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ABSTRACT Machine learning and complex network theory have emerged as crucial tools to extract
meaningful information from big data, especially those related to complex systems. In this work, we aim to
combine them to analyze El Niño SouthernOscillation (ENSO) phases. This non-linear phenomenon consists
of anomalous (de)increase of temperature at the tropical Pacific Ocean, which has irregular occurrence
and causes climatic variability worldwide. We construct temporal Climate Networks from the Surface Air
Temperature time-series and calculate network metrics to characterize the warm and cold ENSO episodes.
The metrics are used as topological features for classification. We employ ten classifiers and achieved 80%
AUC ROC when predicting the intensity of Strong/ Weak El Niño and Strong/ Weak La Niña for the next
season. The complex network represents the relationship among different regions of the planet and machine
learning creates models to classify the different classes of ENSO. This work opens new paths of research by
integrating network science and machine learning to analyze complex data like global climate systems.

INDEX TERMS Classification algorithms, climate networks, complex network, EL Niño intensity, machine
learning, network sciences.

I. INTRODUCTION
The study of climate systems is of paramount relevance for
understanding the impact on local and global economics [1],
health and social effects [2], [3], and disaster risk reduction
and vulnerability [4] on society. One traditional approach
for studying climatic systems is by the development of cli-
mate models, which require data from diverse sources, such
as atmosphere measures, land use, carbon release, among
many others [5]. However, gathering and compiling these
data represents a problem for some regions, they are time-
expensive and consuming, and specialized knowledge and
expertise is required to build, setup, or interpret the results [5].
On the other hand, since the notable increase in computa-
tional power, Machine Learning (ML) methods have shown
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effective as a support in several tasks [4], [6]–[11], like clas-
sification, regressions and estimation problems.

In particular, the El Niño Southern Oscillation (ENSO) is
a non-regular and complex anomaly fluctuation across the
central and east-central equatorial Pacific Ocean [1], [2],
which notably affect human life by producing extreme pre-
cipitations or droughts around the world [2], [12], [13]. The
main characteristic is a variability out of expected sea surface
temperature (SST) in this region. The positive phase happens
when the average SST is warmer than expected in the ENSO
region, which is called El Niño. The opposite phase, colder
than average SST, is known as La Niña. This cycle fluctuation
is responsible for changes in precipitation and temperature
around the world, known as teleconnections [13]–[15].

Some studies have reported statistical and ML approaches
to understand the ENSO phenomenon [13]–[15]. Most of the
works concentrate on the long-term forecasting/regression
problem [15]–[19], which is a hard and challenging problem
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FIGURE 1. Schematic of the proposed method. First, we show an excerpt of the ONI time-series, which is the prediction goal for regression tasks. The
inside labels represent the intensity level of each episode. Second, we divide by months the spatiotemporal Surface Air Temperature Anomaly dataset
into overlapping windows of 1t = 365 days. For each sliding window, we calculate the Pearson correlation among all the time-series (points in the
globe); then, we establish connections between nodes when the correlation values are significant generating temporal climate networks. For each
network, we calculate nine centrality measures that work as features for Machine Learning algorithms. Finally, we perform a classification task analyzing
the El Niño episodes and intensities (labels) using 10 (traditional and ensemble) classifiers.

given the non-linear and chaotic behavior of the El Niño
and La Niña phases. Despite the efforts, previous works
disregarded the inclusion of topological information in the
methods, as well as spatiotemporal similarity patterns. More-
over, it is important to understand first the micro and macro
characteristics of the phenomenon in the short term (time)
and local areas (space). For this reason, we focus on the
classification task of the ENSO occurrences to better charac-
terize the behavior of the system, and the proposal of suitable
topological descriptors, or attributes, that can be employed in
further predictions models.

For structural features of the systems, Network Sci-
ences (NS) brings a powerful toolbox for representing and
characterizing spatiotemporal datasets [7], [8]. For example,
to analyze macro and intermediate-scale interactions, or local
transitive dynamics like the clustering coefficient or motifs
patterns in the network [8]. The topological characterization
of the complex system has shown improvements in analyzing
the ENSO region and other climate systems [20], [21], due to
the precise network construction of the dataset in the attribute
space [22], [23]. Therefore, the straightforward approach is to
combine NS with ML [7], [8], in which the former provides
significant inputs to the algorithms. These enriched descrip-
tors of the interactions among components can enhance the
results in the case of Climate Networks (CN) [21] and the
classification task of diverse domains [8].

Here, we present an approach to classify patterns in
spatiotemporal grid data by considering structural proper-
ties from functional networks and applying ML algorithms.
A method is proposed to classify the previous conditions
around the world of ENSO states, combining network-
based features and ML algorithms. The idea is to transform
the daily near-Surface Air Temperature (SAT) time-series
around the globe into a temporal functional network, in such
a way that strongly correlated time-series are represented
by links [18], [21]. Then, several structural measures are
extracted to characterize the ENSO dynamic, which are used
as attributes in ten ML algorithms. Therefore, the algorithms
learn a model to recognize the micro and macro patterns for

the intensity of the next season in terms of an El Niño or La
Niña episodes. The topological properties extracted from
the network, which was constructed from the spatiotemporal
dataset, brings relevant information that single ML algo-
rithms can not detect from systems with high complexity [8].

