
Received February 17, 2020, accepted March 15, 2020, date of publication March 19, 2020, date of current version March 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2981869

An Adversarial Discriminative Convolutional
Neural Network for Cross-Project
Defect Prediction
LEI SHENG , LU LU , AND JUNHAO LIN
School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China

Corresponding author: Lu Lu (lul@scut.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61370103, in part by the Guangzhou
Produce and Research Fund under Grant 201902020004, and in part by the Fundamental Research Funds for the Central Universities.

ABSTRACT Cross-project defect prediction (CPDP) is a promising approach to help to allocate testing
efforts efficiently and guarantee software reliability in the early software lifecycle. A CPDP method usually
trains a software defect classifier based on labeled data sets. Then the trained classifier can predict new
projects without labeled data. Most previous CPDP techniques focused on manually designing handcrafted
features. However, these handcrafted features ignore the programs’ semantic information. Moreover, some
other existing defect prediction approaches learned semantic features from source code to build classifiers
directly. However, they did not consider the distribution divergence between source and target projects.
To address these limitations, we put forward a new method called Adversarial Discriminative Convolutional
Neural Network (ADCNN). It can extract the transferable semantic features from source code for CPDP
tasks. Specifically, we first parse source files into token vectors and then map them to integer vectors via
word embedding. Second, we combine adversarial learning with discriminative feature learning to train the
ADCNNmodel. The key of the ADCNNmodel is to learn the discriminative mapping of the target project to
the source feature space by deceiving a domain discriminator. A domain discriminator tries to distinguish the
target project files from the source project files. Finally, we use the extracted transferable semantic features
to build a classifier for CPDP tasks. We evaluate our method on ten benchmark projects in terms of F-
measure, AUC, and PofB20 (an effort-aware evaluation metric). The experimental results demonstrate that
our ADCNN method performs better compared with other related CPDP methods.

INDEX TERMS Cross-project defect prediction, transfer learning, adversarial learning, deep learning,
convolutional neural network.

I. INTRODUCTION
With the increase of software scale and complexity, soft-
ware reliability assurance becomes more difficult and vital.
Software testing is an essential means of reliability assur-
ance. However, it is impractical for testers to test all code
units. Software defect prediction (SDP) could help to find the
defect-prone modules or files by analyzing the characteristics
of static code. With the help of SDP, the software testing team
could allocate resources more efficiently [25].

SDP usually uses machine learning to train prediction
models [5], [21] based on historical data (e.g., source code
edit logs [27]). Depending on whether the source project

The associate editor coordinating the review of this manuscript and
approving it for publication was Yang Liu.

and the target project are from the same project, SDP can
be divided into Within-Project Defect Prediction (WPDP)
[19], [34], [35], [44] and Cross-Project Defect Prediction
(CPDP) [32]. In the early stages of a project, it is difficult for
WPDP to build a feasible predictive model due to the lack of
labeled file information. UnlikeWPDP, CPDP uses sufficient
labeled file information in mature projects to train the defect
predictors, which can predict whether the new project files
are defective. The CPDP method is a dominant application of
transfer learning [30]. In this paper, we focus on researching
CPDP.

The CPDP methods usually contain two phases: extracting
features from source files and building machine learning
classifiers. Some prior researches have focused on man-
ually designing new or different features and combining

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 55241

https://orcid.org/0000-0002-5725-1375
https://orcid.org/0000-0001-6372-7088
https://orcid.org/0000-0001-9544-2968


L. Sheng et al.: ADCNN for CPDP

FIGURE 1. Left: Different projects have different distributions. The classifiers trained by source
projects could not necessarily be adapted to target projects. Right: When matched the
distributions, the cross-project defect predictors would be more transferable to other projects.

certain features, such as Halstead features [23], MaCabe
features [24], and CK features [7]. Using these features,
researchers built feasible models to distinguish between
defective files and non-defective files effectively. Neverthe-
less, the manually extracted features ignore the rich semantic
features of the program. Hence, in recent years, many studies
[8], [20], [33], [41] have proposed to extract the abstract
features hidden in semantics through deep learning (DL).
Furthermore, they demonstrated that the DL-based methods
could improve prediction performance. Generally speaking,
the DL-based methods extract features from the program’s
abstract syntax tree (AST) by using deep learning networks.
Inspired by this, we utilize convolutional neural networks as
the feature extractors. However, because different projects
have different code characteristics (e.g., code scales, coding
styles, etc.), different projects have significantly different
distributions [13]. As shown in Figure 1 (left), the classifiers
trained by source projects could not be adapted to target
projects because of the different distributions. After matching
the distributions of projects via a transfer learning technique,
the transferable data representations would be applied to train
a transferable predictor across projects (Figure 1(right)).

In this paper, we propose a new model called Adversarial
Discriminative Convolutional Neural Network (ADCNN).
We aim to eliminate the evil influence of the differences in
the distribution of semantic features between the source and
target projects and learn the extracted transferable features for
CPDP missions. First, we parse the source code of each file
into a numerical vector as the input of our model. Second,
we introduce adversarial discriminative learning to minimize
the distance between the source mapping distribution and the
target mapping distribution through two independent training
stages. In the first stage, we only train the source encoder and
source classifier using the labeled source data. Next, we train
the target encoder to make the target data representation

similar to the source data representation, by fooling the
discriminator. By reducing distribution differences between
projects, our ADCNN can learn the transferable semantic fea-
tures. Finally, we feed the features generated from both source
and target projects into a Logistic Regression (LR) classifier
to conduct CPDP. The following are the main contributions
of our paper.

• In this paper, considering the data distribution diver-
gence between projects and adopting the domain adapta-
tion method, we put forward a new CPDPmodel, named
ADCNN. The key is that ADCNN uses adversarial dis-
criminative learning to learn an asymmetric mapping,
where it changes the target representation distribution to
match the source distribution.

• We evaluate our ADCNN on ten benchmark projects in
terms of F-measure, AUC, and PofB20 (an effort-aware
evaluation metric). The experimental results prove that
our ADCNN method could improve prediction perfor-
mance compared with other related CPDP methods.
[20], [29], [31], [38], [41].

