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ABSTRACT Objective: A wearable reflectance-type photoplethysmography (PPG) sensor can be incor-
porated in a watch or band to provide instantaneous heart rates (HRs) with minimum inconvenience to
users. However, the sensor is sensitive to motion artifacts (MAs), which results in inaccurate HR estimation.
To address this problem, we propose a new neural network for deep learning to ensure accurate HR estimation
even during intensive exercise. Methods: We propose a new deep neural network based on multiclass and
non-uniform multilabel classification for HR estimation. It comprises of two convolutional layers, two long
short-term memory (LSTM) layers, one concatenation layer, and three fully connected layers including a
softmax. The proposed model feeds the power spectra from the PPG and acceleration signals along with
the acceleration intensity to the input layer. We also present a new scheme to evaluate the loss value by
modifying the true HR value into a Gaussian distribution. Results: We used 48 training datasets and evaluated
23 isolated testing datasets. The proposed model exhibited average absolute error of less than 1.5 bpm for all
the training and test datasets—1.09 bpm for the training dataset and 1.46 bpm for the test dataset. Conclusion:
The proposed model outperforms the state-of-the-art methods for accurate estimation of HR. Significance:
It precisely estimates the HRs with robustness even during intensive physical exercise, as evidenced by the
accuracy when PPG signals are severely corrupted by MAs.

INDEX TERMS Reflectance-type photoplethysmography, instantaneous heart rate, deep learning, convolu-

tional layer, long short-term memory (LSTM) layer.

I. INTRODUCTION

Reflectance-type photoplethysmography (PPG) sensor mea-
sures intensity changes in the light reflected from skin, pro-
viding PPG signals that represent the changes in the arterial
blood volume between the systolic and diastolic phases of a
cardiac cycle. The sensor has gained attention because it can
be incorporated in watches or bands to measure and monitor
instantaneous heart rates (HRs), which minimizes inconve-
nience to users. However, the sensor is sensitive to motion
artifacts (MAs), which originate from pressure and movement
applied on the wrist on which the PPG sensor is worn. The
MAs eventually result in inaccurate HR estimation. A few
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years ago, Zhang et al. shared the datasets containing simulta-
neously measured acceleration and PPG signals during exer-
cise [1], which has prompted research on MA cancelation
in PPG sensors using acceleration signals. Current state-
of-the-art methods have reached the accuracy of 2-3 beats
per minute (bpm) on average absolute errors (AAEs) during
intensive exercise [1]-[13]. Most state-of-the-art methods
estimated the HR using the two main stages of MA cance-
lation and HR tracking. For MA cancelation, they consid-
ered the power spectrum from the simultaneously measured
acceleration signal as motion artifacts (MAs), and removed
or attenuated the power from the PPG power spectrum. For
HR tracking, they exploited the assumption that the change
in the HR between two consecutive segments is not sig-
nificant, and predicted or corrected the HR results. Various
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signal processing algorithms such as high-resolution spectra
including variable frequency complex demodulation [1]-[3],
adaptive filters including a Wiener filter [4]-[8], decompo-
sition including ensemble empirical mode decomposition,
singular value decomposition [9], [10], and non-linear filters
including Kalman filters (KF) and particle filters [11]—[13]
have been adopted for MA cancelation or/and HR tracking.
Nevertheless, despite the efforts and advances in the algo-
rithms, the methods did not always provide accurate results.

One of the most challenging issues is low signal-to-noise
ratio (SNR) in the PPG signal. Regardless of the method
that employs high-resolution spectra for MA cancelation, it is
almost impossible to find the accurate HR when the power
corresponding to the HR in the measured PPG is very low.
This low SNR mainly occurs when a subject is perform-
ing intensive physical exercise. The HR tracking approach
may minimize the outliers in the results, but it becomes
ineffective if low SNR occurs continuously for a long time.
To overcome the issue, our group recently presented the finite
state machine (FSM) framework, which ignored low-quality
signal segments or inaccurate estimation results [14], [15].
We could provide very accurate HR results based on the
FSM framework. However, the framework discarded nearly
half of the results collected during intensive physical exer-
cise. Later, we presented multi-mode particle filtering (MPF)
methods, which could lower the discard rate of the results
while preserving the accuracy [16]. Nevertheless, the discard
rate of the results during intensive physical exercise was
higher than 30%. Very recently, a deep learning approach was
considered. In [17], a deep learning framework named Cor-
Net was proposed by modeling convolutional and long short-
term memory (LSTM) layers followed by a fully connected
layer. In the model, band-pass filtered PPG data were used
for an input layer.

In this paper, we propose a new deep neural network based
on multiclass and non-uniform multilabel classification for
HR estimation. In our proposed model, we consider two
power spectra from PPG and acceleration signals for an input
layer. In addition, we use the acceleration signal intensity
in the input layer. We hypothesize that the acceleration sig-
nal intensity can provide information on the change in the
HR in the near future: high intensity represents intensive
movements, which may change the HR. The proposed model
comprises two convolutional layers, two LSTM layers, one
concatenation layer, and three fully connected layers includ-
ing a softmax. In the proposed model, the power spectra from
the PPG and acceleration signals are fed into two convo-
lutional layers, which provide MA cancelation in the PPG
power spectrum. The outputs are flattened and connected to
one fully connected layer, which is subsequently concate-
nated with the acceleration signal intensity. Then, the outputs
are fed to the two LSTM layers followed by the additional
fully connected layers that include a softmax. The LSTM
layers track the HR tracking with minimum outliers. In the
proposed model, we also present a new scheme to eval-
uate the loss value by modifying the true HR value into
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a Gaussian distribution. The performance of the proposed
model is evaluated by comparison with previously reported
results [1]-[17], [22].

Il. METHODS

A. DATASETS

We used two datasets to evaluate our proposed model for
HR estimation—the IEEE Signal Processing Cup (ISPC)
2015 dataset (n = 23) and direct measurements obtained by
our developed device (n = 48). Both sets of data include
multichannel PPG signals and three-axis accelerometer sig-
nals simultaneously measured by devices worn on the wrist
during intensive physical exercise. For true HR reference,
ECG signals were simultaneously measured on the chest.

More specifically, the ISPC dataset includes 5-min
two-channel PPG signals and three-axis acceleration sig-
nals sampled at 125 Hz for 23 subjects, which are publicly
downloadable [18]. The dataset is grouped into three groups:
Type 1 (T1), Type 2 (T2), and Type 3 (T3). In the T1 group
(n = 12), the subjects run on a treadmill at various speeds:
30 s of rest, 1 min at 6-8 km/h, 1 min at 12—-15 km/h, 1 min
at 6-8 km/h, 1 min at 12-15 km/h, followed by 30 s of
rest. In the T2 group (n = 5), the subjects perform various
actions such as running, jumping, push-ups, shaking hands,
stretching, and pushing. In the T3 group (n = 6), the subjects
perform intensive arm movements such as boxing.