We test our method in different experimental setups: a
binary problem (El Niño and non-El Niño occurrences); and
a multi-class problem (strong El Niño, weak El Niño, strong
La Niña, weak La Niña, and regular year). In all the cases,
the results indicate that the combined classification method
correctly predicted the class of the ENSO episode with an
AUC ROC equal to or higher than 79%, i.e., nearly 4 out of 5
times, by using the Random Forest classifier. To the best of
our knowledge, this is the first work that employs classifica-
tion algorithms and NS to analyze the ENSO dynamic. More
important, as an initial endeavor in this direction, we pave the
way towards spatiotemporal classification problems together
with NS, which can be adapted according to the particularities
of the domain, e.g., sliding windows, networks measures, ML
algorithms, and techniques.

The paper is organized as follows. In Section II,
we present some of the works related to this proposal.
In Section III, we present the motivation of the research
problem. In Section IV, we give some basic concepts about
the El Niño-Southern Oscillation and the Oceanic Niño Index
(ONI) and describe the NS and ML methods adopted in this
work. In Section V, we illustrate our proposed methodology
using SAT; we describe the classification problems and the
statistical indicators used to evaluate the performance of the
classifiers. In Section VI, we have the experimental results
about the characterization of the network and the classifica-
tion of the ENSO episodes. Finally, in Section VII, we con-
clude with some final remarks, discussions, and suggestions.

II. RELATED WORK
In the case of the El Niño phenomenon, some works focused
on understanding the effects of the ENSO phases around the
world [13], [14], [24] and possible connections with other cli-
mate or different phenomena [1]–[3], [12], [24], [25]. In terms
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of ML applications, several works seek to predict or forecast
long-term ENSO episodes [15]–[19], [26], [27]. They select
a group of spatiotemporal datasets and information to feed
the forecasting model and perform some regression analyses.
The goal is to minimize forecasting errors given a specific
indicator of the problem [15], like the Oceanic Niño Index
(ONI) shown in Fig. 1. This is a tough problem, in which
the forecasting models tend to follow the previous tendency
of the index [16], with not significant differences with a
random model [27], and the errors gradually increase for
longer lead times [15], [16]. Besides, they can not completely
model the non-linear characteristic and tendency changes
given the high sensitivity to small perturbations of the ENSO
dynamic [28]–[31].

Other works have exploited clustering techniques. For
example, in [13], the authors proposed to cluster the two
types of El Niño episodes based on the similarity between
the produced networks by the cross-correlations between
18 specific areas. This way, they produced a new network
of 11 nodes (different El Niño events) with the similarity
connections and a tentative community division. In [32],
the authors employed a probabilistic clustering technique to
describe tropical cyclone tracks in the eastern North Pacific.
They analyzed the clusters in terms of many factors, such
as location, intensity, and their relationships with ENSO.
Authors in [33] proposed an index based on the transitiv-
ity measure and the average node strength of the El Niño
years. They were able to discriminate, without any visual
inspection, between Central Pacific (CP) or Eastern Pacific
(EP) El Niño events. These results support our hypothesis
that CN can provide high-level features for understanding
complex phenomena. Using ML algorithms combined with
network features can lead to automatic methods for mining
spatiotemporal time-series. However, there are two issues
limiting clustering approaches: 1) the choice of the number
of clusters to be used is not uniquely determined; and 2) there
is no precise metric for cluster validation [6].

Recently, some works have used deep learning for ENSO
forecasting, such as [27] that employed a deep-learning
approach that produces ENSO forecasts for long-time peri-
ods. They used a transfer learning to train a CNN on his-
torical and reanalysis data. The proposed approach predicted
types of El Niño events 12 months in advance and achieved
a hit rate of 66.7% in the validation period (1984-2017).
In [34], the authors compared long-short-term-memory
models (LSTMs) to linear regression models (LR). They
combined SST and zonal winds as predictors data. LSTM
exhibited some advantage over LR in terms of the correlation
coefficient using daily data; the results are presented via box-
plots and graphics and do not have a precise value. In [35],
the authors extracted network metrics from CN with LSTMs
to forecast ENSO. A 6-month lead prediction measure of
Root mean squared error (RMSE) = 0.8897 and Mean abso-
lute error (MAE)= 0.6376 are presented. Both the MAE and
RMSE can be used together to diagnose the variation in the
errors in a set of forecasts, and the values can range from 0 to

∞; however, lower values are better. In this case, the results
are not convincing.

Several studies have successfully analyzed their domain
problem by adopting the NS framework. Transforming the
dataset into a network has allowed finding many interesting
patterns and results in different areas, like text-mining [36],
health sciences [37], stock markets, among many others [38].
In the case of Earth sciences, the network representation has
been largely used for analyzing global climate effects and
teleconnections [20], [25], wild-fires events [39], anomalies
in annual hurricanes events [40], seismic events [41], and
continental moisture recycling process [42].

III. RESEARCH PROBLEM
Instead of performing a forecasting or clustering task to
predict some ENSO descriptor, here, we aim to classify and
understand the intensity pattern of the El Niño or La Niña
episode, as depicted in the inner labels of Fig. 1. In this classi-
fication problem, the goal is to recognize the previous climate
patterns around the world that can trigger a strong/weak
ENSO condition. For example, Fig. 1 shows the complete El
Niño episode between 1986 to 1988.1 We can consider the
temperature anomalies of the previous 365 days, construct
the corresponding CN, and recognize the topological patterns
associated with the activation and intensity of the ENSO
events by some ML algorithms.

