ial loss is defined by the following formula:

Loan = E[D(GUr))] — E[D(IxR)], 9

where D(.) denotes the discriminator of DATFGAN
and G(.) denotes the generator. I}z denotes generated
pseudo-high-resolution images and /gr denotes real-world
high-resolution images.

After incorporating adversarial loss, the total loss can be
represented as follows:

L = aLgan + Leontent (10)

where L is the total loss and Lgay is the adversarial loss.
Lecontens denotes the total perceptual loss for the target content.
We set « to 0.01 in this work.

IV. EXPERIMENTS

Our experiments consisted of four stages: experimental setup
(Section IV-A), dataset management (Section IV-B), train-
ing DATFGAN (SectionIV-C), and comparing DATFGAN
to state-of-the art methods (SectionIV-D). In the first stage,
we defined hardware and software environments. In the sec-
ond stage, we collected data for training DATFGAN and
performing classification. In the third stage, we trained
DATFGAN using the collected data. In the final stage,
we transformed images using different super-resolution
methods and compared the results in terms of image classifi-
cation accuracy.

A. EXPERIMENTAL SETUP

We trained the proposed network using a computer equipped
with the hardware and software listed in Table 1. Pytorch was
used as a framework for constructing the network and CUDA
was adopted for acceleration.

TABLE 1. Experiment setup.

Hardware Software
CPU: 8 Cores Windows10
RAM: 32 GB DDR4 CUDA10.0 + CUDNN?7.0

GPU: NVIDIA RTX2080Ti (11GB GDDR6) Pytorch1.0.1 + Python 3.7

B. DATASETS

We used the DIV2K dataset [27] for pre-training the pro-
posed super-resolution model. We used bicubic interpolation
to down-sample images and we added additive Gaussian
noise to the low-resolution images to create clear and unclear
image pairs. We also used 1350 crop leaf disease images
from the Plant Disease Recognition Competition of the Al
Challenger 2018. These images include 27 different cate-
gories and each category contains 50 images. We refer to
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FIGURE 8. CLDI dataset.

this dataset as the CLDI dataset. The CLDI dataset contains
both crop leaf disease images of different species and dif-
ferent disease images for the same species, which increases
the difficulty of classification and reduces the potential for
bias.

We selected 40 images from each category to train the
classification network models and 10 images to test the clas-
sification models. All images were preprocessed for better
training and testing results. We randomly rotated and flipped
the images and used batch normalization for data augmenta-
tion. The CLDI dataset is presented in Figure 8. Additionally,
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Table 2 lists the categories and numbers of images in the
CLDI dataset.

C. TRAINING DETAILS AND PARAMETERS FOR DATFGAN

We trained DATFGAN on an NVIDIA RTX2080Ti GPU
using the DIV2K dataset [27] and used bicubic interpo-
lation to down-sample the images. We also added addi-
tive Gaussian noise to the low-resolution images to create
clear and unclear image pairs. We randomly rotated and
flipped the images for data augmentation. For optimiza-
tion, we used the RMSProp optimizer to minimize the loss
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TABLE 2. CLDI dataset.

Name Amount
Apple Scab 50
Potato Late Blight Fungus 50
Cedar Apple Rust 50
Strawberry Scorch 50
Cherry Powdery Mildew 50
Tomato Powdery Mildew 50
Cercospora Zeaemaydis Tehon and Daniels 50
Tomato Bacterial Spot Bacteria 50
Puccinia Polysora 50
Tomato Early Blight Fungus 50
Corn Curvularia Leaf Spot Fungus 50
Tomato Late Blight Water Mold 50
Maize Dwarf Mosaic Virus 50
Tomato Leaf Mold Fungus 50
Grape Black Rot Fungus 50
Tomato Target Spot Bacteria 50
Grape Leaf Blight Fungus 50
Tomato Septoria Leaf Spot Fungus 50
Grape Black Measles Fungus 50
Tomato Spider Mite Damage 50
Citrus Greening June 50
Tomato YLCV Virus 50
Peach Bacterial Spot 50
Tomato Tomv 50
Pepper Scab 50
Apple Frogeye Spot 50
Potato Early Blight Fungus 50

Total 1350

function and trained the model for 200 epochs. We set the
initial learning rate to 0.0001 and reduced the rate after
every 60 epochs. The momentum was set to 0.9 and the
weight decay was set to 0.0001. We used 64 images as the
mini-batch size to feed into the model. We also pre-trained
our discriminative model using a VGG19 model trained in
Pytorch to perform initialization and avoid undesired local
optima.