Our data comprise 12-min three-channel PPG signals and
three-axis acceleration signals sampled at 50 Hz. The dataset
is classified into two groups named BAMI-I and BAMI-II.
In the BAMI-I dataset (n = 25), the exercise protocol
included 1 min of rest, 2 min of walking for warm-up, 3 min
of running at 68 km/h, 2 min of walking, 3 min of running
at 812 km/h, and 1 min of walking to cool down. The
subjects comprised 10 males and 14 females with average age
of 26.9+4.8 years. The entire exercise process was performed
on a treadmill. In the BAMI-II dataset (n = 23), the exer-
cise protocol included 1 min of rest, 2 min of walking for
warm-up at 3—4 km/h, 4 min of running at 68 km/h, 4 min
of walking at 3—4 km/h, and 1 min of rest to cool down.
During every 4-min session of running and walking, the
subjects walked or ran while holding a treadmill bar during
the last two minutes of the session. We designed the session
to reflect cardiac rehabilitation exercise for cardiac patients
with poor exercise ability—they normally walk or run by
holding a treadmill bar. The subjects comprised 17 males and
6 females with average age of 22.0£1.7 years. The entire
exercise process was also performed on a treadmill. For both
datasets, the reference true HRs were measured by ECG data
simultaneously recorded by a 24-h Holter monitor (SEER
Light, GE Healthcare, Milwaukee, WI, USA). All the data
were collected at Wonkwang University by trained personnel
from June to July 2018 for BAMI-I, and from March to
April 2019 for BAMI-II. This study was approved by the
Institutional Review Board of Wonkwang University, Repub-
lic of Korea (WKUIRB 201805-032-01). All participants
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FIGURE 1. Architecture of our proposed model; (a) 2D convolutional layer, 1D convolutional layer, one fully connected layer,
two LSTM layers, and one fully connected layer are sequentially structured, (b) 222 activations before a softmax layer, and (c)

final output providing the final probabilities for the true HR.

provided their written informed consent. All raw signals in
the BAMI-I and -II datasets are publicly downloadable [19].

In this study, we chose the ISPC dataset (n = 23) as train-
ing data since it includes a variety of actions such as waking,
running, resting, jumping, push-ups, shaking hands, stretch-
ing, pushing and boxing. We also included our own dataset
named BAMI-I (n = 25) in the training data to increase
the training data size, and tested the trained model using
another dataset named BAMI-II (n = 23). For all datasets,
the ECG-based HRs were calculated using 8-s windows with
2-s shifts (6-s overlap), yielding the HRs for every 2 s. The
same window length (8 s) and shift (2 s) were used throughout
this study to assess the performance of our proposed model
relative to the existing algorithms [1]-[17].

B. PREPROCESSING FOR INPUT LAYER

We denote the estimated and true HRs in the i window by
HR.s: (i) and HRp(i), respectively, where i = 1, 2, ...1;
I represents the number of 8-s windows. We also denote
the measured multichannel PPG signals and three-axis accel-
eration signals in the i 8-s window by S, (i) and A, (i),
respectively, where n ={1, 2, ...N}, N being the number
of photosensors, and m ={1,2,3} represents the x-, y- and
z-axis, respectively. Note that N = 2 for the ISPC dataset,
and N = 3 for BAMI-I and II datasets. We filtered all
measured signals of S, (i) and A,, (i) using a fourth-order
Butterworth band pass filter (BPF) with cutoff frequencies
of 0.4 and 4 Hz. We then normalized S, (i) to a zero mean
with unit variance and averaged them for the single signal
denoted by S (i). We downsampled S (i) and A,, (i) to 25 Hz,
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which could reduce computational load with little accuracy
degradation [9]. After the down-sampling, we computed
the power spectra via a 2,048-point Fast Fourier Transform
(FFT), where 200 sample vector (8-s data) was padded with
trailing zeros to length 2,048, and the frequency bin resolution
became 0.012 Hz (0.73 bpm). Subsequently, we normalized
the power spectrum with the minimum value of zero and the
maximum value of one: PS (i) from S (i), and P‘,?l (i) from
A, (i). We further averaged the power spectra from three-axis
acceleration signals: PAG) = % an:l Pﬁ, (i). Given P¥ (i)
and P4 (i), we extracted only the possible HR range between
0.6 and 3.3 Hz, which resulted in 222 frequency-bin power
spectra. Then, each extracted instance of data was of size
1 x 222 with frequency resolution of 0.0122 Hz, which was
equivalent to 0.73 bpm. We denote the resultant 1 x 222
size data by P° (i) and P (i), respectively. In addition to the
power spectra, we also computed the average of the envelop
amplitudes in each 8-s window denoted by /¢ (i), which
indicates the acceleration intensity. In our proposed model,
P? (i), P (i), and I? (i) are in the input layer.

C. MODEL DESCRIPTION

The architecture of our proposed model is summarized
in Fig. 1(a). It contains eight layers: two convolutional, two
LSTM, one concatenation, and three fully connected layers
including a softmax. More specifically, a 2D convolutional
layer, 1D convolutional layer, a flatten layer, a concatenation
layer, one fully connected layer, two LSTM layers, and one
fully connected layer followed by a softmax are sequentially
structured. For the input layer, the power spectra from the
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FIGURE 2. True HR probabilities yé' with activations before the softmax layer, (b) modified true HR probabilities ﬁé with activations before the softmax

layer.

PPG and acceleration signals are aligned with the length of
two (size 2 x 222): the top signal is from PPG (P’ (7)), and the
bottom is from the acceleration (P? (i)). Note that the power
spectra are based on each 8-s window, which is subsequently
shifted by 2-s (6-s overlap). The input layer is fed into the 2D
convolutional layer with 32 2 x 37 kernels and stride of 4,
followed by the nonlinear function of leaky rectified linear
unit (ReLU) and 1 x 2 max pooling with stride of 2. The
resultant feature maps with size of 1 x 28 x32 represent the
intermediate PPG power spectrum with MA cancelation.
The feature maps are fed into the 1D convolutional layer with
64 1 x 5 kernels and stride of 1, followed by the leaky ReLU
and 1 x 2 max pooling with stride of 2, which provides other
feature maps with size of 1 x 14x64 representing the PPG
power spectrum with MA cancelation. The resultant feature
maps are flattened to 896 nodes, which are fully connected to
512 nodes with leaky ReL.U.

Subsequently, the acceleration intensity /¢ (i) is concate-
nated with the 512 activations. We hypothesized that the
acceleration intensity indicates how the current HR value
will change in the near future. For instance, high acceleration
intensity indicates high-intensity motion, which may increase
the HR. The 513 concatenated nodes are fed into two LSTM
layers. The two LSTM layers act as an HR tracking algorithm
by considering the local HR trace pattern. Because of the
LSTM layers, the dominant frequency corresponding to the
HR is not severely deviated in consecutive windows even
when the signal-to-noise ratio (SNR) of the PPG signal is
extremely low. The first LSTM layer includes 512 nodes
with 6 timesteps, all of which are connected to the second
LSTM layer. Note that we found that 6 timesteps provided
the best accuracy. The numerical analysis of the effect of the
timestep length is presented in Section III. The second LSTM
layer also includes 6 timesteps, each of which provides an
output with length of 222. Then, only the output from the last
timestep is fed into the fully connected layer connecting to
222 nodes with leaky ReLU. Fig. 1(b) shows the resultant
222 activations representing the final PPG power spectrum
with MA cancelation in the frequency range of 0.6-3.3 Hz
with frequency resolution of 0.012 Hz. The activations are fed
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into a softmax layer, which provides the final probabilities for
the true HR value, as shown in Fig. 1(c).