In regression models, a numerical quantity is predicted,
whereas, in classification tasks, a category (one or more
labels) is predicted. Clustering is part of unsupervised learn-
ing, i.e., it does not use label data to train a model. The
proposal and novelty of this work are to employ classification
for ENSO analysis using high-level topological features from
the temporal networks. It is possible to construct networks
from any dataset [8], [21], [36], [39], to generate elaborated
features that feed a classification algorithm.More topological
features allow more possibilities to be exploited than using
only the time-series values to perform the predictions [8].
Moreover, some classification algorithms are not dependent
on big data to obtain good results, while deep learning
approaches need a vast amount of instances to achieve proper
training and good results, which is a limitation in the case of
historical climate data.

IV. BACKGROUND REVIEW
A. THE OCEANIC Niño INDEX
In the central and east-central equatorial Pacific Ocean, El
Niño and La Niña are opposite phases of the El Niño-
Southern Oscillation (ENSO) region, which is one of the
most influential climate patterns in the Earth. This irregular
oscillation produces significant changes in the atmospheric
precipitation system and jet streams, influencing the temper-
ature and precipitation around the world [13], [14]. El Niño
is the phase when the Sea Surface Temperature (SST) in
the ENSO region exhibits positive anomalous temperatures,

1which is strong by reached a maximum value above 1.5 in ONI [43]
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i.e., warmer than average conditions during the same period.
Opposite, La Niña happens when the SST in the ENSO region
is colder than average conditions; i.e., it presents negative
anomalous temperatures.

The ONI is one of the main index used to monitor the
occurrence of El Niño and La Niña phenomena. We used
the public updated NOAA’s ONI compiled data according
to the Extended Reconstructed SST version 5 (ERSSTv5)
filter [44], from the Climate Prediction Center (CPC) cov-
ering the years 1950 to July 2019. The index is defined as
the average of monthly SST anomalies in the Niño 3.4 region
(Fig. 2). The monthly anomalies are calculated by subtracting
the average temperature in the same month over the past
30 years. Then, it is calculated the running three-months
average [44]. The conditions of El Niño occur when the
ONI anomaly values are greater than or equal to +0.5◦K,
indicating that the El Niño 3.4 region is warmer than usual.
La Niña conditions are presented when observed values less
than or equal to−0.5◦K on the ONI, indicating that the same
Pacific region is colder than usual [33], [44].

Episodes of El Niño or La Niña are defined active only if
five or more consecutive overlapping 3-month running inter-
vals happen during the year. This is the specification that CPC
uses to define El Niño or La Niña episodes [44]. Here, we use
the ENSO category of intensity generalizing toweak or strong
events [43]. When the average of the three months anomalies
over the continuous El Niño episode of the year are larger
than 1.0, the event is categorized as Strong El Niño (SEL).
Otherwise, it is a Weak El Niño (WEL) episode. If two suc-
cessive events started during the same year, we adopted the
one that was larger and more intense. Similarly, a Strong La
Niña (SLA) episode is defined for the average of threemonths
anomaly values lower than −1.0. Otherwise, it is considered
as aWeak La Niña event. In this way, we present in Table 1 all
the years, from July 1950 to July 2019, categorized according
to strong or weak ENSO episodes.

It is important to notice that there can exist a variety of
El Niño intensity categories in the literature [24], which can
be used as labels in the classification task. However, here
we are not proposing a new ENSO categorization, but how
classification algorithms can predict the adopted category for
the ENSO episodes.

B. CLIMATE NETWORKS REVISITED
We start defining a network G = {V , E}, which consists of
a set of N = |V | nodes that represent spatial points where
a piece of information or signal over time is collected. The
set of M = |E| links show the nodes that are connected
between each other, where E ⊆ {(i, j) | i, j ∈ V }. The
links describe the similarity level between the nodes. In the
case of unweighted networks, the links have binary weights.
The mathematical entity that describes the network is the
adjacency matrix A = Aij, where the elements Aij are equal
to unity if i and j are connected, and zero otherwise.

The dataset is not always naturally represented as a net-
work, but rather by spatiotemporal events, or time series.

FIGURE 2. Region of the El Niño3.4 considered for the ONI index,
delimited from latitude 5◦N to 5◦S and from longitude 170◦W to 120◦W.

TABLE 1. Adopted binary categorization of the years according to the El
Niño 3.4 ONI anomaly intensity [43]. We consider the Weak episodes as
the class (Weak) and all Moderate, Strong, and Very Strong episodes as
the class (Strong). Italic years are originally Moderate and bold years are
Very strong episodes.

In these cases, a suitable network construction method must
be selected [21]–[23], [39]. Here, we adopted the func-
tional or correlation networks as the approach for construct-
ing the CN [21]. The linking process considers the grid
cells or spatial points that are significant and high correlated
with each other. Pearson-based correlations are the standard
functions employed for assessing the similarity between time-
series [18], [20], [21], [38] but many other functions can be
appropriated as well.