We organize the remaining parts of the paper as follows.
We introduce the related work of software defect prediction in
Section II. We elaborate our proposed ADCNN in Section III.
We show our settings of experiments and evaluated metrics
in Section IV. Then we present our results in Section V.
Next, we discuss the performance of our model under dif-
ferent parameter setting and threats to validity in Section VI.
In Section VII, we summarize this paper and discuss possible
future works.

II. RELATED WORK
SDP has attracted the attention of a large number of
researchers [2], [16], [19], [35], [36], [43]. In this section,
we mainly introduce related work from three aspects: SDP

55242 VOLUME 8, 2020



L. Sheng et al.: ADCNN for CPDP

using handcrafted features, SDP using DL-based semantic
features, and adversarial learning.

A. SDP USING HANDCRAFTED FEATURES
Based on manually extracted features (e.g., Halstead [23],
McCabe [24], CK [7] features), many researchers have con-
structed predictive models for SDP, including WPDP and
CPDP. WPDP has adopted many machine learning meth-
ods (e.g., Naive Bayes (NB) [2], Dictionary Learning [16],
Support Vector Machine (SVM) [9], Decision Tree [40]).
However, for a new project, it is challenging to obtain labeled
historical data to build a useful WPDP model.

To address this limitation in WPDP, researchers employed
the abundant labeled historical data in open source projects
(e.g., PROMISE, AEEEM, and NASA) and proposed
some CPDP methods [12], [18], [28], [38], [45], [46].
Zimmermann et al. [46] evaluated the performance of CPDP
predictors on 12 open projects and the 622 combinations
of them. The experimental results revealed that it was still
a challenge for the defect prediction models to achieve
cross-project prediction well. He et al. [12] provided lots of
experiments on 34 datasets and proposed a CPDP method
based on features selection with comparisons to WPDP
approaches. They proved that it was feasible to find the
best CPDP model on special projects. To enhance the CPDP
performance, Turhan et al. [38] explored the feasibility of
utilizing cross-project handcrafted features data to construct
local defect predictors. They employed the NN filter to select
cross-project data and then built CPDP predictors. How-
ever, the NN filter might remove some critical information
for cross-project data during training. Transfer Component
Analysis (TCA), which could discover a potential correla-
tion of the source data and target data. Inspired by this,
Nam et al. [28] proposed a state-of-the-art CPDP method,
called TCA+, by optimizing TCA in the normalization pro-
cess. Xia et al. [45] proposed HYDRA, which constructed a
genetic algorithm (GA) classifiers with some target domain
data firstly, and then leveraged ensemble learning (EL) to
weigh each classifier. As a result, HYDRA could alleviate the
effect of distribution differences between different projects.
HYDRAwas also a promising technique for CPDP. However,
HYDRA required 5% of labeled test data. In practice, it was
expensive for the developers to gain labeled test data by
inspecting software projects manually.

B. SDP USING DL-BASED SEMANTIC FEATURES
The approaches mentioned in Section 2.1 only use hand-
crafted features, which ignore the rich semantic features of
the source code. To make full use of the potential semantic
information in ASTs, DL has been adopted to generate fea-
tures automatically.

For both WPDP and CPDP, Wang et al. [42] leveraged
Deep Belief Network (DBN) to extract token vectors from
programs’ ASTs and then learn semantic and structural fea-
tures automatically. It is worth mentioning that their evalua-
tion of 10 source projects demonstrated that learned semantic

features could significantly improve performance compared
with handcrafted features. DL can also be applied to improve
the performance of SDP. Li et al. [20] built a frame-
work called Defect Prediction through Convolutional Neural
Network (DP-CNN), which exploited the word embedding
method and CNN to generate useful features. Besides, they
combined generated features and existing traditional features
to improve defect prediction further. Dam et al. [8] devel-
oped a prediction model, which used tree-structured LSTM
(Tree-LSTM) to learn semantic and structural representations
from source code. The experimental results on Samsung
projects and the public PROMISE repository confirmed the
effectiveness.

However, the above DL-based methods did not consider
the features’ distribution gap between the source and target
domains. This common shortcoming would hinder the pre-
dictive performance.

C. ADVERSARIAL LEARNING
Adversarial adaptation techniques have recently been used as
a general tool to minimize the divergence between domains’
distribution. The original Generative Adversarial Network
(GAN) [10] simultaneously trains a generative network G
and a discriminative network D. G produces a fake data
distribution, and D learns to represent the probability of an
example coming from the real data distribution rather than
the generator’s distribution. During training, the networks
simultaneously minimize the loss ofG and maximize the loss
of D (fooling the discriminator). The key is to ensure that the
model cannot distinguish the distribution of training and test
samples.

Based on the original GAN, many studies [1], [4],
[22], [39] have designed different generative adversarial
algorithms for different scenarios. Ajakan et al. [1] and
Bousmalis et al. [4] applied adversarial learning to domain
adaptation on the natural language process (NLP). They
aimed at transferring the source domain’s knowledge to the
target domain. For domain adaptation, Liu et al. [22] pro-
posed coupled generative adversarial networks (CoGANs),
which trained two GANs to generate two domains’ images,
respectively. The framework could obtain a domain invari-
ant feature space in both domains by binding the high-level
parameters of two GANs. Tzeng et al. [39] attempted to build
a general framework for cross-domain classification, called
Adversarial Discriminative Domain Adaptation (ADDA).
The approach was composed of untied weight sharing, dis-
criminative model, and a GAN loss.

In this paper, we employ the adversarial training strategy
to train our model. Therefore, our model can minimize the
distribution differences between the source and target projects
and extract the transferable structural and semantic features
from the source code as effectively as possible.

III. METHODOLOGY
In this section, we further extend the procedure proposed
by [20] to learn deep semantic features from source code.

VOLUME 8, 2020 55243



L. Sheng et al.: ADCNN for CPDP

FIGURE 2. The overall framework of our proposed ADCNN.

TABLE 1. The selected AST node categories and types.

Figure 2 illustrates the overall workflow of our proposed
CPDP approach.