To avoid overfitting, we applied dropout to the two convo-
lutional layers and two LSTM layers. For the convolutional
layers, the dropout rates were set to 0.3. For the LSTM layers,
the dropout rates for the linear transformation of inputs were
0.3, and the dropout rates for the recurrent state were 0.2.

D. MULTICLASS AND NON-UNIFORM MULTILABEL
CROSS-ENTROPY BASED COST FUNCTION

Given a set of parameters of the model, the softmax provides
the probabilities corresponding to each HR value subdivided
in the 222 frequency bins: from 0.6 to 3.3 Hz with an interval
of 1/222. Thus, with the true HR value, we may consider the
multiclass classification problem, which calculates the cost &
via multiclass cross-entropy as

222
= yilog (”c) :
c=1

where yé and 5)2 are the true HR probability and the predicted
HR probability, respectively, for the ¢ frequency bin at the
i window. In the multiclass cross-entropy, y.. has the value
of one only when the ¢ frequency bin corresponds to a true
HR. Otherwise, yi has the value of 0. Then, the formulation
can be simplified as

ey

@

where S)ZZW . 18 the predicted HR probability in the frequency
bin covering the true HR value.

However, this approach has a drawback that the frequency
bin covering the true HR value may not exactly represent
the true HR, as shown in Fig. 2(a), where the true HR
value (red) and the dominant activation (blue) are not over-
lapped. The issue can be attributed to the fact that the ECG-
and PPG-based HRs are not exactly overlapped due to the
peak morphology of each signal [20], [21]. In addition, differ-
ent sampling rates also result in slight difference in the deter-
mination of the HR value. Note that the true HR was obtained
from ECG data sampled at 50 Hz from BAMI I and II datasets

E = _log(yszlrue)v
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and that sampled at 125 Hz from the ISPC dataset whereas the
frequency bins were derived from the PPG signal downsam-
pled at 25 Hz. To resolve the issue, we multiplied the cost
& by the normalized Gaussian function, where a Gaussian
distribution with the center as the true HR was normalized
to have a maximum value. The modified cost function is
exp (_ (Hthr;ez(i»z)

max [exp (— —(HRggez(i))z )]
where HR;,, represents the true HR. From the modification,
we could alleviate the non-overlapping issue between the
ECG- and PPG-based HRs. Fig. 2(b) shows the modified
true HR probabilities inside the parenthesis in (3), which are
plotted in red. In this study, we chose the standard deviation
o= 3. The numerical analysis of the effect of o is described
in Section III.

%‘: _log yi:true : (3)

E. IMPLEMENTATION AND PERFORMANCE EVALUATION
Our proposed model was implemented using Tensorflow
package, which provides a Python API for tensor manipu-
lation for deep learning. We also used Keras, which is now
the official frontend of Tensorflow. Keras and Tensorflow,
in combination with standard Python libraries such as Numpy
and Matplotlib, were used to build the model and analyze
the results. We trained our model with the ADAM optimizer
with a learning rate of 0.0001 and batch size of 1 on NVIDIA
GeForce GTX 1080 Ti GPU. Fig. 3 shows the printed textual
summary of our proposed model run on Keras. The total
number of parameters (weights and biases) was 3,275,402.

For the performance evaluation, four-fold cross-validation
was performed in this study to confirm the generalization
ability of the proposed model for HR estimation. The training
dataset (n = 48) was randomly shuffled and divided into four
equal groups, each of which included the data for 12 subjects.
Subsequently, three groups were selected for training the
model and the remaining one group was used for validation.
This process was repeated four times by shifting the vali-
dation group. Then, we averaged the mean validation costs
of the four validation groups according to each epoch and
found the optimal epoch that provides the lowest validation
cost. Then, we re-trained the model using the entire training
dataset (n = 48) with the optimal epoch. The isolated test
dataset (n = 23) was only evaluated after the model was
completely trained using the training dataset. This hold-out
method provides an unbiased evaluation of the final model
fit on the training dataset. To examine the HR estimation,
we used the average of absolute errors [AAE (bpm)] and the
average of relative absolute errors [ARE (%)].

Ill. RESULTS

A. RESULTS FROM TRAINING AND TEST SETS

Based on our proposed model, we found that the resultant
AAE and ARE values were 1.09 bpm and 0.92% for the
training dataset (n = 48), and 1.46 bpm and 1.23% for
the test dataset (n = 23), respectively. The performance is
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Layer (type) Qutput Shape Param # Connected to
Two_Power_Spectra (None, 6, 2, 222, 1) 0

Convolution1 (None, 6, 1, 56, 32) 2400 Two_Power_Spectra[0][0]
Leaky RelLU1 (None, 6, 1, 56, 32) 1] Convolution1[0][0]
Maxpooling1 (None, 6, 1, 28, 32) 4] Leaky_ReLU1[0][0]
Dropout1 (None, 6, 1, 28, 32) 0 Maxpooling1[0][0]
Convolution2 (None, 6, 1, 28, 64) 10304 Dropout1[0][0]

Leaky RelLU2 (None, 6, 1, 28, 64) Q Convolution2[0][0]

Maxpooling2 (None, 6, 1, 14, 64) 0 Leaky_ReLU2[0][0]
Dropout2 (None, 6, 1, 14, 64) 0 Maxpooling2[0][0]
Flatten (None, 6, 896) 0 Dropout2[0][0]

FC1 (None, 6, 512) 459264 Flatten[0][0]
Leaky_RelU3 (None, 6, 512) 0 FC1[0][0]
Acc_intensity (None, 6, 1) 0

Concatenate (None, 6, 513) 1] :2?&2:;;?([)?[]([3?]
LSTM1 (None, 6, 512) 2101248 Concatenate[0][0]
LSTM2 (None, 222) 652680 LSTM1[0][0]

FC2 (None, 222) 49506 LSTM2[0][0]
Softmax (None, 222) 0 FC2[0][0]

Total params : 3,275,402
Trainable params : 3,275,402
Non-trainable params : 0

FIGURE 3. Printed textual summary of our implemented model run on
Keras.

summarized in Table 1. More specifically, the AAE and ARE
values were 0.76 bpm and 0.66% with the ISPC dataset, and
1.39 bpm and 1.17% with the BAMI-I dataset, respectively.

TABLE 1. Performance summary with each dataset: ISPC and BAMI-I
were used as training set, and BAMI-II was used as test set.