D. COMPARISON TO STATE-OF-THE ART METHODS

We divided this stage into two phases of visual result
inspection (Section IV-DI) and image classification
(Section IV-D2). In Section IV-D1, we present super-
resolution results and the ground truth images of crop leaf
disease images. In Section IV-D2, we describe the training
details and experimental results of images classification.

1) VISUAL RESULT INSPECTION

We compared our final models to state-of-the-art peak
signal-to-noise ratio (PSNR)-oriented super-resolution meth-
ods, including Biubic, SRResNet [28], EDSR [29],
SRDenseNet [30], VDSR [31] and LapSRN [32], using the
CLDI dataset.

Because there is no effective standard metric for per-
ceptual quality, we present representative qualitative results
in Figure 9. PSNRs and structural similarity indexes are
also provided for reference. In Figure 9, one can see that
DATFGAN outperforms previous approaches in terms of both
sharpness and details. For example, DATFGAN can produce
sharper and more natural crop leaf disease image textures
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compared to state-of-the-art PSNR-oriented super-resolution
methods, which tend to generate blurry results with unnatural
and noisy textures. Furthermore, previous PSNR-oriented
super-resolution methods sometimes introduce unpleasant
artifacts. DATFGAN eliminates such artifacts and produces
natural results. As a result, DATFGAN can reconstruct the
detailed appearances of lesions more accurately than state-of-
the-art PSNR-oriented super-resolution methods and improve
classification accuracy.

2) IMAGE CLASSIFICATION

We selected AlexNet [5], VGG-16 [23], Inception-v3 [33],
ResNet-101 [25], Resnext50 [34], DenseNet-121 [26],
MobileNet V2 [35], and ShuffleNet V2 [36] as classifica-
tion networks. During the process of training these classi-
fication networks, we retained most of the weights in the
original models and only trained softmax layers. We used
1080 images from the CLDI dataset to train each model and
270 images from the CLDI dataset to test each model. Adam
was used as an optimizer and cross entropy was used as
a loss function. Additional training details could be found
in Table 3.

TABLE 3. Training details.

Method Learning rate  Batch size ~ Epochs
Alexnet 0.0001 20 50
VGG16 0.0001 20 50
Inception-v3 0.0001 20 65
Resnet101 0.0005 20 50
Resnext50 0.0005 20 60
Densenet121 0.0005 20 50
MobileNet V2 0.0001 20 60
ShuffleNet V2 0.0001 20 70

Figure 10 presents the classification accuracies for images
transformed by different super-resolution methods and raw
images. In Figure 10, one can see that classification accu-
racy can be improved if images are transformed using
super-resolution methods. Compared to the state-of-the-art
methods tested in this experiment, DATFGAN performs bet-
ter and improves classification accuracy to a greater extent
than the other super-resolution methods, particularly for the
ResNet-101 [25] and DenseNet-121 [26] classifiers. Crop
leaf disease image classification results are listed in Table 4.

V. DISCUSSION

This paper proposed a super-resolution method for increas-
ing the spatial resolution of crop leaf disease images.
According to our experiments, the classification accuracy for
images transformed by super-resolution methods is greater
than that for low-resolution images obtained from farms.
This is because images transformed by super-resolution
method, can convey much more information, such as details
regarding lesions, compared to low-resolution images. Our
experiments on CLDI dataset classification clearly demon-
strate this phenomenon because using the low-resolution
images resulted in lower accuracy. These results indicate
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Raw Bicubic SRDenseNet SRResNet
PSNR/SSIM 29.33/0.90 31.06/0.80 31.35/0.82

> 1 L
EDSR LapSRN DATFGAN
31.29/0.82 28.79/0.72

Bicubic SRDenseNet SRResNet

PSNR/SSIM 25.58/0.79 26.50/0.72 26.79/0.73

VDSR EDSR LapSRN DATFGAN

26.63/0.70 26.75/0.73 26.75/0.72 24.37/0.60
Raw Bicubic SRDenseNet SRResNet
PSNR/SSIM 27.66/0.87 30.41/0.83 30.63/0.85
Tomato septoria leaf spot fungus VDSR EDSR LapSRN DATFGAN
30.48/0.84 30.53/0.85 30.57/0.85 28.48/0.78

Raw Bicubic SRDenseNet SRResNet
PSNR/SSIM 27.34/0.85 28.41/0.76 28.49/0.78

App|e frogeye spot VDSR EDSR LapSRN DATFGAN
28.42/0.79 28.43/0.78 28.45/0.78 26.34/0.69

FIGURE 9. Visual results.

that the super-resolution methods successfully reconstructed state-of-the-art methods and determined that DATFGAN
the detailed appearances of lesions and facilitated the improves classification accuracy more than the other
identification of diseases. We compared DATFGAN to methods.
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TABLE 4. Classification accuracy.