After the construction process, several topological mea-
sures can be employed to characterize the CN. We briefly
describe the measures used here. However, interested readers
can find the full concepts and definitions in [23], [45]. The
primary descriptors are related to the number of linksM and
the average degree 〈k〉 = 2M/N , which is the density of links
per node. From network connectivity, the triangles – or cycles
of order three, are the cases in which three nodes are mutually
connected. We quantify the proportion of triangles τ on the
network employing the transitivity measure [45].

Regarding the adjacency matrix, it is possible to iden-
tify the influence of nodes given the spectral properties of
the matrix. The Eigenvector of the highest eigenvalue of A
describes the importance of the nodes related to the location
and connections. We consider Ev as the average Eigenvector
centrality of the nodes. On the other hand, the network can
also be decomposed into cores by using the k-shell index.
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Nodes with higher k-shell values are central in the network.
The coreness of the network is the average k-shell values
among all the nodes.

In terms of path lengths, the shortest-path length between
two different nodes `i,j is the minimum number of edges in
a path that connects both i and j nodes. Then, the average
shortest-path 〈`〉 =

〈
`i,j
〉
is the average number of edges

crossed along all the shortest-paths between all the nodes of
the network. In the case that there is no path between i and j,
we assume `i,j = N . The Eccentricity of a node i is its largest
shortest-path length over all other nodes, i.e., max(`i,V ). The
eccentricity of the network is then the average eccentricity of
the nodes, Ec =

〈
max(`i,V )

〉
.

In terms of distances, the normalized distance between two
different nodes is d̂i,j = Di,j/Dmax, i.e., the geodesic distance
between the spatial location points of i and j divided by half
the circumference of the Earth Dmax, which is the maxi-
mum possible distance on the planet. The local link distance
di =

〈
d̂i,j |Aij > 0

〉
is the average of the normalized distance

of all the network neighbors of i. Therefore, the Global
Average Link Distance 〈〈d〉〉 [21] is the average local link
distances of the nodes, which is 〈〈d〉〉 = 〈di〉.

Last, the modularity indicates how well modular divided
into communities is the network, i.e., networks with higher
modularity value are well divided in communities with
a larger proportion of links intra-community than inter-
community. We consider here the Q modularity [45].

C. MACHINE LEARNING REVISITED
Machine learning (ML) is an area of Artificial Intelligence
(AI) whose objective is the development of computational
techniques on learning as well as the construction of systems
capable of acquiring knowledge automatically [46]. Algo-
rithms in ML can be classified into predictive and descriptive
tasks [6]. The first task aims to describe the information
encoded in the data, by finding patterns and without pro-
viding any forecast. Descriptive algorithms mostly rely on
clustering or association rules techniques. On the other hand,
predictive tasks aim to predict a target feature, based on
the information from other variables and a set of labeled
data. Predictive algorithms mostly rely on classification and
regression problems.

Here, we focus on the classification problem and employed
predictive algorithms. The classification problem consists of
acquiring data samples and decide which of the M classes
they belong to, based on training using examples from each
class. The classification problem is discrete, so each exam-
ple belongs precisely to one class within a set of classes
C = {c1, . . . , cm}. The formal definition of the classification
problem is: given a set D = {(xi, f (xi)), i = 1, . . . , n}, where
f represents an unknown function from which the machine
learning algorithm learns a f ′ approximation of the f function.
Using the f ′ function it is possible to estimate the value of f
for new values of x, so that in the case of classification we
have yi = f (xi) ∈ c1, . . . , cm.

In the following, we briefly present the ten classifications
algorithms (classifiers) selected in this work, andmore details
can be found in [6], [46]. We use the implementation from
Weka2 and Scikit-learn.3 Since there is no single algorithm
that obtains the best performance in all problems — no
free lunch assumption, it is important to evaluate different
classifiers in order to find the most appropriate for the ENSO
classification with CNs.

• k-Nearest Neighbors (k-NN): classifies an example by
the vote of its neighbors, assigning the most common
class among its k nearest neighbors (given some distance
measure like Euclidean). We used k equal to three.

• Naive Bayes: is a probabilistic classifier based on
Bayes’ theorem with strong independence assump-
tions between the features. It assigns to a instance
x probabilities for each of possible class Cm as
P(Cm|x) = p(Cm)p(x|Cm)/p(x).

• Decision Tree: generates a structure similar to a diagram
in which each internal node represents a test on an
attribute, each branch represents the outcome of the test,
and each leaf node represents the target variable (class
label). There are many specific decision-tree algorithms;
here, we used the J48 algorithm.

• MultilayerPerceptron (MLP): is a feedforward artificial
neural network that uses a mathematical model for infor-
mation processing. MLP uses backpropagation for cal-
culating the weights updates in the network until it can
perform the task for which it is being trained. Besides
the input and output layer, the number of hidden layers
considered here was (attributes + classes)/2.

• Support-Vector Machines (SVMs): constructs a set of
hyperplanes in a high-dimensional space that maximizes
the distance from each example to the nearest data point
on each side. It can efficiently perform linear and non-
linear classification using a kernel trick that implicitly
maps the inputs into high-dimensional feature spaces.
The kernel used here was PolyKernel and John Platt’s
sequential minimal optimization algorithm.

• Bootstrap Aggregation (Bagging): is based on Boot-
strap, a statistical estimation technique which performs
some statistical measure like mean from multiple ran-
dom samples with replacement from the dataset. Differ-
ent machine learning models are trained from several
random samples of the training data. The results are
averaged to make a better prediction. The used classifier
was the decision tree (CART).