AAE (bpm) ARE (%)
.. ISPC (n=23) 0.76 0.66
Training set BAML-I (1=25) 139 1.09 117 0.92
Test set BAMI-II (n=23) 1.46 1.23

Table 2 compares our results with the 12 previously
reported results obtained with the ISPC dataset. Note that
some studies reported the results based on only the first
12 recordings; others reported all results except for the
13%subject, and only a few reported the performance for
the entire data pertaining to the 23 subjects. Our pro-
posed model exhibited AAE and ARE of 0.67 bpm and
0.50%, respectively, for the first 12 subjects (subjects 1-12;
T1 activity). These error values are the lowest in comparison
with the other results, where the AAEs and AREs ranged
from 1.02-2.34 bpm and 0.81-1.82%, respectively [1-4, 6-8,
11-13, 17, 22]. With the exception of the 13th subject, our
algorithm outperformed the existing methods for the entire
dataset [1-4, 6-8, 13, 17, 22]. The current state-of-the-art
methods exhibited AAE of 1.47-2.73 bpm whereas our
method exhibited AAE of 0.75 bpm. In addition, for the
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TABLE 2. Comparison of the performances of various methods: ISPC dataset evaluated as a trained data.

TROIKA JOSS SpaMa Spectrap WFPV I\?lgfl" ]';31]\}1{/1: PF Fallet Galli Motin I\I;I:ds? Proposed
Subi.  Act 1 2] 3] [6] 7] 7] (2] 11 4] [13] 18] 2] Model
: | AAF(ARE) AAF(ARE) AAE(ARE) AAF(ARE)  AAF(ARE) AAE AAE AAE AAE(ARE)  AAE(ARE)  AAF(ARE) AAE AAE(ARE)
bpm(%) bpm(%) bpm(%) bpm(%) bpm(%) bpm bpm bpm bpm(%) bpm(%) bpm(%) bpm bpm(%)
1 T1 229(2.18)  1.33(1.19)  123(1.14)  1.18(1.04)  1.25(1.15) 623 1.82 221 1.75(1.59) 2.72(2.11) 1.18(1.09) 1.81 0.64(0.51)
2 T1 2.19(2.37) 1.75(1.66) 1.59(1.30)  2.42(2.33) 1.41(1.30) 1.83 129 1.71 1.94(1.99) 3.25(3.02) 1.65(1.52) 1.44 0.71(0.63)
3 T1 2.00(1.50) 147(127)  0.57(0.45)  0.86(0.66)  0.71(0.59) 0.89 0.80 1.11 1.17(1.02) 140(1.11)  0.75(0.63) 0.63 0.59(0.48)
4 T1 2.15(2.00)  148(1.41)  044(0.31)  138(1.31)  0.97(0.88) 049 099 1.71 1.67(1.51) 121(1.04)  0.87(0.76) 1.16 0.62(0.47)
5 T1 201(1.22)  0.690.51)  047(0.31)  092(0.74)  0.75(0.57) 040 0.65 1.10 0.95(0.75) 0.93(0.70)  0.74(0.56) 0.83 0.67(0.47)
6 T1 2.76(2.51) 1.32(1.09)  0.61(0.45) 137(1.14)  0.92(0.75) 3.08 1.10 1.72 1.22(1.05) 221(1.82)  0.94(0.76) 1.40 0.75(0.57)
7 T1 1.67(127)  0.71(0.54)  0.54(0.40) 1.53(1.36)  0.65(0.50) 134 0.62 1.11 0.91(0.72) 140(1.04)  0.64(0.49) 1.02 0.77(0.58)
8 T1 193(147)  0.56(0.47)  040(0.33)  0.64(0.55)  0.97(0.83) 3.64 0.62 129 1.17(1.04) 1.16(0.97)  0.98(0.86) 0.63 0.67(0.54)
9 T1 1.86(1.28)  049(0.41)  040(042)  0.60(0.52)  0.55(0.48) 330 040 1.12 0.87(0.76) 1.17(0.95)  0.52(0.45) 0.68 0.68(0.55)
10 T1 4.70249)  381(243)  2.63(1.59)  3.65227)  2.06(1.29) 177 3.62 35 2.95(1.93) 249(2.79)  2.02(1.26) 2.77 0.63(0.40)
11 T1 1.72(129)  0.78(0.51)  0.64(0.42)  0.92(0.65) 1.03(0.68) 041 0.92 1.68 1.15(0.79) 1.38(0.91) 1.01(0.67) 1.03 0.77(0.50)
12 T1 2.84(2.30) 1.04(0.81)  1.20(0.86) 1.25(1.02)  0.99(0.70) 0.50 124 1.57 1.00(0.79) 1.29(0.92)  0.89(0.64) 0.90 0.48(0.35)
13 T2 - - 341(4.25) - 3.54(4.08) - - - - - 3.38(3.78) 6.58 0.90(1.00)
14 T2 729(9.80)  4.89(6.29)  9.59(12.2) 1.60 - 12.12(16.13)  791(103)  7.66(9.52) 713 0.87(1.18)
15 T2 - - 2.732.21) 1.58(1.98)  2.57(3.16) 0.24 - - 4.02(5.28) 3.65(4.73)  2.06(2.60) 1.35 0.71(0.95)
16 T3 - - 3.18(2.11)  1.83(1.49)  225(1.87) 1.60 - - 5.64(2.10) 390(2.52)  2.12(1.76) 241 0.76(0.61)
17 T3 - - 301(252)  3.052.00)  3.01(1.99) 204 - - 331(3.52) 244(197)  2.77(1.81) 442 1.49(1.03)
18 T3 - - 446(3.23)  1.62(1.36)  2.73(2.29) 0.95 - - 3.39(2.81) 2.14(1.57)  2.84(2.39) 204 0.84(0.68)
19 T3 - - 3.58(3.98)  1.24(0.92)  1.57(1.15) 0.28 - - 345(2.51) 2.60(2.86) 1.50(1.10) 325 0.68(0.50)
20 T2 - - 1.94(1.66)  2.04223)  2.10241) 0.28 - - 1.56(4.11) 1.86(1.44)  2.19(2.45) 220 1.31(1.45)
21 T3 - - 256(2.02)  249(1.81)  344(245) 0.67 - - 0.95(3.99) 0.85(0.99)  3.58(2.56) 352 0.74(0.52)
22 T3 - - 1.1600.92)  1.16(0.92)  1.61(1.26) 042 - - 2.52(1.21) 3.06(2.54) 1.56(1.23) 145 0.78(0.61)
23 T2 - - 0.66(0.79)  0.66(0.79)  0.75(0.88) 0.57 - - 5.86(1.11) 3.38(2.32)  0.77(0.90) 0.71 0.42(0.49)
Trained Trained Trained Trained Trained Trained Trained Trained Trained Trained Trained Trained Trained
w/ 12 w/ 12 w/23 w/ 12 w/23 w/22 w/ 12 w/ 12 w/ 22 w/22 w/23 w/23 w/23
recordings recordings recordings recordings recordings recordings  recordings recordings recordings recordings recordings recordings recordings
Evaluation Results Results Results Results Results Results Results Results Results Results Results Results Results
approach shown w/ shown w/ shown w/ shown w/ shown w/ shown w/ shown w/ shown w/ shown w/ shown w/ shown w/ shown w/ shown w/
the same the same the same the same the same the same the same the same the same the same the same the same the same
12 12 23 12 23 22 12 12 22 22 23 23 23
recordings recordings recordings recordings recordings recordings  recordings recordings recordings recordings recordings recordings recordings
(NoTll- 12) 234(1.82)  1.28(1.01)  0.89(0.65)  1.50(1.12)  1.02(0.81) 1.99 1.17 1.65 1.40(1.16) 1.85(1.45) 1.02(0.81) 1.19 0.67(0.50)
T2 & T3
(No. 13-23) - - 3.36(3.33) - 3.01(3.06) - - - - 2.77(2.74) 3.19 0.86(0.82)
T2& T3 ; ; 3353.27) ; 29529) 086 ; ; 428428)  3I8(.13)  271263) 285  086(080)
(No. 14-23) 35(3. 95(2. . .28(4. 18(3. 71(2. . .86(0.
Aﬂlsxf;‘” - - 201(1.84) - 1.90(1.98) 147 N N 271258)  245221)  178(1.64) 194 0.75(0.64)
All
(No. 1-23) - - 2.07(1.95) - 1.97(1.89) - - - - 1.85(1.73) 215 0.76(0.66)

entire 23 subjects, our algorithm outperformed the existing
methods.