Method Accuracy(%)
Raw SRResNet EDSR LapSRN VDSR SRDenseNet  DATFGAN(Ours)
Alexnet 85.92 86.35 86.48 86.29 87.03 86.29 88.14
VGGl16 85.55 86.26 86.26 85.92 86.66 86.29 88.51
Inception-v3 87.78 88.53 88.44 88.57 88.74 88.41 89.67
Resnet101 88.88 89.62 89.70 89.62 90.00 89.62 91.48
Resnext50 87.77 88.41 88.61 88.82 88.41 88.61 89.63
Densenet121 88.51 89.25 89.60 89.62 89.25 89.25 92.59
MobileNet V2 90.74 91.34 91.37 91.37 91.44 91.77 92.73
ShuffleNet V2 89.63 90.52 90.56 90.89 90.52 90.53 91.41
Overall classification accuracy
Raw
SRResNet
94 4 EDSR
LapSRN
VDSR
mmm SRDenseNet
DATFGAN(ours)
92 1

Accuracy
[(e}
o

Rl I

Alexnet VGG16 Inception-v3

FIGURE 10. Overall classification accuracy.

DATFGAN is a GAN with dual-attention and topology-
fusion mechanisms. To make use of both residual and dense
connections, we implemented both types of connections in
a single layer. Compared to residual networks, the gen-
erator of DATFGAN can preserve more information from
previous states, which enables our network to maintain con-
tiguous memory. Compared to dense networks, DATFGAN
can reduce the channel growth rate by half, which signifi-
cantly decreases the number of network parameters, making
deeper structures trainable. We used two attention mecha-
nisms called channel attention and texture attention. Channel
attention can model the interdependencies of convolution
channels, which can be learned autonomously to boost impor-
tant channels and suppress useless channels. Texture attention
can assign attention based on guidance from edges, meaning
we can utilize edges as global spatial attention mechanisms
for image reconstruction. Additionally, DATFGAN can effec-
tively transform unclear images into clear and high-resolution
images. Furthermore, the parameter sharing mechanism in
our proposed network can significantly reduce the number

VOLUME 8, 2020

Resnet101
Method

Resnext50 Densenetl21 MobileNet V2 ShuffleNet V2

of parameters. Although DATFGAN has many advantages
over previous methods, there are still some limitations
that must be overcome. Traditional deep-learning-based
super-resolution methods typically use average pixel posi-
tions, making images overly smooth, but increasing PSNR.
DATFGAN does not use averaging, resulting in better
visual effects, but reducing PSNR compared to other
super-resolution methods.

One of the most important techniques in deep learning,
including CNN:ss, is transfer learning, which is also as known
as fine-tuning. In this study, we slightly modified state-of-
the-art network architectures to avoid image size reduction
and produce RGB images directly. In future studies, we will
conduct network training using larger image datasets, such
as ImageNet [37], and evaluate the resulting classification
performance.

VI. CONCLUSION

In this paper, we proposed a novel image restoration method
for crop leaf disease images. To the best of our knowledge,
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our method is the first to introduce GANs into agricultural
disease image processing. We took advantage of both residual
and dense connections to reduce the number of network
parameters significantly and make deeper structures train-
able. Furthermore, a dual-attention mechanism provided a
significant performance boost. Channel attention can boost
important channels and suppress useless channels. Texture
attention can assign attention based on the texture features
and utilize textures as global spatial attention mechanisms
during image reconstruction. According to our experimental
results, DATFGAN outperforms state-of-the-art methods in
terms of both visual quality and classification performance.
Based on topology fusion and effective attention mecha-
nisms, DATFGAN can not only enhance classification accu-
racy, but also reduce the number of network parameters,
making it very practical for real-world applications.
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