As shown in Figure 2, our approach contains four main
steps: (1) parse source code into token vectors using ASTs,
(2) map tokens to numerical vectors as the input of ADCNN,
(3) build and train ADCNN, then generate the transferable
semantic features, and (4) construct a LR classifier based on
the learned features of both source and target projects for
cross-project prediction.

A. PARSING SOURCE CODE
In the first step, our model should parse source code to integer
vectors. Previous works [20], [41] have demonstrated that
DL networks can extract semantic features from ASTs. ASTs
contain enough code structure information. Therefore, in our
method, we utilize Javalang1 to parse source code files from
both source project (labeled) and target project (unlabeled)
into ASTs and then generate token vectors. Similar to the

1https://github.com/c2nes/javalang

previous method [20], we choose the three categories and
types of AST nodes shown in Table 1: (1) nodes of method
invocations and class instance creations. The methods’ and
classes’ names in different projects usually are project-
specific, which could not transfer to different projects. Dif-
ferent from [20], we use their node types to represent all
methods and classes (e.g., MethodDeclarations and Class-
Invocation). (2) declaration nodes, including declarations of
type, method, and enum. (3) control-flow nodes (e.g., IfStmts,
ForStmts, TryStmts, etc.). To highlight the importance of
the above nodes, we exclude some other class-specific or
method-specific node types, such as assignment. By doing
this, we convert each file in projects into a corresponding
token vector.

B. MAPPING TOKENS AND HANDLING IMBALANCE
The input of our ADCNN model requires same-length
numeric vectors. Firstly, we should establish a uniform map-
ping between node types and numbers and convert token
vectors into integer vectors. The same number represents the

55244 VOLUME 8, 2020



L. Sheng et al.: ADCNN for CPDP

same token, and the number ranges from 1 to the total number
of node types. Specially, we filter out tokens less than three
times, which might be file-specific. Therefore, the numeric
vectors can preserve some structure information of files. Sec-
ondly, we pad all input vectors with zeros, making their length
the same as the most extended vector. Finally, we employ
a word embedding [26] layer to learn context-based feature
vectors in the encoding phase. Tokens occurring in a similar
context should be expressed as similar vectors and have closer
distance in the representation space.

Besides, there are oftenmore clean files than defective files
in real-world software projects. The existence of class distri-
bution skews will hinder the performance of our model. Gen-
erally speaking, undersampling and oversampling are two
feasible sampling methods to solve the class imbalance prob-
lem. Undersampling balances the training datasets by remov-
ing some majority class instances (i.e., the clean instances).
This kind of method might lose important information. Over-
sampling adds some minority class instances (i.e., the buggy
instances) to balance the overall training datasets. After a
comprehensive comparison, we utilize SMOTE [6] to handle
imbalance. For a fair comparison, on the source projects,
we will apply this process to both our proposed model and
compared models.

C. BUILDING ADCNN
The original GAN [10] is composed of two networks: a
generative model G and a discriminative model D, which
are against each other. However, in ADCNN, the generative
model is not necessary for the reason that the ultimate goal
of our ADCNN is to learn discriminative representations.
Moreover, in the field of CPDP, there is a natural generative
and discriminative relationship between the source and target
projects. Therefore, the implementation of our ADCNN is
different from the origin GAN. As illustrated in Figure 3,
building the ADCNN model includes two crucial proce-
dures. Firstly, we train source encoder and classifier based on
labeled source project datasets. Secondly, we train the target
encoder and discriminator by using adversarial learning. The
key is to minimize the approximate domain difference dis-
tance through an adversarial objective concerning a domain
discriminator.

Referring to [20], CNN benefits from two characteris-
tics: sparse connectivity and weight sharing. Consequently,
CNN can catch the local structural and semantic information
of a program to generate features. We use CNNs as our
source and target encoders. In particular, the network archi-
tecture of our CNN encoder is the same as [20], including
an embedding layer, a convolutional layer, a max-pooling
layer, and a fully-connected hidden layer. Furthermore, our
source classifier is composed of a fully-connected hidden
layer and a single unit’s output layer. Besides, the output
of the fully-connected hidden layer in the CNN encoder is
treated as the extracted features. The output layer employs the
sigmoid as the activation function, while others apply ReLU
as the activation function.

FIGURE 3. An overview of the ADCNN training process. Firstly, we train
the parameters of source encoder and source classifier based on source
data (labeled). Secondly, we train the target encoder adversarially so that
a discriminator cannot reliably predict the source and target instances to
the right domain. In particular, we fix the parameters of source encoder
during adversarial discriminative training. Dashed lines indicate frozen
network parameters.

In the CPDP field, we assume that the source project
distribution ps(x, y) has both the source files Xs and labels Ys.
In contrast, the target project distribution pt (x, y) only con-
tains target files with no labels. So, we train the source
encoder and source classifier C by source files and labels.
The source encoder learns a source representation mapping
Ms, and the source classifier classifies a file is clean or
buggy. During the training process, we utilize a minibatch
stochastic gradient descent (SGD) algorithm [3] with Adam
optimizer [17] to optimize the following objective optimiza-
tion function.

min
Ms,C

Lc (Xs,Ys)=−E(xs,ys)∼(Xs,Ys)
K∑
k=1

ys logC (Ms (xs))

(1)

Next, we aim at learning a target representation mapping
Mt and minimizing the distance between the source map-
ping distribution Mt (Xt ) and the target mapping distribution
Ms(Xs). However, the target project has no labeled data.When
without suitable initial parameters, the target encoder may
learn the wrong solution quickly during training. Hence,
we copy the source encoder as the initialization of the target
encoder. Also, we freeze the source encoder during adversar-
ial training. We optimize the discriminator D and the target
encoder by two independent objective functions. The two

VOLUME 8, 2020 55245



L. Sheng et al.: ADCNN for CPDP

objective optimization functions are formulated below:

min
D
LadvD (Xs,Xt ,Ms,Mt ) = −Exs∼Xs [logD(Ms(xs))]

−Ext∼Xt [log(1− D(Mt (xt )))]

(2)

min
Ms,Mt

LadvM (Xs,Xt ,D) = −Ext∼Xt [logD(Mt (xt ))] (3)

By doing this, the model can effectively learn an asym-
metric mapping, where it changes the target representation
distribution so as to match the source distribution. Thus,
the transferable semantic features can be extracted by the
source encoder and the target encoder for CPDP.