Table 3 compares our results obtained with the BAMI-I
(additional training dataset) and -II datasets (test dataset).

Because the datasets were obtained with the device devel-
oped by our team, the numerical comparisons with all the
state-of-the-art methods (shown in Table 2 ) are not available.
Instead, we performed simulations with the five very recent
state-of-the-art methods: WFPV [7], FSM framework [15],
Kernel-FSM framework [14], single-mode PF [11], [12],
and multi-mode PF (MPF) [16]. In addition, we compared
the results when only the dominant power spectrum using
PPG was considered. The MPF based approach can involve
various methods depending on how the estimated HR value
is determined using the particles and the associated weight
values. The best accuracy in the MPF results was observed
when the MPF was performed with the strongest neigh-
borhood and mean of the posterior probability densities of
all particles (MPF-SN-AP). The results are summarized in
the table. Our proposed model exhibited AAE and ARE of
1.39 bpm and 1.17%, respectively, with the BAMI-I dataset.
These error values are lower than those of the other results—
AAEs of 11.28 bpm [7], 3.88 bpm [15], 2.50 bpm [14],
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6.30 bpm [11, 12], and 3.36 bpm [16]. Especially the FSM,
Kernel-FSM, SPF, and MPF methods ignore low-quality sig-
nal segments or inaccurate estimation results; they consider
the metric of valid HRs (VHR) as the percentage of the valid
results among all the data segments based on a certain crite-
rion such as outlier occurrence. The main purpose of the VHR
is to increase the accuracy as much as possible by discard-
ing some outlier results. The VHRs were 71.61%, 88.99%,
86.77%, and 90.91% for FSM, Kernel-FSM, SPF, and MPF,
respectively. However, our method used all data segments
(VHR=100%). Our proposed model also outperformed the
other methods for the BAMI-II dataset. Our method exhibited
AAE and ARE of 1.46 bpm and 1.23%, respectively, whereas
the other methods exhibited higher AAEs: 6.09 bpm [7],
1.71 bpm [15], 2.32 bpm [14], 3.72 bpm [11], [12], and
2.90 bpm [16]. In addition, the VHRs were 72.40%, 80.74%,
84.66%, and 91.05% for FSM, Kernel-FSM, SPF, and MPF,
respectively whereas that of our method was 100%.

Fig. 4 shows the estimated HR trace based on our pro-
posed model and acceleration intensity; Figs. 4(a) and (b)
show the results obtained with the ISPC dataset, whereas
Figs. 4(c) and (d) show the results with the BAMI-I and
BAMI-II datasets. In the top panels of Fig. 4, the estimated
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TABLE 3. Comparison of the performances in terms of average absolute errors and average relative errors: BAMI-I (additional training set) and BAMI-11

(test set).
WEPV FSM Kernel-FSM SPF MPF

s D i i i s
ataset - Subject - AARL o ) AAE(ARE) AAE(ARE)(VHR)  AAE(ARE)(VHR)  AAE(ARE)(VHR)  AAE(ARE)(VHR) AL ((0/) (0/))
pmee bpm(%) bpm(%)(%) bpm(%)(%) bpm(%)(%) bpm(%)(%) e