• Random Forest: is an improvement of Bagging since,
during the tree creation, splits points can be selected
from a random subset of the attributes and not by the
traditional greedy strategy that selects the best split point
at each step.

• Random Committee: generates several random base
classifiers by using a different random number seed.

2Weka: https://www.cs.waikato.ac.nz/ml/weka/
3https://scikit-learn.org/stable/
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The final prediction is an average of the predictions
generated by the individual base classifiers. The used
classifier was Random Tree.

• AttributeSelectedClassifier: reduces the dimensionality
of training and test data by attribute selection before
passing the data to a classifier. The classifier used was
Decision Tree J48.

• MultiClass: is a meta classifier for handling multi-class
datasets with 2-class classifiers. The classifier used was
Logistic.

V. MATERIAL AND METHODS
A. DATA
We used the global daily near-surface (1000 hPa) Air Tem-
perature data (SAT), from the National Oceanic and Atmo-
spheric Administration (NOAA) and the Reanalysis I project
of the National Center for Environmental Prediction/National
Center for Atmospheric Research (NCEP/NCAR) [47]. SAT
has been used by several authors to study and analyze the
ENSO phenomenon [26], [33], [35]. We opt for using this
dataset instead of the SST due to the inclusion of the land
areas, which is extra information that we consider important
for the analyses. Besides, the inclusion of global data is
relevant given that the El Niño Oscillation is not an isolated
phenomenon in the central pacific, but connected with many
other climate regions around the world as a complex system.

The dataset covers the period from 1948 to 2018, with
the information of the daily temperature of spaced points
of 2.5◦ × 2.5◦ degrees of latitude and longitude resulting in a
total of 10512 points around the globe, i.e., land and sea areas.
We removed the points located in the poles, considering only
the geographical data located between latitudes 66.5◦N and
66.5◦S. This strategy is because the high density of points
located in the poles negatively influenced the analysis.

After that, we calculate the long-term average temperature
centered on each of the 365 calendar days, to remove the
seasonality in the daily temperature on each spatial point.
In other words, the 365-day climatology is the average over
70 samples of the same day among all the years (1948 –
2018). For each calendar day, we subtract its corresponding
long-term average temperature, obtaining the SAT anomalies
time-series of the grid-points. We removed the data corre-
sponding to February 29th in the case of leap-years. As a
result, the SAT anomalies (SATa) are the raw data used here
for constructing the CNs.

B. TEMPORAL CN AND ML ANALYSIS
Initially, we divide the spatiotemporal SATa dataset into over-
lapping windows of 1t days for all the spatial points. Given
that the complete climatic seasonal cycle of the planet is one
year (four seasons) and the interannual nature of the ENSO,
we set 1t = 365 days [26]. The sliding window is moved
every month, in which the reference is the last month in the
interval, e.g., (July 1, 1950 −1t , July 1, 1950), (August 1,
1950−1t , August 1, 1950), . . ., (m·yy−1t ,m·yy ) and so on.

For example, when talking about the CN of December 2019
(m·yy), we are referring the time-series of SATa in the interval
(12·2018, 12·2019), i.e., the CN of the previous year, and
inferring the class of the ENSO episode for the next three
months according to the topological properties of the CN
in (m·yy).

The temporal CN (G) is the ensemble of CNs from all
the months in the dataset. The G describes the ordered
sequence of networks at the different intervals [48], [49],
i.e., G = {G(7·50)

1 ,G(8·50)
2 , . . . ,G(m·yy)

l }, with l the number
of layers or sliding windows and the superscript (m·yy) is
the month of reference. This temporal CN contains not only
the similarity between nodes but also the global evolution by
months of the climatic temperature system.

For each sliding window G(m·yy)
x , we calculate the Pearson

correlation among all the time-series, producing the sim-
ilarity matrix between the spatial points or nodes. From
the similarity or correlation matrix, we establish connec-
tions between nodes when the absolute correlation values are
higher than 0.65, based on previously reported works [33],
[50]. Therefore, this is the adjacency matrix that represents
the CN of the SATa from the previous year until the month
of reference (m·yy). Each G(m·yy)

x network contains the cli-
matic dynamic and similarity of the nodes around the globe,
in which the topological features can describe the formation
and evolution of the ENSO phenomenon [7], [8], [21], [23].
Here, we aim to understand the El Niño and LaNiña evolution
by each month with the information of the CN constructed
with the SATa of the previous year.

To conduct the classification experiments, we calculate
several structural measurements for each of the CNs in G and
put the new information into a new dataset of attributes. The
adopted measures are the transitivity (τ ), the number of links
(M ), average degree (〈k〉), average shortest-path length (〈`〉),
modularity (Q), global average link distance (〈〈d〉〉), and the
averages of Coreness (Co), Eccentricity (Ec), and Eigenvec-
tor (Ev) centralities. Additionally, each of the 822G(m·yy)

x CNs
has its ONI value, which correspond to the next three month
of the reference, i.e., [(m + 1·yy), (m + 2·yy), (m + 3·yy)].
Hence, we consider the following three experimental setups:

• Dataset1, two classes with El Niño (EN) and no El Niño
occurrences or anything else (AE);

• Dataset2, three classes with El Niño (EN), LaNiña (LN)
occurrences, and regular years (RY) that means neither
El Niño nor La Niña occurred;

• Dataset3, five classes with strong El Niño (SEN), weak
El Niño (WEN), strong La Niña (SLN), weak La Niña
(WLN), and regular year (RY).