D. CROSS-PROJECT PREDICTION CONSTRUCTING
We process each file in both source and target projects
to extract related transferable features by the above steps.
Besides, we use the LR classifier as the base classifier and
train the LR classifier by the extracted features of training
files and their labels. Then, fixed the parameters of both
ADCNN and LR classifier, we predict the buggy probability
of each file in the target project.

IV. EXPERIMENTS
In this section, we elaborate on the setup of the evaluation
experiments. Moreover, we evaluate our approach compared
with other recent relatedmethods on ten open source projects.

A. DATASETS
To examine the feasibility and effectiveness of our ADCNN
model, we chose ten representative projects from the
PROMISE repository as our experimental datasets. For SDP
research, the PROMISE repository, a widely used public
repository, provides the project version numbers, each file’s
class name, and corresponding defect label. According to the
project names and versions, we could find the projects’ source
code from GitHub and then exploited them to build both
our model and compared models. The selected projects have
different sizes and overall buggy rates. Specifically, the max-
imum and the minimum number of source code files in the
ten selected projects are 1077 and 32. Besides, the maximum
and minimum overall buggy rate of projects is 6.3% and
98.8%, respectively. Table 2 shows the detailed descriptions
of selected projects. Moreover, the PROMISE repository

TABLE 2. The 10 selected projects.

provides 20 traditional manual features. The traditional
CPDP methods used the 20 traditional manual features to
train models. Besides, other DL-based CPDP methods join
them together with extracted semantic features to improve
prediction performance. The specific meanings of the 20 tra-
ditional features are described in detail in [45].

To compose the CPDP tasks, we selected a project
as the training set and another project from the rest projects as
the test set, respectively. For example, we use forrest-0.8 as
the training set and use poi-3.0 as the test set. Therefore,
we could obtain 90 different pairs.

B. EVALUATION METRICS
Regarding the selection of evaluation metrics, we considered
the two following aspects: (1) non-effort-aware scenario and
(2) effort-aware scenario.

1) NON-EFFORT-AWARE EVALUATION METRICS
For non-effort-aware evaluation, we used the F-measure [11]
and AUC. The two evaluation metrics have been used in
many defect prediction approaches [8], [20], [41]. The fol-
lowing is the brief introduction of F-measure, AUC, recall,
and prediction.

In this paper, the buggy files and clean files are defined
as the positive instances and the negative instances, respec-
tively. For the two-class classifier, we can get four different
results: predicting a defective file successfully (real positive,
RP); predicting a defective file unsuccessfully (fake negative,
FN); predicting a clean file successfully (real negative, RF);
predicting a clean file unsuccessfully (fake positive, FP).
Table 3 shows the definition of confusion matrix.

TABLE 3. Confusion Matrix.

With the help of confusion matrix, we define the following
evaluation metrics.

Precision =
RP

RP+ FP
(4)

Recall =
RP

RP+ FN
(5)

To a certain extent, precision and recall can measure the
quality of a defect prediction model. However, they perform
poorly when the data set is not balanced. Besides, the SDP
data sets are usually imbalance. F-measure and AUC are not
influenced by the distribution of data sets.

The F-measure indicator combines the results of precision
and recall. The F-measure is calculated as follows.

F1 =
2 · Precision · Recall
Precision+ Recall

(6)

According to the above formula, we know the result of
F-measure falls in the interval of 0 to 1. The improvement

55246 VOLUME 8, 2020



L. Sheng et al.: ADCNN for CPDP

TABLE 4. The traditional compared SDP methods.

TABLE 5. The compared deep learning SDP methods.

of F-measure value means the enhancement of SDP model
performance. In other words, an SDP model with a higher
F-measure value can better predict whether an unlabeled file
is defective or not.

AUC (the area under ROC curve), which is a non-parameter
method to evaluate model performance. The higher AUC,
the better model performance. ROC is a 2-D curve with plots
the Fake Positive Rate (FPR) on the x-axis and Real Positive
Rate (RPR) on the y-axis. FPR and RPR are calculated as
follows.

FPR =
FP

FP+ RN
(7)

RPR =
RP

RP+ FP
(8)

2) EFFORT-AWARE EVALUATION METRICS
In some scenarios where testing resources are limited or dead-
lines are approaching, we want to inspect a certain amount of
code to find as many bugs as possible. At this time, we need
to use another effort-aware evaluation metric to evaluate the
sound quality of SDP methods. PofB20 [15] refers to the
proportion of discovered bugs after reviewing the first 20%
lines of code (LOC) of a whole engineering project. Besides,
PofB20 has been employed by some SDP methods [41].

PofB20 can be calculated by the following steps. Firstly,
we sort all test files in descending order according to the prob-
ability of being predicted as the defective. Then, we select
a part of the files according to the above order. Their
total LOC accounts for 20% of the total number of LOC
in the test project. Finally, we accumulate the number of
actual bugs (provided by the data set) of the above-selected

files and calculate the percentage of bugs. The higher the
PofB20 score, the more bugs can be detected by reviewing
an equal number of LOC.

C. BASELINE METHODS
To evaluate the performance of our ADCNN model, we
compared with other defect prediction methods, including
traditional SDPmethods and DL-based SDPmethods. In par-
ticular, we would solve three research questions (RQ) as
follow:
• RQ1: Do ADCNN outperform the traditional CPDP
methods that use handcrafted features as the input?

• RQ2: Comparing with other state-of-the-art deep learn-
ing methods, do ADCNN perform better?

• RQ3: Comparing with other defect prediction methods,
can ADCNN get better results at an acceptable time?

Table 4 describes traditional CPDPmethods using 20 static
code features. Table 5 introduces DL-based CPDP methods
using generated semantic features.

To exclude extra interference factors, we used LR to
implement the base classifiers in all models. For consis-
tency and simplicity, we used the implementation of LR in
sklearn.linear_model (a machine learning library of python)
with default parameter settings. Besides, we used the same
parsed numeric vectors as the input of the DL-based CPDP
methods. To avoid randomness, we ran ten times and recorded
the average results (F-measure, AUC, and PofB20).