I 36.6437.12)  11.86(1041)  1.18(0.92)(76.60)  1.35(1.10)(98.08) _ 6.40(6.78)(66.35) _ 133(1.07)(89.10) 1.06(0.85)
2 2946(2071)  9.00631)  160(135)7147)  1.65(133)96.79)  12.48(13.74)(87.82)  1.65(1.32)(98.4) 1.45(1.17)
3 17.61(1524)  486(4.18)  1.35(122)(7938)  1.57(142)(94.00)  2.09(1.91)(95.68)  1.78(1.63)(95.68) 1.34(1.2)
4 36592732)  1731(12.86)  15.75(11.06)(38.65)  1.15(0.94)(92.63)  33.24(39.60)(79.49)  1.18(1.00)(79.49) 0.96(0.81)
5 39.88(33.03) 25.4921.99)  3.70(3.07)45.83)  2.67(220)(8846)  343(2.92)(5032)  3.92(3.68)(67.63) 1.88(1.57)
6 3929(27.09) 33.06(2237)  33.88023)@8.68)  12.35(8.51)(77.94)  35.48(49.11)(66.43)  13.76(15.76)(83.69)  1.39(1.16)
7 6.83(467)  390(290)  175(139)0L13)  183(143)0113)  2.86(233)9041)  1.98(1.54)(90.41) 1.6(1.41)
8 90.75(7.89)  481(4.12)  191(1.66)82.73)  2.09(1.81%94.00)  252(221)(96.88)  2.09(1.81)(96.40) 1.77(1.55)
9 2042(15.62) 2130(16.53)  140(1.07)4423)  175(134)83.65)  2.19(1.70)(9647)  1.72(1.33)(91.35) 1.39(1.08)
10 33712219 10.56(7.01)  1.65(1.1)(72.12) 176(1.17)(9423)  20.79(24.06)(86.22)  22.00(25.64)(79.17)  1.34(0.89)
11 34012257) 31.28(2046)  1.89(1.45)43.65)  1.84(131%9041)  229(1.73)(79.86)  1.91(1.38)(95.44) 1.46(1.05)
12 1776(1336)  6.58(5.28)  156(145(79.62)  1.77(1.64)90.41)  2.19(1.97)(88.97)  1.62(1.46)(93.05) 131(1.17)
13 13.13312.12) 315307 167(1.64)87.05)  1.66(1.61)9137)  1.87(1.82)(9520)  1.67(1.62)(97.36) 131(1.26)
BAMLI 14 504(5.88)  3.6203.62)  166(1.76)8058)  175(1.84)84.17)  2.62(2.81)(8921)  2.34(2.51)(90.89) 1.2(1.25)
15 13.51(10.14)  330(3.03)  3.08275)0161)  3.0827I5OL61)  247(226)97.84)  2.91(2.61)(95.92) 3.02(2.78)
16 20581494) 1626(11.48)  223(1.65)(59.94)  238(1.72)(8045)  245(1.78)(84.94)  221(1.61)(87.50) 1.53(1.13)
17 2729(19.66)  8.59(5.98)  134(1.00)7244)  138(1.00)OL67)  L.64(L.18)(76.92)  1.50(1.09)(97.12) 1.2(0.87)
18 274917.15)  15559.99)  15I(L11Y65.71)  1.59(1.13)86.86)  3.17(233)(89.10)  5.56(418)(92.63) 1.07(0.77)
19 16281185  3.95293) 12801038177  142(1.12)97.60)  1.85(1.46)(97.12)  1.29(1.02)(96.64) 1.16(0.93)
20 1572(1166)  3.07(2.30)  1.48(113)(9329)  1.46(1.11)(96.40)  2.42(2.02)9329)  1.60(1.22)(95.68) 1.24(0.93)
21 4773.22) 4170285 171(125)93.59)  1.74(126)95.19)  2.05(1.50)(9647)  1.77(1.29)(96.79) 1.47(1.07)
2 8707.07)  2420223) 14701380137 1.66(1.52)94.00)  1.85(1.68)(9832)  147(1.34)(97.60) 1.23(1.11)
2 1967(17.73)  12.54(1139)  L6I(141)(69.78)  1.73(1.54)(88.25)  4.02(4.01)84.17)  2.40(2.69)(92.81) 135(1.18)
2% 7447.74)  6.17(642)  141(153)(7532)  148(1.59)01.03)  1.88(1.99)(97.44)  1.64(1.74)(96.15) 1.04(1.11)
25 22822152 19.10(18.76)  8.86(9.51)(33.70)  9.44(10.25)(44.48)  3.22(3.28)(84.25)  2.64(2.57)(75.97) 0.91(0.87)
Ave  21.41(1630)  11288.74)  3.88(3.03)(71.61)  2.50Q2.11)88.99)  6.30(7.05)86.77)  3.36(3.32)(90.91) 1.39(1.17)
1 483(3.25) 483015 129(1.05)(79.56)  140(1.11(38.95)  1.68(1.28)(86.74) __ 1.20(0.94)(92.27) 130(1.03)
2 899(7.69)  4.70(4.19) 122(1.13)(76.52)  133(1.21)(88.95)  1.84(1.63)(90.88)  1.22(1.10)(95.03) 138(1.24)
3 161(136)  1.64(1.49) 165(1.42)(82.04)  1.77(1.50)(82.32)  1.74(1.45)91.16)  1.37(1.20)(93.37) 1.16(1.03)
4 1.99(1.49)  0.87(0.76) 1.1000.94)(86.19)  LIS(1.ONS86.19)  135(L.13)O171)  1.04(0.88)(96.13) 0.91(0.76)
s 10.538.33)  8.23(6.82) 2.05(2.00(55.80)  2.15(2.04)(7238)  3.093.07)87.85)  16.61(19.82)(74.59)  1.53(1.49)
6 9.38(8.78)  5.86(5.58) 135(122)(7320)  1.52(1.41)(80.39)  1.97(1.81)(86.19)  1.43(1.29)(90.88) 1.57(1.44)
7 5.194.57)  426(3.9) 1.60(1.34)(72.65)  1.76(1.50)80.11)  2.01(1.70)(87.85)  1.61(1.39)(93.37) 1.40(1.21)
8 336(329) 298321 223(255)(7652)  231(262)(7624)  3.06(3.05)87.85)  15.07(19.33)(57.73)  1.67(1.73)
9 17.96(12.86)  9.78(6.99) 149(121)(63.81)  1.56(1.22)(77.62)  13.95(18.02)(62.98)  1.06(0.78)(93.92) 1.42(1.05)
10 311(289)  6.78(5.54) 171(136)(64.36)  1.98(1.54)(66.57)  2.25(1.87)(90.06)  1.86(1.60)(95.30) 1.61(1.42)
11 1649(13.89)  2.90(2.91) 1.84(1.88)(88.95)  1.86(1.89)91.71)  2.30(2.09)(95.30)  1.79(1.60)(92.82) 1.53(1.36)
12 496(4.61)  0.92(0.93) 1.150.04)(84.81)  L.I8(0.97)(86.19)  147(1.21)(90.33)  1.25(1.05)(98.62) 1.08(0.90)
BAMLIL 13 3.88(2.97)  4.24(3.05) 202(1.80)(77.62)  2.06(1.83)(76.52)  2.22(1.92)01.44)  1.82(1.60)(94.48) 139(1.17)
14 12.46(826)  6.31(4.10) LST(L11)(6823)  221(1.59)(72.93)  1.50(0.99)(77.62)  5.98(5.34)(93.09) 1.48(0.94)
15 1426(1052) 14.230.94)  190(1.60)(59.94)  203(1.69)7431)  19.03(23.29)(61.33)  2.57(2.28)(80.66) 2.63(2.33)
16 7.07(5.03)  3.75(2.67) 1SS(LI3)67.13)  160(1.16)(73.76)  1.44(0.99)(84.53)  1.04(0.73)(96.69) 1.37(1.00)
17 412(334)  2.03(1.50) 130(1.00)(80.11)  135(1.02)(83.43)  1.44(1.10)(88.67)  1.06(0.84)(96.13) 1.20(0.95)
18 1648(1031)  634(3.8) 1280.95)(73.48)  133(0.96)(84.81)  1.36(0.93)(84.53)  1.10(0.77)(98.62) 1.09(0.74)
19 1L.07(7.70)  6.77(4.84) 1.19(0.95)(70.99)  1.19(0.94)(86.19)  1.56(1.18)(84.25)  1.36(1.10)(98.07) 1.06(0.84)
20 1588(11.46)  14.89(1041)  2.01(1.83)(54.97)  1.84(1.67)(78.73)  2.04(1.84)8481)  1.33(1.14)(89.78) 1.26(1.09)
21 10.15(7.62)  9.65(7.17) 1.63(128)(65.75)  225(1.83)(77.07)  129(0.93)(84.25)  1.23(0.92)(94.20) 1.79(1.34)
22 3894(29.12)  1427(11.69)  347(3.07)(50.83)  14.89(13.65)(75.69)  14.09(19.44)(59.67)  1.13(0.85)(82.87) 1.45(1.19)
23 10.1809.20)  3.89(3.64) 2622300171 2.60(230)95.86)  2.96(2.69)97.24)  2.54(2.27)(95.58) 2.342.11)
Ave  10.13(7.76)  6.09@4.71)  L7I(148)(72.40)  2.322.03)80.74)  3.72(4.07)84.66)  2.90(2.99)(91.05) 1.46(1.23)