Thus, we explore one binary and two multi-class classifi-
cation problems. Instances of an ENSO episode, as explained
in Section IV-A, receive the average of the ONI values of
the episode they pertain. Afterward, we label the instances
according to the intensity of the El Niño or La Niña occur-
rence they had a place. Information about the number of
instances, classes, and distributions are reported in Table 2.
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TABLE 2. Information of the experimental setup and classes.

The classifiers presented in Section IV-C were used to per-
form the classification task in the three proposed datasets.

C. STATISTICAL EVALUATION
To evaluate the performance of the classifiers, the original
dataset was divided into the training set and the test set. In the
training set, we used the K-Fold Cross Validation method.
The data set was divided into k = 10 partitions so that k − 1
groups are used to train themodel, and the remaining partition
is used for evaluation. This process is performed k times by
alternating the evaluation partition, and, at the end of the
iterations, we obtain the performance of the model with the
test set [6].

The confusion matrix (Fig. 3) is the final result of the
classifier when applying the test set. This is a square matrix
with a size equal to the number of target labels or classes. The
columns represent the true classes the algorithm is trying to
predict, and the rows represent the classes predicted by the
classifier. Each element in the matrix matches the number of
samples of class column-j that were classified as belonging to
class row-i [6]. The results of the confusion matrix are essen-
tial because several performance metrics of the classifier are
calculated according to the elements of the matrix [6].

In Fig. 3, we show the metrics used in this work: Accu-
racy is the ratio between the number of correct predictions
over the total number of samples in the test. Recall is the
ratio between the total correct predicted instances of a class
over the total number of instances of that class, i.e., relevant
instances that were correctly retrieved. Precision or positive
predicted value is the fraction of correctly predicted samples
of a class over the total number of predicted samples of the
class. F1-Score is the harmonic mean between the precision
and recall measures. AUC (Area Under The Curve) ROC
(Receiver Operating Characteristics) curve is an evaluation
metric for the classification model’s performance. ROC is a
probability curve that plots the TP rate = (TP / (TP + FN))
against the FP rate = (FP / (FP + TN)) at various thresh-
old settings. AUC measures the entire two-dimensional area
underneath the entire ROC curve and represents a measure of
separability. An excellent model has AUC near to 1, which
means it has a good measure of separability (i.e., if we plot
the positive and negative curves they do not overlap), and
an AUC near to 0 means the model has the worst measure
of separability (the model is predicting negative class as a
positive class and vice versa). If AUC is 0.5, it means the
model has no class separation capacity (i.e., the distributions
overlapping following a random selection).

D. FEATURE SELECTION
Feature selection consists of choosing a small subset of fea-
tures that ideally is sufficient to describe the target value [51].
The main challenge is to perform a trade-off and not select
too many or too few features. In this paper, we employed two
classical methods namely Information gain and Gain ratio to
rank the network-based features/attributes from the dataset.

The Information gain is calculated for each attribute as fol-
lows: given an attribute A that splits the set S into subsets Si,
the average entropy is calculated and its sum is compared to
the entropy of the original set S. The attribute that maximizes
the difference expressed in Equation 1 is selected.

Gain(S,A) = E(S)−
∑
i

Si
S
.E(Si) (1)

Information gain is biased towards choosing attributes with
a large number of values. Gain ratio modifies Information
gain to reduce its bias considering the number and size of
branches when choosing an attribute. It considers the intrinsic
information that is the entropy of the distribution of instances
into branches.

Gain− ratio(S,A) =
Gain(S,A)
IntI (S,A)

(2)

VI. EXPERIMENTAL RESULTS
In this section, we report the results of the proposed approach
for analyzing and classifying the ENSO phenomena using NS
and ML.

A. SPATIOTEMPORAL NETWORK CHARACTERIZATION
AND EVOLUTION
Initially, we show, on a global scale, the evolution of the topo-
logical properties of the SATa temporal CNs. Fig. 4 depicts
the variation in the measurements between 1950 and 2019,
along with the periods of El Niño or La Niña occurrences.
So, we have detailed how the spatiotemporal properties of the
temporal networks evolve, in which the blue/red background
colors indicate La Niña or El Niño episodes, respectively.
Most of the measures present some notable perturbations
when occurring El Niño or La Niña phases. In other words,
given CNs of the previous twelve months, there exist some
characteristic patterns in agreement to the next ENSO phase.

In general, τ , 〈k〉, 〈〈d〉〉, Co, and Ev measures present a
similar peak behavior. In this scenario, we have the exact
behavior between the number of links M and the average
degree 〈k〉, due to the size of the networks is always the same.
On the other hand, the modularity has an opposite or inverse
behavior that the measures mentioned above. LowerQ values
mean that the network is less modular divided into commu-
nities or sub-components. Larger 〈〈d〉〉 means that the nodes
have more long-range connections, which is the principle of
teleconnections. Larger 〈k〉 together with larger Co means
that the network has a larger number of hubs, which are
densely connected in specific clusters. This is in accordance
with the high Ev values, evidencing a network with a high
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FIGURE 3. Example of a confusion matrix for a disjoint two-class problem (left), and Accuracy, Precision, and Recall measures
calculated from the matrix (right).

diffusion rate when propagating a signal. Only Ec and 〈`〉
show different behaviors than the other measures.