V. RESULTS
In this section, we will answer the first two research ques-
tions raised in the previous section. Given a target project,

VOLUME 8, 2020 55247



L. Sheng et al.: ADCNN for CPDP

TABLE 6. The F-measure results of our ADCNN method and other compared methods (i.e., traditional CPDP methods using handcrafted features and
DL-based CPDP methods). The bold values mean the better F-measures. The numbers in brackets are the standard deviation. The next-to-last line stands
for the win/tie/loss numbers of ADCNN versus other methods and the last line represents the total average F-measure.

TABLE 7. The AUC results of our ADCNN method and other compared methods (i.e., traditional CPDP methods using handcrafted features and DL-based
CPDP methods). The bold values mean the better AUC. The next-to-last line stands for the win/tie/loss numbers of ADCNN versus other methods and the
last line represents the total average AUC.

TABLE 8. The PofB20 results of our ADCNN method and other compared methods (i.e., traditional CPDP methods using handcrafted features and
DL-based CPDP methods). The bold values mean the better PofB20. The next-to-last line stands for the win/tie/loss numbers of ADCNN versus other
methods and the last line represents the total average PofB20.

we selected the other nine projects as source project in
turn. In this way, we could generate nine different combi-
nations for a target project. Then we calculated the average
F-measure, AUC, and PofB20 of the nine combinations and
the win/tie/loss numbers of ADCNN versus other methods.
Finally, we recorded all the experimental results. Table 6,
Table 7, and Table 8 present the value of F-measure, AUC,
and PofB20, respectively.

Besides, we made use of the Scott–Knott ESD test [37] to
analyze the experimental results of the CPDP models. The
Scott–Knott ESD test can help us to identify whether the pre-
diction results of the CPDP methods are statistically signifi-
cant. The Scott–Knott ESD test is a variant of the Scott–Knott
test [14]. Like the Scott–Knott test, the primary role of the
Scott–Knott ESD test is to use hierarchical cluster analysis to
divide a series of methods into statistically different groups.

55248 VOLUME 8, 2020



L. Sheng et al.: ADCNN for CPDP

FIGURE 4. The Scott–Knott ESD test based on the F-measure results of
our ADCNN method and other selected CPDP baseline methods. The
average F-measure values are represented by a green diamond.

FIGURE 5. The Scott–Knott ESD test based on the PofB20 results of our
ADCNN method and other selected CPDP baseline methods. The average
PofB20 values are represented by a green diamond.

However, the Scott–Knott ESD test improved the Scott–Knott
test from the following aspects. (1) The input data set is
allowed to be non-normally distributed. (2) Any statistically
different groups are merged if their effect sizes are trivial.

In our experiments, Figure 4, Figure 6, and Figure 5 show
the results and statistical information of the Scott–Knott ESD
test according to F-measure, AUC, and PofB20, respectively.

A. RQ1: DO ADCNN OUTPERFORM THE TRADITIONAL
CPDP METHODS THAT USE HANDCRAFTED
FEATURES AS THE INPUT?
In this part, we compare our proposed ADCNN method
with the traditional handcrafted features-based methods.

FIGURE 6. The Scott–Knott ESD test based on the AUC results of our
ADCNN method and other selected CPDP baseline methods. The average
AUC values are represented by a green diamond.

This comparison aims at answering the research question
QR1. In terms of F-measure, AUC, and PofB20, the W/T/L
lines shown in Table 6, Table 7, and Table 8 indicate that the
ADCNN method beats other methods in most experimental
tasks.

Especially, for non-effort-aware scenario, the average
F-measure of ADCNN is 0.527, which outperform DG,
LR, NNFilter, TCA, and TCA+ by 4.66%, 6.03%, 8.83%,
8.77%, and 14.18%, respectively. The average AUC of
ADCNN is 0.618, which outperform DG, LR, NNFilter,
TCA, and TCA+ by 1.81%, 2.42%, 5.75%, 10.67%, and
10.99%, respectively. In terms of F-measure and AUC,
Figure 4 and Figure 6 confirm that ADCNN is statistically
different fromNNFilter, TCA, and TCA+. Besides, the lower
limit of DG and LR are lower in our experiments.

Under effort-aware scenario, the average PofB20 of
ADCNN is 21.64, which surpass DG, LR, NNFilter, TCA
and TCA+ by 50.2%, 24.2%, 28.4%, 12.4% and 11.0%,
respectively. In terms of PofB20, Figure 5 illustrates that
ADCNN is divided into a group, and ADCNN is statistically
different from all the other baseline methods in our experi-
ments.

In general, these experimental results indicate that our
method performs better than classic CPDP methods under
both non-effort-aware and effort-aware scenarios.

B. RQ2: COMPARING WITH OTHER STATE-OF-THE-ART
DEEP LEARNING METHODS, DO ADCNN
PERFORM BETTER?
In this part, we compare our ADCNN approach with other
state-of-the-art DL-based methods (i.e., DPCNN, CNN,
DPDBN, and DBN).

For non-effort-aware scenario, the average F-measure of
ADCNN is 0.527, which surpasses DPCNN, CNN, DPDBN
and DBN by a significant margin of 5.61%, 6.08%, 9.06%,
and 14.46%, respectively. The average AUC of ADCNN is

VOLUME 8, 2020 55249



L. Sheng et al.: ADCNN for CPDP

0.618, which surpasses DPCNN, CNN, DPDBN and DBN by
a significant margin of 6.63%, 8.59%, 8.1%, and 14.28%,
respectively. In terms of F-measure and AUC, Figure 4 and
Figure 6 show that the performance of ADCNN is superior to
other DL-based CPDP methods in our experiments. Under
effort-aware scenario, the average PofB20 of ADCNN is
21.64, which surpasses DPCNN, CNN, DPDBN and DBN
by 26.9%, 40.2%, 28.4%, 25.5% and 16.3%, respectively.
As shown in Figure 5, ADCNN and other DL-based meth-
ods are divided into statistically distinct groups. In terms of
PofB20, the result of ADCNN is statistically different from
DPCNN, CNN, DPDBN and DBN.