HR trace results are compared with the results when the
dominant power spectrum using only PPG is considered.
In addition, the bottom panels of Fig. 4 show that the
acceleration intensity is associated with the HR increase.
Especially, Figs. 4(a) and (b) show the results from sub-
jects 14 and 17, whose data have been considered the
most challenging because the measured PPG signals were
severely corrupted by MAs, resulting in very low SNR.
Indeed, for subject 14 in the dataset, the reported AAEs were
6.63 bpm [1], 8.07 bpm [2], 7.29 bpm [3], 4.89 bpm [6],
9.59 bpm [7], 1.60 bpm [17], 12.12 bpm [4], 7.91 bpm [13],
and 7.66 bpm [8]. For subject 17, the reported AAEs were
7.82 bpm [1], 7.01 bpm [2], 3.01 bpm [3], 3.05 bpm [6],
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3.01 bpm [7], 2.04 bpm [17], 3.31 bpm [4], 2.44 bpm [13],
and 2.77 bpm [8]. On the other hand, our proposed model
provided very accurate HR estimation over the entire seg-
ments for both subjects (AAE: 0.87 bpm for subject 14 and
1.49 bpm for subject 17). Figs. 4(c) and (d) also show the
results when the SNR is extremely low. For subject 1 in
the BAMI-I dataset, the AAE of 46.64 bpm was observed
when only the dominant power spectrum of PPG was used.
WFPV showed improved results with AAE of 11.86 bpm,
which was nevertheless high. On the other hand, our results
exhibited AAE of 1.06 bpm. Similarly, with subject 22 in
the BAMI-II dataset, AAE of 38.94 bpm was observed when
only the dominant power spectrum of PPG was used, and
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FIGURE 4. Estimated HR trace based on our proposed model (Tops) and acceleration intensity (Bottoms); (a) Subject 14 (ISPC), (b) Subject 17 (ISPC),
(c) Subject 1 (BAMI-1) and (d) Subject 22 (BAMI-II).
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FIGURE 5. (a) Pearson correlations between estimated HRs and true HRs (r = 0.9972) for training dataset, (b) Pearson
correlations (r = 0.9967) for test dataset, (c) and (d) Bland-Altman plots for training dataset (x = 0.0742 and o = 2.4166) and

test dataset (1 = 0.0226 and ¢ = 1.8632), respectively.

WEFPV exhibited AAE of 14.27 bpm. On the other hand, our
results exhibited AAE of 1.45 bpm. We have presented all
71 estimation results at https://github.com/HeewonChung92/
CNN_LSTM_HeartRateEstimation.

Fig. 5 shows the Pearson coefficients and Bland—Altman
plots between the estimated HRs and true HRs based on the
training and test datasets. As shown in Figs. 5(a) and (b),
the Pearson correlation coefficients of our model were 0.9972
(r? =0.9945) and 0.9967 (r> =0.9890) for the training and
test datasets, respectively.

Figs. 5(c) and (d) show the Bland—Altman plots for each
dataset. The limit of agreement (LOA) for the training dataset
was between —3.67 bpm and 3.63 bpm (mean 0.02 bpm,
SD 1.86 bpm). Similarly, the LOA for the test dataset
lay between —4.66 bpm and 4.81 bpm (mean 0.07 bpm,
SD 2.42 bpm).

B. INVESTIGATION OF OPTIMIZED NETWORK

1) EFFECT OF THE TIME STEP LENGTH IN LSTM

Throughout the study, we used the time step length of six
for the LSTM layers. In the case of recurrent neural net-
works (RNNs) such as LSTM and gated recurrent unit (GRU),
the sequential information can be preserved by sharing
weights over time. Thus, the long-term dependencies allow
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for stable tracking of the dominant frequency corresponding
to the HR. However, the lengthy time steps result in large
initial delay in HR estimation. In addition, the lengthy time
steps may result in overfitting because the weights are shared
under dynamic HR change for an extended period. Table 4
summarizes the AAE and ARE values for the training and test
datasets according to the time step lengths. As summarized
in Table 4, we found that the time step length of six provided
the lowest AAE and ARE values. The results also indicate
that overfitting occurs when the time step length exceeds six.

TABLE 4. Accuracy comparison according to the time step length.

. Training data (n=48 Test data (n=23
Time step length A AgE ( AR(E) ) AAE ( A(RE) )
4 1.35(1.21) 1.56(1.32)
6 1.09(0.92) 1.46(1.23)
8 1.08(0.91) 1.54(1.29)
10 1.07(0.90) 1.57(1.32)
12 1.06(0.89) 1.57(1.32)

2) EFFECT OF ACCELERATION INTENSITY

Our proposed model used acceleration intensity, which was
concatenated to the activations before the two LSTM lay-
ers. To investigate the effect of the acceleration intensity,
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we removed the acceleration intensity along with the concate-
nation layer and compared the accuracy. Table 5 summarizes
the AAE and ARE values for the training and test datasets
with and without the acceleration intensity. As summarized
in Table 5, the acceleration intensity decreased the AAE and
ARE values by 15.6 % and 15.8 %, respectively, for the test
dataset.

TABLE 5. Accuracy comparison between with and without consideration
of acceleration intensity.

Tra(l:zlfg;iata Test data (n=23)
AAE (ARE) AAE (ARE)
Our method 1.09(0.92) 1.46(1.23)
Without acceleration 1.04(0.88) 1.73(1.46)
intensity

3) EFFECT OF STANDARD DEVIATION ON TRUE HR
Regarding the modified true HR probabilities, we investi-
gated the effect of the Gaussian standard deviation by chang-
ing the value from 1 to 5. Table 6 summarizes the AAE and
ARE values for the training and test datasets according to the
standard deviation. As summarized in Table 6, we found that
the standard deviation of three provided the lowest AAE and
ARE values for the test dataset.

TABLE 6. Accuracy comparison according to the standard deviation of the
Gaussian distribution on the modified true HR.

Standard Training data (n=48) Test data (n=23)
deviation AAE (ARE) AAE (ARE)

1 1.03(0.88) 1.64(1.36)

2 1.05(0.90) 1.51(1.27)

3 1.09(0.92) 1.46(1.23)

4 1.22(1.04) 1.56(1.32)

5 1.25(1.07) 1.60(1.33)

4) COMPARISON WITH SEPARABLE CONVOLUTIONAL
LAYER

In our proposed model, we aligned the power spectra from
the PPG and acceleration signals with the top and bottom of
the input layer; data of size 2 x 222 x 1 were fed into the 2D
convolutional layer. A variant network can be constructed by
realigning the two power spectra toward the depth (channel)
direction, which results in input data of size 1 x 222 x 2,
as shown in Fig. 6. Then, a depthwise separable convolution
may be an alternative choice over a regular 2D convolution
layer: the input layer is fed into the depthwise separable
convolutional layer, which performs a spatial convolution
independently over each channel followed by pointwise con-
volution (I x 1 convolution) projecting the channels onto
a new channel space [23]. For performance comparison,
we modeled the variant network as shown in Fig. 6, and
compared the AAE and ARE values. Table 7 summarizes
the AAE and ARE values for the training and test datasets
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when the depthwise separable convolution layer replaces the
regular 2D convolution layer in our proposed model. The
AAE and ARE values increase to 1.97 bpm and 1.62%,
respectively. The results indicate that the depthwise separable
convolution can reduce the number of parameters (weights
and biases) by 57,430, but cannot improve the overall per-
formance. Depthwise separable convolution works efficiently
when the channels are independent [23]. However, the MA
components are commonly reflected in both power spectra
although the PPG and acceleration signals originate from
different sensor modules.