We observe an intriguing phenomenon between 1993 and
1994 (Fig. 4), where there is a peak or perturbation detected
by many of the measures. However, there were none ONI
conditions during that period. We found that this anomalous
periodwas reported and studied in other works [28]–[31]. The
cause of the phenomenon is not clear yet, varying from: the
connection to some climatic adjustment occurring in a recur-
rent period of tens or hundreds of years [28], [29]; a stronger
exogenous effect caused by climate changes [30]; or the
influence of strong volcanic eruptions in the global tempera-
ture [31]. Given the anomalous condition of the global climate
system in this period, and that investigating this topic is out-
of-scope here, we decided to remove the nine months cor-
responding to this time frame in the classification analyses.
This way, we avoid the outlier data from extrinsic phenomena
undermining the classification task.

We also show, as examples, the local Eigenvector centrality
of the global SATa temporal networks, for a Regular (Fig. 5a),
and Strong El Niño (Fig. 5b) and La Niña (Fig. 5c) years.
Recalling that for each map, we construct the CN for the
interval of the previous 365 days until the month of reference
(mm·yy). Then, the nodes around the world are connected
if their SATa time-series are high correlated according to
the Pearson coefficient, as explained in Section V-B. After
obtaining the CNs, we calculated the Eigenvector centrality
and plotted the value of the nodes in Fig. 5.
We observe that for the (12·1997) and (12·1998) CNs

(Fig. 5(b) and (c), respectively), the ENSO region in the east-
ern tropical Pacific has the most influential nodes in the CNs.
Given the network construction on top of higher correlated
SATa points around the world, nodes with the highest Eigen-
vector centrality are those highly influencing the temperature
anomalies in the CN. More interesting, in Fig. 5a, we can
observe the influential nodes located in the South Pacific
Ocean. These high central points are located in a region
known as the South Pacific Oscillation (SPO) [52]–[54],
between 35◦N – 60◦S and 170◦W – 90◦W. Recently, some
works found pieces of evidence that the intensity of the
cold or warm ENSO episodes is likely related to patterns of
variation in the sea level pressure and temperature in the SPO
region [52], [53], in the previous months. Thus, the CN previ-
ous the strong El Niño year is showing a cluster of influential

nodes in the SPO region. The results in Fig. 5 show that
the proposed temporal network approach and the topological
characterization of the CN can capture the complex dynamics
and relations between key regions around the world.

B. DATA CLASSIFICATION
The SATa dataset, described in section V-A, was employed
to construct the temporal CNs, as explained in Section V-
B. Nine network measures were calculated and used as
features in the classification algorithms. We consider ten
algorithms described in Section IV-C: k-NN, Naive Bayes,
Decision Tree, Multilayer Perceptron (MLP), Support-
Vector Machines (SVM), Bootstrap Aggregation (Bagging),
Random Forest, Random Committee, Attribute Selected
Classifier (Att.Sel.Classifier) and MultiClass. We present
the classification results regarding the three datasets con-
figurations. The classifiers evaluation was considering the
Accuracy, Precision, Recall, F1-Score, and AUC ROC, from
10-fold cross-validation, which is a re-sampling procedure
used to avoid overfitting in ML models [46].

C. RESULTS FOR DATASET1
Dataset1 consists of two classes with El Niño (EN) and
no El Niño occurrences/anything else (AE). Classification
results are shown in Table 3. Although this dataset repre-
sents a binary classification, we have a very imbalanced
class distribution where only 28.5% of the data represents El
Niño occurrences. All classifiers achieved Accuracy around
70% and F1-score between 59% and 76%. The best results
were reached by Random Forest (0.78 of Accuracy, 0.76 of
F1-score, and 0.79 of AUC ROC).

D. RESULTS FOR DATASET2
Dataset2 consists of three classes with El Niño (EN), La Niña
(LN) occurrences, and regular years (RY), which means no El
Niño neither La Niña occurrence. Classification results are
shown in Table 4. This dataset is a bit more difficult than
Dataset1 because it represents a multiclass problem (three
classes) and it is also imbalanced with 28.5% of the data
representing EN and 27.6% of the data representing LN,
while the remaining represent RY. For this reason, Accuracy
decreased to 48%-58%. Again the best results were reached
by Random Forest (0.58 of Accuracy, 0.57 of F1-score and
0.79 of AUC ROC).
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FIGURE 4. Characterization of the temporal networks according to the adopted topological measures. In the background, red
colors (right side in the legend) show the months that occur El Niño events, and blue colors (left side in the legend) are the
corresponding La Niña events. The measures, from top to bottom, are the transitivity (τ ), modularity (Q), average degree (〈k〉),
the number of links (M), global average link distance (〈〈d 〉〉), and the averages of Coreness (Co), Eigenvector (Ev ) centralities,
Eccentricity (Ec), and shortest-path length (〈`〉).
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FIGURE 5. Local characterization by the Eigenvector centrality for three
cases of temporal networks: (a) (12·1996), representing a CN with no El
Niño or La Niña episode; (b) (12·1997), representing a CN of El Niño
episode; (c) (12·1998), representing a CN of La Niña episode. Each CN is
constructing using the SATa of the previous 365 days according to the
month of reference.