From the results, we conclude that the semantic features
generated by CNN can improve more predictive performance
than the features extracted by DBN. The transferable seman-
tic features learned by ADCNN are more effective than nei-
ther CNN-extracted features or DBN-extracted features for
the SDP domain.

In summary, ADCNN, which combines adversarial learn-
ing with CNN, can improve the predictive performance
of SDP according to our experiments. We believe that
the extracted transferable semantic features generated by
ADCNN are better than other features generated by CNN or
DBN. ADCNN will help software tester find defect-prone
modules or files and allocate test resources effectively and
efficiently.

VI. DISCUSSION
A. WHY DOES ADCNN WORK?
In section 5, the experimental results have proved that
the ADCNN method performs better than classic CPDP
approaches and other DL-based CPDP approaches. The pos-
sible reasons can be summarized below:

(1) ADCNN extracts the potential semantic and structural
features from the source code. For the SDP domain, pervious
works [20], [42] have confirmed the effectiveness of the
semantic features. As introduced in Section 3.3, we use CNNs
as our source and target encoders. Consequently, ADCNN
performs better than classic CPDP methods.

(2) ADCNN alleviates the data distribution differences
between the source and target projects in the CPDP tasks.
We use adversarial discriminative learning to learn an asym-
metric mapping, where it changes the target representation
distribution to match the source representation distribution.
Therefore, ADCNN can learn transferable generated seman-
tic features and perform better than other DL-based methods.

B. THE IMPACTS ON DIFFERENT ADCNN
PARAMETER SETTINGS
In our experiments, we should tune some parameters to obtain
better predictive performance. These parameters include the
discriminator learning rate λ, the adversarial discriminator
training epochs α, and the CNNs parameters. Following the
previous work [20], we adopted the same CNN parameters.

FIGURE 7. Different discriminator learning rate λ.

FIGURE 8. Different adversarial discriminator training epochs α.

Therefore, we focused on discussing the impact of the differ-
ent λ and α on our model.

To illustrate the impact of λ, we show the F-measure of
the ADCNN with various λ (10e-6, 10e-5, 5*10e-5, 10e-
4, 5*10e-4, 10e-3) in Figure 7. Due to space constraints,
we only randomly selected six pairs of CPDP tasks. From the
results in Figure 7, our ADCNNmodel achieves better results
when λ is 5*10e-4. So, we set the λ value as 5*10e-4 in our
experiments.

To avoid the effect of the parameter λ, we fixed λ as
5*10e-4. We chose five different epoch numbers (i.e., 20, 50,
100, 200, 500) to verify the impact of the parameter α. Similar
to the experiments of λ, we selected six groups of CPDP tasks.
Figure 8 presents the different F-measure values of our model
in different parameters. We comprehensively considered the
trade-off between the time of trainingmodel and performance
gains and then chose 50 as α.

C. TIME COST
In this section, we discuss the time cost of all methods in
our experiments. Besides, we answer the research question,
RQ3. All experiments were run in a Ubuntu server with AMD
Ryzen 3.60GHz and 16 RAM and accelerated by NVIDIA
GTX1070.

The data preprocessing time of all models was consis-
tent, and the prediction time was almost negligible. There-
fore, We only counted the training time of models. Besides,

55250 VOLUME 8, 2020



L. Sheng et al.: ADCNN for CPDP

FIGURE 9. Comparison of training time on 6 selected CPDP tasks and comparison of the total average training
time.

the training time of LR, DG, and NNFilter was trivial. So,
we only compared the training time of our ADCNN model
with the other models.

As shown in Figure 9, we recorded the training time of
these seven models on six tasks. Moreover, we calculated
the total average training time of 90 CPDP tasks. The aver-
age training time of ADCNN was 27 seconds. To sum up,
ADCNN requires longer training time than traditional CPDP
methods. Nevertheless, ADCNN takes about almost similar
training time to other DL-based CPDP methods. We believe
that ADCNN can get better results at an acceptable time,
compared with other defect prediction methods.

D. THREATS TO VALIDITY
1) THE SELECTION OF DATASETS
Our selected projects are all written by Java language. They
might not represent all software projects. Maybe, our pro-
posed ADCNNmethod will perform better or worse results in
other projects, including Java, Javascript, or Python language
projects. Therefore, to make ADCNN more generalizable,
we will evaluate our method on more projects in the future.

2) EVALUATION METRICS
In this paper, we used F-measure and AUC as the non-effort-
aware evaluation metrics and PofB20 as the effort-aware
evaluation metric. However, there are some other evaluation
metrics (e.g., G-measure), which are suitable means to eval-
uate the performance of two-class classifiers.

3) PARAMETER COMBINATION
For better prediction performance, we tried different param-
eter combinations of the model. However, it is impossible
to experiment with all possible combinations of parameters.

In Section 6.2, we only assessed two important ADCNN
parameters: the discriminator learning rate λ and the adver-
sarial discriminator training epochs α. According to previous
research experience [20], [42], we selected some empirical
combinations of parameters. However, there may be a more
suitable combination for our method.

VII. CONCLUSION
In this paper, we proposed a novel ADCNN approach to
solve the domain adaptation for CPDP. Our ADCNN method
utilized the standard CNNs as the feature extractors. There-
fore, ADCNN can learn the semantic and structural fea-
tures from the source code directly. Furthermore, ADCNN
employed adversarial discriminative learning to minimize
the distribution divergence between the target project and
source project. Hence, ADCNN could extract the transferable
semantic features and then build a CPDP classifier. We com-
pared our ADCNN method with nine other related state-of-
the-art CPDP approaches on ten open source projects. The
experimental results proved that ADCNN improved the pre-
dictive performance of both traditional feature-based meth-
ods and other DL-based methods.

To make ADCNN more generalizable, we will further
investigate several problems as follow. Firstly, we will apply
our model to more projects, including other programming
language projects. Secondly, we will try to apply other
domain adaptation methods to CPDP.

REFERENCES
[1] H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, and M. Marchand,

‘‘Domain-adversarial neural networks,’’ 2014, arXiv:1412.4446. [Online].
Available: http://arxiv.org/abs/1412.4446

[2] Ö. F. Arar and K. Ayan, ‘‘Software defect prediction using cost-sensitive
neural network,’’ Appl. Soft Comput., vol. 33, pp. 263–277, Aug. 2015.