C. PERFORMANCE COMPARISON WITH ADDITIONAL
DEEP LEARNING APPROACH

Apart from the CorNet [17], a few algorithms have been
proposed using deep learning approach. In [24], CNN and
LSTM were used for the HR estimation model. For an input
layer, band-pass filtered PPG data were used, but an accel-
eration signal was not considered. The proposed network
was trained on ISPC dataset and tested on another dataset
referred to as the ADI dataset. However, it was reported that
poor results were observed on the test dataset. To improve
the performance, the network was additionally trained on
the ADI dataset with the pre-trained model from the ISPC
dataset, but the AAE was still high as 4.1 bpm. In [25],
a simple fully connected layer was used for the model, where
an acceleration signal was not also considered. For an input
layer, 17 features from power spectrum were used. Although
the AAE results were 1.39 bpm and 2.81 bpm for ISPC
subject 1-12 and 13-23 datasets, respectively, the accuracy
results were based on the training dataset only. Further results
on test dataset (new dataset) were not provided. In [26],
CNN model only was used for the HR estimation. For an
input layer, power spectra of PPG and acceleration signals
were used. The proposed network was separately trained on
ISPC subject 1-12 and 13-23 datasets, respectively. Such
session-optimized AAE values were 4.0 bpm and 16.5 bpm
on ISPC subject 1-12 and 13-23 datasets, respectively. Sub-
sequently, the network was trained on other datasets named
WESAD and PPG-DaLiA with the same hyperparameters
obtained from ISPC subject 13-23 datasets. The resultant
AAE values were 7.47 bpm and 7.65 bpm, respectively.
On the other hand, our proposed model was trained on ISPC
and BAMI-I datasets, and the resultant model weights/biases
were tested on BAMI-II without additional training. Further-
more, our model provided low AE values for all datasets:
0.76 bpm from ISPC, 1.39 bpm from BAMI-I and 1.46 bpm
from BAMI-IIL.

IV. DISCUSSION AND CONCLUSION

We have presented a deep learning model for HR estima-
tion using the power spectra from PPG and acceleration
signals, and the acceleration intensity. The proposed model
was sequentially structured with a 2D convolutional layer,
a 1D convolutional layer, and a fully connected layer, which
were incorporated for MA cancelation. It was additionally
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FIGURE 6. Estimated HR trace based on our proposed model (Tops) and acceleration intensity (Bottoms); (a) Subject 8 (BAMNI-II), (b) Subject 9
(BAMI-I1). The exercise stage of holding treadmill bar and running is highlighted.

TABLE 7. Accuracy comparison: the two power spectra are aligned
toward the depth direction, and a separable convolutional layer replaces
the regular 2D convolutional layer.

Training data Test data
(n=43) (n=23) TFtal numtber
AAE (ARE) AAE (ARE) | OFfparameters
Our method 1.09(0.92) 1.46(1.23) 3,340,938
With
Separable 2.23(1.88) 1.97(1.62) 3,283,508
Convolution

structured with a concatenation layer, two LSTM layers, and
a fully connected layer followed by a softmax layer, which
were incorporated for HR tracking and estimation. The pro-
posed model demonstrated AAEs of 1.09 bpm and 1.46 bpm
for the training and test datasets, respectively, which exceeded
the results of the current state-of-the-art methods.

To investigate the model optimization, we also considered
a bidirectional LSTM layer or two GRU layers instead of the
two unidirectional LSTM layers. When the two unidirectional
LSTM layers were replaced by a bidirectional LSTM layer,
the resultant AAEs were 0.99 bpm and 1.61 bpm for the
training and test datasets, respectively. We also confirmed that
further stacking of bidirectional LSTM layers did not improve
the performance. When the LSTM layers were replaced by
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GRU layers, the resultant AAEs were 1.04 bpm and 1.64 bpm
for the training and test datasets, respectively. Furthermore,
we considered the regression approach to obtain the HR value
rather than finding the dominant frequency bin. Based on the
proposed model, we added additional fully connected layers
of various depths and widths with the cost function of mean
square errors, but observed that the regression approach did
not learn the parameters properly. In the future, a comparative
study should be conducted with an in-depth study of the
network optimization of the regression approach.

Regarding the acceleration intensity information, we have
shown that the acceleration intensity decreased the AAE by
approximately 15%. In real life, however, the acceleration
intensity may not be correlated to the exercise intensity. For
instance, when a person is biking, the acceleration intensity
is independent of the increase in HR. Nevertheless, in our
results from BAMI-II (test dataset), the HRs were accurately
estimated with low acceleration intensity even in the con-
dition that HR increases. Fig. 6 shows the HR estimation
results during the exercise stage of holding treadmill bar and
running (highlighted in Fig. 6). During the exercise stage,
the acceleration intensity was low, but the increased HRs
were correctly estimated. It indicates that the acceleration
intensity is just one of many factors for the HR estimation.
The low acceleration intensity indicates that PPG signal is
less corrupted by motion artifacts and the resultant power
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spectrum is accurately obtained, which can be interpreted that
the accurate HRs can be estimated with only the accurate
power spectrum of PPG signal without the acceleration inten-
sity information. Nevertheless, in the future work, we need to
investigate the real-life scenarios, especially in the case that
acceleration intensity is not correlated to exercise intensity.

We also found that the estimation results were inaccurate
given the simultaneous occurrence of incorrect power spec-
trum, no information of acceleration intensity and sudden
change of HR. In Fig. 4(b), during the first 15 seconds,
the dominant frequencies were around 90 or 180 bpm while
the true HR was around 120bpm. In addition, the acceleration
intensities were also low; and thus, the information of the
acceleration intensity could not contribute to the HR estima-
tion. Furthermore, the HR increase rate was relatively high.
Such inaccurate HR estimation results were also observed
in the beginning for the subject 22 in BAMI-II as shown
in Fig. 4(d). In the future work, we will investigate the issue
to minimize the inaccurate HR estimation results.

Above all, the most important aspect of future research
would involve focusing on energy-efficient execution of the
proposed model when implemented on wearable devices
in real-time. Deep learning is undoubtedly intended to
provide good performance, but the implementation on
a wearable device faces many challenges because they
require algorithms with low power specifications due
to the limited computing power. Our proposed model
includes 3,275,402 weights/biases, which require approxi-
mately 17 million multiplication and addition operations for
a single HR estimation value. Thus, it is not easy to realize
the real-time implementation of a deep learning model on a
wearable computing platform. Reference [27] suggests that
offloading deep learning workloads to the cloud is one of the
feasible solutions. However, the offloading approach leads to
a minimum latency of up to a few seconds, which may not
be available during real-time performance. Recently, ARM
announced a Compute Library (ACL), which is a compre-
hensive collection of low-level neural network functions opti-
mized for the ARM Cortex CPU processors. It was reported
that the processing time with ACL was reduced by 25% when
compared with Tensorflow on Zuluko [27], indicating that
the use of libraries optimized for deep neural network will
support the realization of the proposed method on wearable
devices. In addition, we can reduce the model complexity by
downsizing the input data. In our proposed model, the input
data, which comprised 222 frequency bin-based power spec-
tra, had frequency resolution of 0.0122 Hz (0.73 bpm). Even
if we halve the resolution to 111 frequency bins, the frequency
resolution is 1.46 bpm, which is also sufficient to provide
accurate HR. Furthermore, we may also consider estimating
the HR by using conventional signal processing methods
when the wrist movement is not large; we can estimate the
HR by the proposed model only when the wrist movement is
detected and the PPG signals are distorted by MAs. We hope
to report on further investigation and issues related to the
implementation of the proposed method in wearable devices.
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