TABLE 3. Classification results for the two cases: El Niño (EN) or anything
else (AE). In bold are the best values.

E. RESULTS FOR DATASET3
Dataset3 consists of five classes with strong El Niño (SEN),
weak El Niño (WEN), strong La Niña (SLN), weak La
Niña (WLN), and regular year (RY). Classification results
are shown in Table 5. This dataset is more difficult than

TABLE 4. Classification results for the three cases: El Niño (EN), La Niña
(LN), and Regular year (RY). In bold are the best values.

TABLE 5. Classification results for the five cases: Weak El Niño (WEN),
Strong El Niño (SEN), Weak La Niña (WLN), Strong La Niña (SLN), and
Regular Year (RY). In bold are the best values.

FIGURE 6. Attribute space distribution of the samples according to
topological features in the case of Dataset1 (two classes).

Dataset1 and Dataset2 because it represents a multiclass
problem (five classes) and is also imbalanced with 16.6% of
the data representing SEN, 10.2% of the data representing
SLN, 11.8% of the data representing WEN, 17.4% repre-
senting WLN and 43.9% of the data are RYs. For this rea-
son, Accuracy decreased to 47%-55%. Again the best results
were reached by Random Forest (0.55 of Accuracy, 0.53 of
F1-score and 0.80 of AUC ROC).
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TABLE 6. Pair-wise spearman correlation between the topological features among the temporal climate networks.

FIGURE 7. Attribute space distribution of the samples according to
topological features in the case of Dataset2 (three classes).

F. DISCUSSION
The accuracy degraded as the number of classes increased,
which is expected since it becomes more difficult to sepa-
rate the data in the attribute space. The before can be seen
in Figs. 6, 7 and 8. Multiclass and multivariate classification
problems are a challenge and relevant in recent machine
learning studies. Here, we employ different techniques (tra-
ditional classifiers and ensemble), and all of them present
a similar performance. Ensemble algorithms achieved a bit
higher results, especially Random Forest, than single clas-
sifiers. They employ a set of classifiers and combine the
predictions. Random Forest, for example, uses a multitude
of decision trees. The trees are created by a random subset of
the attributes to reduce the correlation between estimators in
the ensemble by training them on random samples of features
and avoid bias on features that appear highly descriptive in
the training set. So, this model can deal better with high
dimensional data and avoid overfitting.

A high number of features, typically called multivariate,
in some cases, can difficult the class separation capabilities.
We employ two feature selection techniques – Information
Gain and Gain Ratio – to rank the best attributes from
the nine network measures in the classification: transitivity,

FIGURE 8. Attribute space distribution of the samples according to
topological features in the case of Dataset3 (five classes).

modularity, average degree, the number of links, global aver-
age link distance, and the averages of Coreness, Eigenvector
centralities, Eccentricity, and shortest-path length. The best-
ranked attributes were Eigenvector, Modularity, and num-
ber of links. We also calculated the pair-wise Spearman
coefficient between all the measures (Table 6) to check
the information correlation of the features. We confirm that
the best-ranked measures by the feature selection algorithm
also have a lower correlation between each other. This way,
the classifiers could be trained using only these three features
leading to short running time and similar results.

Networks are a useful tool to represent complex systems
by modeling interactions among the elements from the data.
When analyzing the problem with this representation, we can
find patterns about the system and better understand its
behavior. Moreover, networks help us understand howmicro-
scopic interactions lead to macroscopic regularities. Here,
we combine NS with ML to study the ENSO phenomenon.
ML builds models to learn patterns/behavior without much
domain knowledge, whereas NS aims to find domain knowl-
edge by characterizing the system and its interactions. One
challenge is representing temporal connectivity patterns, and
this work contributes in this direction.
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VII. CONCLUSION
This work presents an approach combining complex net-
work measures and machine learning techniques to classify
intensities of El Niño episodes. We model the spatiotem-
poral dataset as temporal climate networks and extracted
nine topological measures. The measures were employed as
features in binary and multi-class classification problems.
Random Forest was always the best classifier. In the binary
classification, the best result was 79% of AUC ROC and
76% of F1-score; in the three-class dataset, the best result
was 79% of AUC ROC and 58% of F1-score; whereas in
five-class the best result was 80% of AUC ROC and 53%
of F1-score.

The proposed method is an objective and automatic clas-
sification approach that not requires visual inspection and
depends only on a few attributes. The attributes are the
topological properties of the evolving climate networks
constructed from the publicly available global near-surface
(1000 hPa) air temperature and the adopted ENSO labels
(categories). Given the computational cost lower than deep
learning or EOF-based methods and no limitations about
dataset size, our approach is a potential tool to analyze any
other complex spatiotemporal phenomena related to time-
series datasets.

We conclude that both complex networks and machine
learning are efficient tools for analyzing vast volumes of data
collected by satellites and sensors. Besides, climate change
research can help society cope with climate extremes and
minimize their impacts. Network science is expanding and is
an excellent tool for interdisciplinary applications. Here, net-
work science meets machine learning, and enhanced results
can be achieved for the classification of complex phenomena
like ENSO.
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