VOLUME 8, 2020 55251



L. Sheng et al.: ADCNN for CPDP

[3] L. Bottou, ‘‘Large-scale machine learning with stochastic gradient
descent,’’ in Proc. COMPSTAT. Berlin, Germany: Springer, 2010,
pp. 177–186.

[4] K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and D. Erhan,
‘‘Domain separation networks,’’ in Proc. Adv. Neural Inf. Process. Syst.,
2016, pp. 343–351.

[5] C. Catal and B. Diri, ‘‘Investigating the effect of dataset size, metrics sets,
and feature selection techniques on software fault prediction problem,’’ Inf.
Sci., vol. 179, no. 8, pp. 1040–1058, Mar. 2009.

[6] N. V. Chawla, K. W. Bowyer, L. O. Hall, andW. P. Kegelmeyer, ‘‘SMOTE:
Synthetic minority over-sampling technique,’’ J. Artif. Intell. Res., vol. 16,
pp. 321–357, Jun. 2002.

[7] S. R. Chidamber and C. F. Kemerer, ‘‘A metrics suite for object oriented
design,’’ IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493, Jun. 1994.

[8] H. Khanh Dam, T. Pham, S. Wee Ng, T. Tran, J. Grundy, A. Ghose,
T. Kim, and C.-J. Kim, ‘‘A deep tree-based model for software
defect prediction,’’ 2018, arXiv:1802.00921. [Online]. Available:
http://arxiv.org/abs/1802.00921

[9] K. O. Elish and M. O. Elish, ‘‘Predicting defect-prone software modules
using support vector machines,’’ J. Syst. Softw., vol. 81, no. 5, pp. 649–660,
May 2008.

[10] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’ in
Adv. neural Inf. Process. Syst., pp. 2672–2680, 2014.

[11] J. Han, J. Pei, and M. Kamber, Data Mining: Concepts and Techniques.
Amsterdam, The Netherlands: Elsevier, 2011.

[12] Z. He, F. Peters, T. Menzies, and Y. Yang, ‘‘Learning from open-source
projects: An empirical study on defect prediction,’’ in Proc. ACM/IEEE
Int. Symp. Empirical Softw. Eng. Meas., Oct. 2013, pp. 45–54.

[13] S. Herbold, A. Trautsch, and J. Grabowski, ‘‘A comparative study to bench-
mark cross-project defect prediction approaches,’’ IEEE Trans. Softw.
Eng., vol. 44, no. 9, pp. 811–833, Sep. 2018.

[14] E. Jelihovschi, J. C. Faria, and I. B. Allaman, ‘‘ScottKnott: A package
for performing the Scott-Knott clustering algorithm in R,’’ TEMA (São
Carlos), vol. 15, no. 1, pp. 3–17, 2014.

[15] T. Jiang, L. Tan, and S. Kim, ‘‘Personalized defect prediction,’’ in Proc.
28th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Nov. 2013,
pp. 279–289.

[16] X.-Y. Jing, S. Ying, Z.-W. Zhang, S.-S. Wu, and J. Liu, ‘‘Dictionary
learning based software defect prediction,’’ in Proc. 36th Int. Conf. Softw.
Eng. (ICSE). New York, NY, USA: ACM, 2014, pp. 414–423.

[17] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic opti-
mization,’’ 2014, arXiv:1412.6980. [Online]. Available: http://arxiv.
org/abs/1412.6980

[18] B. A. Kitchenham, E. Mendes, and G. H. Travassos, ‘‘Cross versus within-
company cost estimation studies: A systematic review,’’ IEEE Trans. Softw.
Eng., vol. 33, no. 5, pp. 316–329, May 2007.

[19] I. H. Laradji, M. Alshayeb, and L. Ghouti, ‘‘Software defect prediction
using ensemble learning on selected features,’’ Inf. Softw. Technol., vol. 58,
pp. 388–402, Feb. 2015.

[20] J. Li, P. He, J. Zhu, and M. R. Lyu, ‘‘Software defect prediction via
convolutional neural network,’’ in Proc. IEEE Int. Conf. Softw. Qual., Rel.
Secur. (QRS), Jul. 2017, pp. 318–328.

[21] Z. Li, X.-Y. Jing, and X. Zhu, ‘‘Progress on approaches to software defect
prediction,’’ IET Softw., vol. 12, no. 3, pp. 161–175, Jun. 2018.

[22] M.-Y. Liu and O. Tuzel, ‘‘Coupled generative adversarial networks,’’ in
Proc. Adv. Neural Inf. Process. Syst., pp. 469–477, 2016.

[23] H. H. Maurice, Elements of Software Science (Operating and Program-
ming Systems Series). 1977.

[24] T. J. McCabe, ‘‘A complexity measure,’’ IEEE Trans. Softw. Eng.,
vol. SE-2, no. 4, pp. 308–320, Dec. 1976.

[25] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener,
‘‘Defect prediction from static code features: Current results, limitations,
new approaches,’’ Automated Softw. Eng., vol. 17, no. 4, pp. 375–407,
Dec. 2010.

[26] T.Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ‘‘Distributed
representations of words and phrases and their compositionality,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2013, pp. 3111–3119.

[27] R. Moser, W. Pedrycz, and G. Succi, ‘‘A comparative analysis of the effi-
ciency of change metrics and static code attributes for defect prediction,’’
in Proc. 13th Int. Conf. Softw. Eng. (ICSE). New York, NY, USA: ACM,
2008, pp. 181–190.

[28] J. Nam, S. J. Pan, and S. Kim, ‘‘Transfer defect learning,’’ in Proc. 35th
Int. Conf. Softw. Eng. (ICSE), May 2013, pp. 382–391.

[29] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, ‘‘Domain adaptation via
transfer component analysis,’’ IEEE Trans. Neural Netw., vol. 22, no. 2,
pp. 199–210, Feb. 2011.

[30] S. Jialin Pan and Q. Yang, ‘‘A survey on transfer learning,’’ IEEE Trans.
Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[31] L. Peng, B. Yang, Y. Chen, and A. Abraham, ‘‘Data gravitation based
classification,’’ Inf. Sci., vol. 179, no. 6, pp. 809–819, Mar. 2009.

[32] S. Qiu, L. Lu, and S. Jiang, ‘‘Multiple-components weights model for
cross-project software defect prediction,’’ IET Softw., vol. 12, no. 4,
pp. 345–355, Aug. 2018.

[33] S. Qiu, H. Xu, J. Deng, S. Jiang, and L. Lu, ‘‘Transfer convolutional neural
network for cross-project defect prediction,’’ Appl. Sci., vol. 9, no. 13,
p. 2660, 2019.

[34] M. Shepperd, D. Bowes, and T. Hall, ‘‘Researcher bias: The use of machine
learning in software defect prediction,’’ IEEE Trans. Softw. Eng., vol. 40,
no. 6, pp. 603–616, Jun. 2014.

[35] Q. Song, Y. Guo, and M. Shepperd, ‘‘A comprehensive investigation of the
role of imbalanced learning for software defect prediction,’’ IEEE Trans.
Softw. Eng., vol. 45, no. 12, pp. 1253–1269, Dec. 2019.

[36] M. Tan, L. Tan, S. Dara, and C. Mayeux, ‘‘Online defect prediction for
imbalanced data,’’ in Proc. IEEE/ACM 37th IEEE Int. Conf. Softw. Eng.,
vol. 2, May 2015, pp. 99–108.

[37] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto,
‘‘An empirical comparison of model validation techniques for defect
prediction models,’’ IEEE Trans. Softw. Eng., vol. 43, no. 1, pp. 1–18,
Jan. 2017.

[38] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, ‘‘On the relative
value of cross-company and within-company data for defect prediction,’’
Empirical Softw. Eng., vol. 14, no. 5, pp. 540–578, Oct. 2009.

[39] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, ‘‘Adversarial discrim-
inative domain adaptation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 7167–7176.

[40] J. Wang, B. Shen, and Y. Chen, ‘‘Compressed C4.5 models for software
defect prediction,’’ in Proc. 12th Int. Conf. Qual. Softw., Aug. 2012,
pp. 13–16.

[41] S. Wang, T. Liu, J. Nam, and L. Tan, ‘‘Deep semantic feature learning
for software defect prediction,’’ IEEE Trans. Softw. Eng., early access,
Oct. 23, 2018, doi: 10.1109/TSE.2018.2877612.

[42] S. Wang, T. Liu, and L. Tan, ‘‘Automatically learning semantic features for
defect prediction,’’ in Proc. 38th Int. Conf. Softw. Eng. (ICSE), May 2016,
pp. 297–308.

[43] T. Wang, Z. Zhang, X. Jing, and L. Zhang, ‘‘Multiple kernel ensemble
learning for software defect prediction,’’ Automated Softw. Eng., vol. 23,
no. 4, pp. 569–590, Dec. 2016.

[44] F. Wu, X.-Y. Jing, Y. Sun, J. Sun, L. Huang, F. Cui, and Y. Sun, ‘‘Cross-
project and within-project semisupervised software defect prediction:
A unified approach,’’ IEEE Trans. Rel., vol. 67, no. 2, pp. 581–597,
Jun. 2018.

[45] X. Xia, D. Lo, S. J. Pan, N. Nagappan, and X.Wang, ‘‘HYDRA:Massively
compositional model for cross-project defect prediction,’’ IEEE Trans.
Softw. Eng., vol. 42, no. 10, pp. 977–998, Oct. 2016.

[46] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy, ‘‘Cross-
project defect prediction: A large scale experiment on data vs. domain vs.
process,’’ in Proc. 7th Joint Meeting Eur. Softw. Eng. Conf. ACM SIGSOFT
Symp. Found. Softw. Eng. New York, NY, USA: ACM, 2009, pp. 91–100.

LEI SHENG is currently pursuing the master’s
degree with the School of Computer Science and
Engineering, South China University of Technol-
ogy. His research interests include software defect
prediction and transfer learning.

55252 VOLUME 8, 2020

http://dx.doi.org/10.1109/TSE.2018.2877612


L. Sheng et al.: ADCNN for CPDP

LU LU received the Ph.D. degree from Xi’an
Jiaotong University, in 1999. He is currently a
Professor with the School of Computer Science
and Engineering, South China University of Tech-
nology, China. His main research interests include
software engineering, software testing, and soft-
ware architecture design.

JUNHAO LIN is currently pursuing the master’s
degree with the School of Computer Science and
Engineering, South China University of Technol-
ogy. His research interests include software defect
prediction and transfer learning.

VOLUME 8, 2020 55253


	INTRODUCTION
	RELATED WORK
	SDP USING HANDCRAFTED FEATURES
	SDP USING DL-BASED SEMANTIC FEATURES
	ADVERSARIAL LEARNING

	METHODOLOGY
	PARSING SOURCE CODE
	MAPPING TOKENS AND HANDLING IMBALANCE
	BUILDING ADCNN
	CROSS-PROJECT PREDICTION CONSTRUCTING

	EXPERIMENTS
	DATASETS
	EVALUATION METRICS
	NON-EFFORT-AWARE EVALUATION METRICS
	EFFORT-AWARE EVALUATION METRICS

	BASELINE METHODS

	RESULTS
	RQ1: DO ADCNN OUTPERFORM THE TRADITIONAL CPDP METHODS THAT USE HANDCRAFTED FEATURES AS THE INPUT?
	RQ2: COMPARING WITH OTHER STATE-OF-THE-ART DEEP LEARNING METHODS, DO ADCNN PERFORM BETTER?

	DISCUSSION
	WHY DOES ADCNN WORK?
	THE IMPACTS ON DIFFERENT ADCNN PARAMETER SETTINGS
	TIME COST
	THREATS TO VALIDITY
	THE SELECTION OF DATASETS
	EVALUATION METRICS
	PARAMETER COMBINATION


	CONCLUSION
	REFERENCES
	Biographies
	LEI SHENG
	LU LU
	JUNHAO LIN


